Maple Questions and Posts

These are Posts and Questions associated with the product, Maple

The first instalment in the Hollywood Math webinar series will be returning live this September 17th! It will be presented by Daniel Skoog, our Maple Product Manager.

Over its storied and intriguing history, Hollywood has entertained us with many mathematical moments in film. John Nash in “A Beautiful Mind,” the brilliant janitor in “Good Will Hunting,” the number theory genius in “Pi,” and even Abbott and Costello are just a few of the Hollywood “mathematicians” that come to mind.

During this webinar we will present a number of examples of mathematics in film, including those done capably, as well as questionable and downright “creative” treatments. See relevant, exciting examples that you can use to engage your students, or attend this webinar simply for its entertainment value. Have you ever wondered if the bus could really have jumped the gap in “Speed?” We’ve got the answer! Anyone with an interest in mathematics, especially high school and early college math educators, will be both entertained and informed by attending this webinar.

To join us for the live presentation, click here to register.

Is there a maple function that'll allow me to generate the matrix M(5 by 5) below given that matrix A and B are 3 by 3 M:=LinearAlgebra:-ZeroMatrix(5) A:=Matrix([[a11,a12,a13],[a21,a22,a33],[a31,a32,a33]]) B:=Matrix([[b11,b12,b13],[b21,b22,b33],[b31,b32,b33]]) Matrix(5, 5, {(1, 1) = a[11], (1, 2) = a[12], (1, 3) = a[13], (1, 4) = 0, (1, 5) = 0, (2, 1) = a[12], (2, 2) = a[22], (2, 3) = a[23], (2, 4) = 0, (2, 5) = 0, (3, 1) = a[13], (3, 2) = a[23], (3, 3) = a[33]+b[11], (3, 4) = b[12], (3, 5) = b[13], (4, 1) = 0, (4, 2) = 0, (4, 3) = b[12], (4, 4) = b[22], (4, 5) = b[23], (5, 1) = 0, (5, 2) = 0, (5, 3) = b[13], (5, 4) = b[23], (5, 5) = b[33]});

Good day everyone,

 

I want to construct groebner bases over rings of differential Operators.

Thus I used the following:

 

with(Ore_algebra);

with(Groebner); N := 3;

A := skew_algebra(diff = [D[1], x[1]], diff = [D[2], x[2]], diff = [D[3], x[3]], comm = i, alg_relations = i^2+1); T := MonomialOrder(A, tdeg(D[1], D[2], D[3]));

A["polynomial_indets"];  [returns    {D[1], D[2], D[3]}]

A["rational_indets"];       [returns    {i, x[1], x[2], x[3]}]

 

So far everything seems as it should be: The ring i wanted to define here is the third Ring of  Differential operators over the field of complex 'rational' functions and maple returns that indeed it will handle the D[i] as monomials and the rest as coefficients for them.

 

Hover, when i use the Skew product, the following happens:

skew_product(x[1],D[1],A)                    [returns D[1]x[1]+1}]

skew_product(x[1],D[1],A)                    [returns D[1]x[1]]

Both is wrong, but maple seems to 'know' this. It used the correct relation to in the first product, the only thing it didn't do was switch D[1] and x[1]. I think maple handles the result of the skew product as if it was a commutative product and always places the D[i] at the left but still 'knows' what the actual result is.

The actual results should have been x[1]D[1]+1 for the first and x[1]*D[1] for the second product.

 

In the second product, it seems like maple treated x[1]*D[1] as if the Elements were switched already.

 

What i want though is for maple to correctly display the skew products and return the products so that in every summand the D[i] are at the right side and their coefficients are at the left side (and if possible (i do not know how to do that yet) sort the result of a skew product in a way that displays every different Power product of the D[i] with their coefficients, so that i get (x[1]+x[2])*D[2] and not x[1]*D[2]+x[2]*D[2]).

 

Can anyone help me here?

 


                              
                     
                   
                 

Hi all,

I want use a timer to let Maple program run automatically.

Timer will make Maple run by a time step. Maple will plot photo base on a datadase, the database is a SQL database.

The timer is from Jave or somewhere we can used.

Please help me.

Thanks

Hi dear friends 

Is there an interactive package management utility or a way for solving following problem?

for m>=4 It dosent work!

restart:
Digits :=30: m := 3: g :=0.3: nu := 0.2: a := 1:
w := sum(b[n]*cos(n*r), n = 1 .. m):
W := simplify( subs( solve( { subs(r = 1, diff(w, r$2)+nu*diff(w,r))},{ b[1] }),w)):
d1:=diff(W,r):
d2:=diff(d1,r):
F:= int( ((d2+d1/r)^2-(2*(1-nu))*d2*d1/r)*r*(1+g*r/a)^3,r = 0 .. a) /int( d1^2*r,r = 0 .. a):
FW := simplify( subs(solve( {seq(subs(r=n/m,diff(F,b[n])),n=2..m)},{ seq(b[j], j = 2 .. m) }),F));

 

Hello.

 

Bellow I have an example of my current problem:

I want to put a sequence of numbers in the place of Tau in the same command, so that it returns the answers in the same line divided by commas. On the picture I've done the closest I could to what I want, but if you know how to solve this, I think it would be cleaner to use an alternative.

Screenshot of the problem

x1a+x2b+x3c+x4d=0

y1a+y2b+y3c+y4d=0

z1a+z2b+z3c+z4d=0

t1a+t2b+t3c+t4d=0

how this equations change to matrix? like:

Matrix(4, 4, [x1, x2, x3, x4, y1, y2, y3,y4, z1,z2,z3,z4,t1,t2,t3,t4]).Matrix(4, 1, [a,b,c,d])=Matrix(4 ,1, [0,0,0,0])

 

I have been unable to successfully open a text file for writing in MAPLEPLAYER, whether it is requested in the startup code section or via a document tools button.  Is there a way to write to a file in MAPLEPLAYER?  It returns a "no write access" statement.

The write works perfectly in MAPLE 2015.1

MRB

LE.2a.E.LGM.mwHi, my this programme is executing for linear part but does'nt show the proper results for non linear,plz tell me appropriate code

Dear All

My question may be quite simple for  community of experts in Maple prgramming, but this problem is one of most disturbing problem for last many months. My problem is how to list all coefficient in differential expression of the type

Could someone explain what are the main (functional) differences between professional and personal Maple editions for 2845$ and 299$ respectively?

Tx, Andras

Hi, I hope to use symbol A, B, directly to get C derivation, without using elements forms of matrix, as shown below.

How to achieve this? 

Thank you.

 

 

> coth;
                                    coth
> restart;
> c := 0;
                                      0
> w := -2*mu;
                                    -2 mu
> a[-1] := 0;
                                      0
> a[0] := mu*lambda*sqrt(-6*a);
                                            (1/2)
                            mu lambda (-6 a)     
> a[1] := (6*(mu*lambda^2+1))/sqrt(-6*a);
                               /         2    \
                             6 \mu lambda  + 1/
                             ------------------
                                      (1/2)    
                                (-6 a)         
> b[-1] := 0;
                                      0
> b[0] := 0;
                                      0
> b[1] := 0;
                                      0
> xi := x+w*t;
                                 x - 2 mu t
> P := sqrt(-mu)*coth(A+sqrt(-mu)*xi);
                     (1/2)     /         (1/2)             \
                (-mu)      coth\A + (-mu)      (x - 2 mu t)/
> u := a[0]+a[1]*P/(1+lambda*P)+a[-1]*(1+lambda*P)/P+b[0]*sqrt(sigma*(1+P^2/mu))/P+b[1]*sqrt(sigma*(1+P^2/mu))+b[-1]*sqrt(sigma*(1+P^2/mu))/P^2;
                 (1/2)
 mu lambda (-6 a)     

           /         2    \      (1/2)     /         (1/2)             \   
         6 \mu lambda  + 1/ (-mu)      coth\A + (-mu)      (x - 2 mu t)/   
    + ---------------------------------------------------------------------
            (1/2) /                (1/2)     /         (1/2)             \\
      (-6 a)      \1 + lambda (-mu)      coth\A + (-mu)      (x - 2 mu t)//
> Diff(u, t)+a*u^2*(Diff(u, x))+Diff(u, `$`(x, 3));
/    /                     
| d  |                (1/2)
|--- |mu lambda (-6 a)     
| dt |                     
\    \                     

          /         2    \      (1/2)     /         (1/2)             \   \\     /          
        6 \mu lambda  + 1/ (-mu)      coth\A + (-mu)      (x - 2 mu t)/   ||     |          
   + ---------------------------------------------------------------------|| + a |mu lambda
           (1/2) /                (1/2)     /         (1/2)             \\||     |          
     (-6 a)      \1 + lambda (-mu)      coth\A + (-mu)      (x - 2 mu t)////     \          

        (1/2)
  (-6 a)     

          /         2    \      (1/2)     /         (1/2)             \   \   
        6 \mu lambda  + 1/ (-mu)      coth\A + (-mu)      (x - 2 mu t)/   |   
   + ---------------------------------------------------------------------|^2
           (1/2) /                (1/2)     /         (1/2)             \\|   
     (-6 a)      \1 + lambda (-mu)      coth\A + (-mu)      (x - 2 mu t)///   

  /    /                     
  | d  |                (1/2)
  |--- |mu lambda (-6 a)     
  | dx |                     
  \    \                     

          /         2    \      (1/2)     /         (1/2)             \   \\   
        6 \mu lambda  + 1/ (-mu)      coth\A + (-mu)      (x - 2 mu t)/   ||   
   + ---------------------------------------------------------------------|| +
           (1/2) /                (1/2)     /         (1/2)             \\||   
     (-6 a)      \1 + lambda (-mu)      coth\A + (-mu)      (x - 2 mu t)////   

  / 3 /                     
  |d  |                (1/2)
  |-- |mu lambda (-6 a)     
  |   |                     
  \   \                     

          /         2    \      (1/2)     /         (1/2)             \   \\
        6 \mu lambda  + 1/ (-mu)      coth\A + (-mu)      (x - 2 mu t)/   ||
   + ---------------------------------------------------------------------||
           (1/2) /                (1/2)     /         (1/2)             \\||
     (-6 a)      \1 + lambda (-mu)      coth\A + (-mu)      (x - 2 mu t)////
> value(%);
                          /                                     2\      
     /         2    \   2 |        /         (1/2)             \ |      
  12 \mu lambda  + 1/ mu  \1 - coth\A + (-mu)      (x - 2 mu t)/ /      
--------------------------------------------------------------------- -
      (1/2) /                (1/2)     /         (1/2)             \\   
(-6 a)      \1 + lambda (-mu)      coth\A + (-mu)      (x - 2 mu t)//   

                                                                         /   
                                    1                                    |   
  ---------------------------------------------------------------------- \12
                                                                       2     
        (1/2) /                (1/2)     /         (1/2)             \\      
  (-6 a)      \1 + lambda (-mu)      coth\A + (-mu)      (x - 2 mu t)//      

                                                                           /
  /         2    \      (1/2)     /         (1/2)             \          2 |
  \mu lambda  + 1/ (-mu)      coth\A + (-mu)      (x - 2 mu t)/ lambda mu  \1

                                      2\\     /                     
         /         (1/2)             \ ||     |                (1/2)
   - coth\A + (-mu)      (x - 2 mu t)/ // + a |mu lambda (-6 a)     
                                              |                     
                                              \                     

          /         2    \      (1/2)     /         (1/2)             \   \   
        6 \mu lambda  + 1/ (-mu)      coth\A + (-mu)      (x - 2 mu t)/   |   
   + ---------------------------------------------------------------------|^2
           (1/2) /                (1/2)     /         (1/2)             \\|   
     (-6 a)      \1 + lambda (-mu)      coth\A + (-mu)      (x - 2 mu t)///   

  /                           /                                     2\       
  |       /         2    \    |        /         (1/2)             \ |       
  |     6 \mu lambda  + 1/ mu \1 - coth\A + (-mu)      (x - 2 mu t)/ /       
  |- --------------------------------------------------------------------- +
  |        (1/2) /                (1/2)     /         (1/2)             \\   
  |  (-6 a)      \1 + lambda (-mu)      coth\A + (-mu)      (x - 2 mu t)//   
  \                                                                          

                                                                         /      
                                    1                                    |  /   
  ---------------------------------------------------------------------- \6 \mu
                                                                       2        
        (1/2) /                (1/2)     /         (1/2)             \\         
  (-6 a)      \1 + lambda (-mu)      coth\A + (-mu)      (x - 2 mu t)//         

                                                                      /
        2    \      (1/2)     /         (1/2)             \           |
  lambda  + 1/ (-mu)      coth\A + (-mu)      (x - 2 mu t)/ lambda mu \1

                                         \
                                      2\\|
         /         (1/2)             \ |||
   - coth\A + (-mu)      (x - 2 mu t)/ //|
                                         |
                                         |
                                         /

                                                                       2     
                               /                                     2\      
          /         2    \   2 |        /         (1/2)             \ |      
       12 \mu lambda  + 1/ mu  \1 - coth\A + (-mu)      (x - 2 mu t)/ /      
   - --------------------------------------------------------------------- +
           (1/2) /                (1/2)     /         (1/2)             \\   
     (-6 a)      \1 + lambda (-mu)      coth\A + (-mu)      (x - 2 mu t)//   

                                                                        /       
                                    1                                   |   /   
  --------------------------------------------------------------------- \24 \mu
        (1/2) /                (1/2)     /         (1/2)             \\         
  (-6 a)      \1 + lambda (-mu)      coth\A + (-mu)      (x - 2 mu t)//         

                                                    2 /
        2    \   2     /         (1/2)             \  |
  lambda  + 1/ mu  coth\A + (-mu)      (x - 2 mu t)/  \1

                                      2\\   
         /         (1/2)             \ ||   
   - coth\A + (-mu)      (x - 2 mu t)/ // +

                                                                         /   
                                                                         |   
                                    1                                    |   
  ---------------------------------------------------------------------- \84
                                                                       2     
        (1/2) /                (1/2)     /         (1/2)             \\      
  (-6 a)      \1 + lambda (-mu)      coth\A + (-mu)      (x - 2 mu t)//      

  /         2    \   2     /         (1/2)             \
  \mu lambda  + 1/ mu  coth\A + (-mu)      (x - 2 mu t)/

                                          2                  \
  /                                     2\                   |
  |        /         (1/2)             \ |       (1/2)       |
  \1 - coth\A + (-mu)      (x - 2 mu t)/ /  (-mu)      lambda/

                                                                     3           
                             /                                     2\            
        /         2    \   3 |        /         (1/2)             \ |        2   
     36 \mu lambda  + 1/ mu  \1 - coth\A + (-mu)      (x - 2 mu t)/ /  lambda    
   - ------------------------------------------------------------------------- +
                                                                           3     
            (1/2) /                (1/2)     /         (1/2)             \\      
      (-6 a)      \1 + lambda (-mu)      coth\A + (-mu)      (x - 2 mu t)//      

                                                                         /   
                                                                         |   
                                    1                                    |   
  ---------------------------------------------------------------------- \36
                                                                       4     
        (1/2) /                (1/2)     /         (1/2)             \\      
  (-6 a)      \1 + lambda (-mu)      coth\A + (-mu)      (x - 2 mu t)//      

  /         2    \      (1/2)     /         (1/2)             \       3   3
  \mu lambda  + 1/ (-mu)      coth\A + (-mu)      (x - 2 mu t)/ lambda  mu  

                                          3\   
  /                                     2\ |   
  |        /         (1/2)             \ | |   
  \1 - coth\A + (-mu)      (x - 2 mu t)/ / / +

                                                                         /   
                                                                         |   
                                    1                                    |   
  ---------------------------------------------------------------------- \72
                                                                       3     
        (1/2) /                (1/2)     /         (1/2)             \\      
  (-6 a)      \1 + lambda (-mu)      coth\A + (-mu)      (x - 2 mu t)//      

                                                        2         
  /         2    \   3     /         (1/2)             \        2
  \mu lambda  + 1/ mu  coth\A + (-mu)      (x - 2 mu t)/  lambda  

                                          2\   
  /                                     2\ |   
  |        /         (1/2)             \ | |   
  \1 - coth\A + (-mu)      (x - 2 mu t)/ / / -

                                                                         /   
                                    1                                    |   
  ---------------------------------------------------------------------- \24
                                                                       2     
        (1/2) /                (1/2)     /         (1/2)             \\      
  (-6 a)      \1 + lambda (-mu)      coth\A + (-mu)      (x - 2 mu t)//      

                                                        3        /
  /         2    \   2     /         (1/2)             \         |
  \mu lambda  + 1/ mu  coth\A + (-mu)      (x - 2 mu t)/  lambda \1

                                      2\           \
         /         (1/2)             \ |      (1/2)|
   - coth\A + (-mu)      (x - 2 mu t)/ / (-mu)     /
> simplify(%);
Error, (in simplify/tools/_zn) too many levels of recursion
>
>
>
>
pls help

First 1211 1212 1213 1214 1215 1216 1217 Last Page 1213 of 2224