Maple Questions and Posts

These are Posts and Questions associated with the product, Maple

Why the disparity in the solution of P1 and P2? P1 uses finite difference while P2 uses midrich.

See them here P1.mw     and   P2.mw

I want to put the solution obtained from ShowSolution() command of Student[Calculus1] into my LaTeX file. How I can achieve that?

I succeeded in getting latex of ExpandSteps because it was a module, but ShowSolution() is not a module.

How can one use maple to linearized nonlinear ODE of this type Linearize.mw

with maple.

Best regards.

 

How can one deduce values of f(eta), diff(f(eta),eta) and diff(f(eta),eta$2) from values of f1,f2,f3,f4,.. in the results of the finite difference here Trial.mw . I need the outcome for f and its 1st and 2nd derivatives as listed above. Please help.

How do I compute the Lyapunov exponents for Lorenz system

Hello, my problem is that I've changed in tools maple default mode to "Maple input" from "2-d" I've aplied it globbaly and it doesnt'work. Still when type Enter it switch automatically to 2-d Math, and I have to change it by Ctrl-M to 1-d. Any ideas how to solve it? I want 2-d just to output.

Hi there,

I've got the following differential equation system:,

dU/dt = delta·dotD -lambda·U - kappa·U^2
dL/dt = (1-phi)·lambda·U + 1/4 ·kappa·U^2


being phi, delta, kappa, lambda, kappa some fixed parameters of the system, and where dotD (the derivative wrt time of a function D), which is defined a piecewise funtion:

dotD(t)=1/(3·T1)·DT for t in [0,T1]

dotD(t)=2/(3·(T2-T1-T))·DT for t in [T1+T,T2]

where T and DT are also known, and T1 approaches 0, and T2 approaches T1+T.

Setting the equation system in Maple and trying to solve it, gives a NULL result. However, trying to solve each piece separately seems to work fine.

Why is this?

 

Furthermore, taking limits for the [T1+T,T2] part (having solved each piece separately) yields an invalid limits point error. Ain't the possibility to take limits for both parameters at the same time?

Any ideas?

 

This is the Maple worksheet: MaplePrimes_LQ_model_solve.mw

Thank you.

jon

Hello friends,


I try to write a loop in Maple.


The equation is f (x) = x + 3


x is a variable and should be from 50 to 70 with dx = 5 can be used in the function, so that f (x) is to be determined.

How can I write such a loop?

Hi,

I have a problem solving two equations.  They are as follows:

s := 1/(273.16+50); s1 := 1/(273.16+145); s3 := 1/(273.16+250); s2 := 1/(273.16+197.5); gamma0 := 0.1e-3; gamma1 := .5; gamma2 := 0.15e-2; beta := -3800:

c := 300; n := 200; tau1 := 99; tau2 := 120;


Delta := solve(1-exp(-(gam0*tau1+(1/2)*gam1*tau1^2)*exp(beta*s1)) = 1-exp(-(gam0*a+(1/2)*gam1*a^2)*exp(beta*s2)), a);
a := Delta[1];


Theta := solve(1-exp(-(gam0*(a+tau2-tau1)+(1/2)*gam1*(a+tau2-tau1)^2)*exp(beta*s2)) = 1-exp(-(gam0*b+(1/2)*gam1*b^2)*exp(beta*s3)), b);
b := Theta[1];

n1 := int((gam1*t+gam0)*exp(beta*s1)*exp(-(gam0*t+(1/2)*gam1*t^2)*exp(beta*s1)), t = 0 .. tau1);
n22 := (n-n1)*(int((gam1*t+gam0)*exp(beta*s2)*exp(-(gam0*t+(1/2)*gam1*t^2)*exp(beta*s2)), t = a1 .. a1+tau2-tau1));
n2 := eval(n22, a1 = a);
n33 := (n-n1-n2)*(Int((gam1*t+gam0)*exp(beta*s3)*exp(-(gam0*t+(1/2)*gam1*t^2)*exp(beta*s3)), t = b1 .. c));
n3 := eval(n33, a1 = a);
n4 := n-n1-n2-n3;

g1 := -n1*(Int((1/(gam1*t+gam0)-t*exp(beta*s1))*(gamma2*t^2+gamma1*t+gamma0)*exp(beta*s1)*exp(-(gamma0*t+(1/2)*gamma1*t^2+(1/3)*gamma2*t^3)*exp(beta*s1)), t = 0 .. tau1))-n2*(Int((1/(gam0+gam1*(a+t-tau1))-(a+t-tau1)*exp(beta*s2))*(gamma0+gamma1*(a+t-tau1)+gamma2*(a+t-tau1)^2)*exp(beta*s2)*exp(-(gamma0*(a+t-tau1)+(1/2)*gamma1*(a+t-tau1)^2+(1/3)*gamma2*(a+t-tau1)^3)*exp(beta*s2)), t = tau1 .. tau2))-n3*(Int((1/(gam0+gam1*(b+t-tau2))-(b+t-tau2)*exp(s3))*(gamma0+gamma1*(b+t-tau2)+gamma2*(b+t-tau2)^2)*exp(beta*s3)*exp(-(gamma0*(b+t-tau2)+(1/2)*gamma1*(b+t-tau2)^2+(1/3)*gamma2*(b+t-tau2)^3)*exp(beta*s3)), t = tau2 .. c))+(n-n1-n2-n3)*(1/(gam0+gam1*(b+c-tau2))-(b+c-tau2)*exp(s3))*(gamma0+gamma1*(b+c-tau2)+gamma2*(b+c-tau2)^2)*exp(beta*s3)*exp(-(gamma0*(b+c-tau2)+(1/2)*gamma1*(b+c-tau2)^2+(1/3)*gamma2*(b+c-tau2)^3)*exp(beta*s3));

g2 := -n1*(Int((t/(gam1*t+gam0)-(1/2)*t^2*exp(beta*s1))*(gamma2*t^2+gamma1*t+gamma0)*exp(beta*s1)*exp(-(gamma0*t+(1/2)*gamma1*t^2+(1/3)*gamma2*t^3)*exp(beta*s1)), t = 0 .. tau1))-n2*(Int(((a+t-tau1)/(gam0+gam1*(a+t-tau1))-(1/2)*(a+t-tau1)^2*exp(beta*s2))*(gamma0+gamma1*(a+t-tau1)+gamma2*(a+t-tau1)^2)*exp(beta*s2)*exp(-(gamma0*(a+t-tau1)+(1/2)*gamma1*(a+t-tau1)^2+(1/3)*gamma2*(a+t-tau1)^3)*exp(beta*s2)), t = tau1 .. tau2))-n3*(Int(((b+t-tau2)/(gam0+gam1*(b+t-tau2))-(1/2)*(b+t-tau2)^2*exp(s3))*(gamma0+gamma1*(b+t-tau2)+gamma2*(b+t-tau2)^2)*exp(beta*s3)*exp(-(gamma0*(b+t-tau2)+(1/2)*gamma1*(b+t-tau2)^2+(1/3)*gamma2*(b+t-tau2)^3)*exp(beta*s3)), t = tau2 .. c))+(n-n1-n2-n3)*((b+c-tau2)/(gam0+gam1*(b+c-tau2))-(1/2)*(b+c-tau2)^2*exp(s3))*(gamma0+gamma1*(b+c-tau2)+gamma2*(b+c-tau2)^2)*exp(beta*s3)*exp(-(gamma0*(b+c-tau2)+(1/2)*gamma1*(b+c-tau2)^2+(1/3)*gamma2*(b+c-tau2)^3)*exp(beta*s3));


solve({g1 = 0, g2 = 0}, {gam0, gam1});

Warning, solutions may have been lost.

What do I do wrong?

Thanks for advice in advance.

 

Hi there,

I am trying to maximize a function given a set of values to a parameter in the function. The function is an differential equation belonging to a system of two differential equations.

I have a for loop to state different values to the parameter.

Maple yields the error:

Error, (in Optimization:-NLPSolve) cannot evaluate the solution further right of 0.17757507e-4, probably a singularity

When trying to maximize the function.

Supposed that I was doing something wrong in the loop, if I reproduce the contents of the loop outside, and set a value for the parameter. If I plot the solution of the ordinary differential equation, I can see where the maximum lies.

Having plot it, the Optimizamtion:-Maximize works as expected.

However, omitting the plot has a weird effect: I only get the same result depending on the bounds I set for the Maximization:

de1 := diff(A(t), t) = r*m*(1-g)*A(t)-piecewise(t < 8, r*A(t), t >= 8, (r+k)*A(t));
de2 := diff(G(t), t) = r*m*g*A(t)-l*G(t);

ics := A(0) = 25.0, G(0) = 0.;
num := dsolve({de1, de2, ics}, {A(t), G(t)}, type = numeric, output = listprocedure, parameters = [g]);

num(parameters = [g = .15]);
val := eval(G(t), num);

# odeplot(val, [t, G(t)], t = 0 .. 100);


Maximize(val);
Error, (in Optimization:-NLPSolve) cannot evaluate the solution further right of 0.17757507e-4, probably a singularity

val2 := Maximize(val);

Error, (in Optimization:-NLPSolve) cannot evaluate the solution further right of 0.17757507e-4, probably a singularity

val3 := Maximize(val(t), t = 0 .. 60);

  [10267.824035766165, [t = 8.25727747134303]]

val4 := Maximize(val(t), t = 0 .. 100);

[6.863211343195069e-9, [t = 59.84184367042171]]

 

The right answer is [10267.824035766165, [t = 8.25727747134303]]: Why do I get two different answers even if in that range there is only one relative maximum?

I ignore whether the way I am specifying the arguments for the Maximize function is correct. val is a procedure.

 

What am I missing?

Attached is the worksheet: MaplePrimes_malaria_param_variation_2.mw

 

Thanks,

jon

Good day everyone, could you please help use Gauss Elimination method for these system of equations. See the worksheet here F1.mw

Thanks.

restart; with(linalg); with(stats); with(plots); with(Statistics); with(LinearAlgebra); 


s := 1/(273.16+50); s1 := 1/(273.16+145); s3 := 1/(273.16+250); s2 := 1/(273.16+197.5); gamma0 := 0.1e-3; gamma1 := .5; gamma2 := 0.15e-2; beta := -3800;
c := 300; n := 200; tau1 := 99; tau2 := 120;

Delta := solve(1-exp(-(gam0*tau1+(1/2)*gam1*tau1^2)*exp(beta*s1)) = 1-exp(-(gam0*a+(1/2)*gam1*a^2)*exp(beta*s2)), a);
a := Delta[1];


Theta := solve(1-exp(-(gam0*(a+tau2-tau1)+(1/2)*gam1*(a+tau2-tau1)^2)*exp(beta*s2)) = 1-exp(-(gam0*b+(1/2)*gam1*b^2)*exp(beta*s3)), b);
b := Theta[1];

n1 := n*(int((gam1*t+gam0)*exp(beta*s1)*exp(-(gam0*t+(1/2)*gam1*t^2)*exp(beta*s1)), t = 0 .. tau1));
200. - 200. exp(-0.01119474511 gam0 - 0.5541398828 gam1)
n2 := (n-n1)*(int((gam1*t+gam0)*exp(beta*s2)*exp(-(gam0*t+(1/2)*gam1*t^2)*exp(beta*s2)), t = a .. a+tau2-tau1));

g1 := -n1(gam0, gam1)*(int((1/(gam1*t+gam0)-t*exp(beta*s1))*(gamma2*t^2+gamma1*t+gamma0)*exp(beta*s1)*exp(-(gamma0*t+(1/2)*gamma1*t^2+(1/3)*gamma2*t^3)*exp(beta*s1)), t = 0 .. tau1))-evalf(n2(gam0, gam1)*(int((1/(gam0+gam1*(a+t-tau1))-(a+t-tau1)*exp(beta*s2))*(gamma0+gamma1*(a+t-tau1)+gamma2*(a+t-tau1)^2)*exp(beta*s2)*exp(-(gamma0*(a+t-tau1)+(1/2)*gamma1*(a+t-tau1)^2+(1/3)*gamma2*(a+t-tau1)^3)*exp(beta*s2)), t = tau1 .. tau2)))

g2 := -n1*(int((t/(gam1*t+gam0)-(1/2)*t^2*exp(beta*s1))*(gamma2*t^2+gamma1*t+gamma0)*exp(beta*s1)*exp(-(gamma0*t+(1/2)*gamma1*t^2+(1/3)*gamma2*t^3)*exp(beta*s1)), t = 0 .. tau1))-evalf(n2*(int(((a+t-tau1)/(gam0+gam1*(a+t-tau1))-(1/2)*(a+t-tau1)^2*exp(beta*s2))*(gamma0+gamma1*(a+t-tau1)+gamma2*(a+t-tau1)^2)*exp(beta*s2)*exp(-(gamma0*(a+t-tau1)+(1/2)*gamma1*(a+t-tau1)^2+(1/3)*gamma2*(a+t-tau1)^3)*exp(beta*s2)), t = tau1 .. tau2)))

solve({g1 = 0, g2 = 0}, {gam0, gam1})

I want to find the answer of gam0 and gam1. It takes me 20 hours until now...and still evaluating...

Please Help ..

I can't directly copy Maple code into messages but have to insert into Word first, apply some changes that for better readability and copy it from there via Word-paste. Is there a direct way?

there is a solution of equation,so the equation can be divided by the solution,but because the equation is complex,it can't be simplify by the soution,can anyone give me some help?thanks a lot.

a curve has residual p if it is linked, in a complete intersection, to a curve with residual p-1

0 residual if is a complete intersection of two surfaces

do complete intersection means two surfaces totally overlapped?

why they are not the same one if complete intersection?

First 207 208 209 210 211 212 213 Last Page 209 of 2218