Maple Questions and Posts

These are Posts and Questions associated with the product, Maple

 I am writing notes on complex analysis, I need to use figures of contour paths to integrate on them, i want to create something like this

I tried to plot the contour for 
\oint_{|z|=2} \frac{1}{z^2+1}\,dz
I need to have connecting lines all around because the poles can not be isolated

with(plots); circle1 := plot([2*cos(t), 2*sin(t), t = 0 .. 2*Pi], color = blue, thickness = 2); circle2 := plot([(1/2)*cos(t), 1+(1/2)*sin(t), t = 0 .. 2*Pi], color = "Green", thickness = 2); circle3 := plot([(1/2)*cos(t), -1+(1/2)*sin(t), t = 0 .. 2*Pi], color = "Red", thickness = 2); sing1 := plottools[disk]([0, 1], 0.2e-1, color = white); sing2 := plottools[disk]([0, -1], 0.2e-1, color = white); label1 := textplot([.1, 1.1, "z = i"], font = [Arial, Bold, 12]); label2 := textplot([.1, -1.1, "z = -i"], font = [Arial, Bold, 12])

display(circle1, circle2, circle3, sing1, sing2, label1, label2, scaling = constrained, labels = ["Re", "Im"])

 
 

restart; f := proc (z) options operator, arrow; 1/(z^2+1) end proc; z := 2*exp(I*t); dz := diff(z, t); integrand := f(z)*dz; simplify(integrand); value(Int(integrand, t = 0 .. 2*Pi))

0

(1)

Download CIF.mw

Hello all,

After updating the Physics package I have this error :

Physics:-Version();
The "Physics Updates" version "1862" is installed in the

   directory C:\Users\jm\maple\toolbox\2025\Physics Updates but

   is not active. The active version of Physics is within the

   library C:/Users/jm/maple/toolbox/2025/Physics Updates/lib\Ph\

  ysics Updates.maple.

What am I supposed to do next?

Thanks a lot and kind regards to all,

Jean-Michel

FYI;

 

You might have to try the command more than one time to see the above crash. Here is the worksheet

restart;

interface(version);

`Standard Worksheet Interface, Maple 2025.0, Linux, March 24 2025 Build ID 1909157`

Physics:-Version();

`The "Physics Updates" version in the MapleCloud is 1862 and is the same as the version installed in this computer, created 2025, April 25, 10:33 hours Pacific Time.`

SupportTools:-Version();

`The Customer Support Updates version in the MapleCloud is 13 and is the same as the version installed in this computer, created April 22, 2025, 15:14 hours Eastern Time.`

restart;

ode:=x^2-2*x*y(x)+5*y(x)^2 = (x^2+2*x*y(x)+y(x)^2)*diff(y(x),x);

x^2-2*x*y(x)+5*y(x)^2 = (x^2+2*x*y(x)+y(x)^2)*(diff(y(x), x))

sol:=y(x) = (-1/2*exp(RootOf(-exp(_Z)^2*ln(x*(exp(_Z)-2))+2*_C7*exp(_Z)^2+_Z*exp(_Z)^2+4*exp(_Z)*ln(x*(exp(_Z)-2))-8*_C7*exp(_Z)-4*exp(_Z)*_Z-2*exp(_Z)-4*ln(x*(exp(_Z)-2))+8*_C7+4*_Z+6))^2+3*exp(RootOf(-exp(_Z)^2*ln(x*(exp(_Z)-2))+2*_C7*exp(_Z)^2+_Z*exp(_Z)^2+4*exp(_Z)*ln(x*(exp(_Z)-2))-8*_C7*exp(_Z)-4*exp(_Z)*_Z-2*exp(_Z)-4*ln(x*(exp(_Z)-2))+8*_C7+4*_Z+6))-6+2*(exp(RootOf(-exp(_Z)^2*ln(x*(exp(_Z)-2))+2*_C7*exp(_Z)^2+_Z*exp(_Z)^2+4*exp(_Z)*ln(x*(exp(_Z)-2))-8*_C7*exp(_Z)-4*exp(_Z)*_Z-2*exp(_Z)-4*ln(x*(exp(_Z)-2))+8*_C7+4*_Z+6))^2-6*exp(RootOf(-exp(_Z)^2*ln(x*(exp(_Z)-2))+2*_C7*exp(_Z)^2+_Z*exp(_Z)^2+4*exp(_Z)*ln(x*(exp(_Z)-2))-8*_C7*exp(_Z)-4*exp(_Z)*_Z-2*exp(_Z)-4*ln(x*(exp(_Z)-2))+8*_C7+4*_Z+6))+9)^(1/2))/(1/2*exp(RootOf(-exp(_Z)^2*ln(x*(exp(_Z)-2))+2*_C7*exp(_Z)^2+_Z*exp(_Z)^2+4*exp(_Z)*ln(x*(exp(_Z)-2))-8*_C7*exp(_Z)-4*exp(_Z)*_Z-2*exp(_Z)-4*ln(x*(exp(_Z)-2))+8*_C7+4*_Z+6))^2-3*exp(RootOf(-exp(_Z)^2*ln(x*(exp(_Z)-2))+2*_C7*exp(_Z)^2+_Z*exp(_Z)^2+4*exp(_Z)*ln(x*(exp(_Z)-2))-8*_C7*exp(_Z)-4*exp(_Z)*_Z-2*exp(_Z)-4*ln(x*(exp(_Z)-2))+8*_C7+4*_Z+6)))*x:

odetest(sol,ode);

 

Download crash_maple_2025_april_27_2025.mw

Hopefully a fix could be found for this.

When generating a file to update parts of maple (for example constants) is it best to put it in an initialization file or make a library archive .mla?

I fail to see the logic of using short form symbols for the scientific constants and then not being able to use that short form.  One manually has to equate the two as I show below.  Anyone see a reason not to do that in the internal programming?  Just wondering. 

with(ScientificConstants):

GetConstant(M__Sun)             

One has to use the names associated with those short forms described by the command

GetConstant(mass_of_Sun)

I would much rather like to use MSun , so what one has to do is manually equate them

MSun:=mass_of_Sun:

GetConstant(MSun)

I have a list of candidate solutions. Some of them satisfy my PDE test (i.e., they make the PDE equal to zero), while others do not. How can I separate the solutions that satisfy the PDE from those that do not?

Trail-pdetest.mw

ABC is an equilateral triangle of side 3 units. The points P, Q lie on BC, CA re-
spectively and are such that AQ = CP = 2units. If the point R lies on AB produced

so that BR = 1unit, prove that P, Q, R are collinear.

How to modify the ND procedure to handle derivatives with respect to more than three independent variables for higher-dimensional PDEs, it is work for [x,t] i want  it work for [x,y,z,t] , 

restart

with(PDEtools)

with(LinearAlgebra)

NULL

with(SolveTools)

undeclare(prime)

`There is no more prime differentiation variable; all derivatives will be displayed as indexed functions`

(1)

alias(F=F(x, t), G=G(x, t))

F, G

(2)

with(PDEtools):
undeclare(prime):

`There is no more prime differentiation variable; all derivatives will be displayed as indexed functions`

(3)

ND := proc(F, G, U)
  local v, w, f, g, a:
  v := op(F):
  if v[1] in U then w := -v[1] else w := v[1] end if:
  if v[2] in U then w := w, -v[2] else w := w, v[2] end if:
  f := op(0, F):
  g := op(0, G):
  a := diff(f(w)*g(v), U);
  convert(subs([w]=~[v], a), diff)
end proc:

ND(F, G, [x]);
ND(F, G, [t]);

-(diff(F, x))*G+F*(diff(G, x))

 

-(diff(F, t))*G+F*(diff(G, t))

(4)

ND(F, F, [x]);
ND(F, F, [x, x]);

0

 

2*F*(diff(diff(F, x), x))-2*(diff(F, x))^2

(5)

ND(F, G, [x$3]);

-(diff(diff(diff(F, x), x), x))*G+3*(diff(diff(F, x), x))*(diff(G, x))-3*(diff(F, x))*(diff(diff(G, x), x))+F*(diff(diff(diff(G, x), x), x))

(6)

ND(F, F, [x$3, t]);

2*F*(diff(diff(diff(diff(F, t), x), x), x))-2*(diff(diff(diff(F, x), x), x))*(diff(F, t))-6*(diff(diff(diff(F, t), x), x))*(diff(F, x))+6*(diff(diff(F, x), x))*(diff(diff(F, t), x))

(7)

NULL

NULL

#if i collect P1+P1+...+P7 it must get equation 26 in paper so i want define the up proc to open but is not for (3+1) dimesnion,

P1 := 9*ND(F, F, [x, t])

18*F*(diff(diff(F, t), x))-18*(diff(F, x))*(diff(F, t))

(8)

NULL

P2 := -5*ND(F, F, [`$`(x, 3), y])

0

(9)

P3 := ND(F, F, [`$`(x, 6)])

2*F*(diff(diff(diff(diff(diff(diff(F, x), x), x), x), x), x))-12*(diff(diff(diff(diff(diff(F, x), x), x), x), x))*(diff(F, x))+30*(diff(diff(diff(diff(F, x), x), x), x))*(diff(diff(F, x), x))-20*(diff(diff(diff(F, x), x), x))^2

(10)

P4 := -5*ND(F, F, [`$`(y, 2)])

0

(11)

P5 := alpha*ND(F, F, [`$`(x, 2)])

alpha*(2*F*(diff(diff(F, x), x))-2*(diff(F, x))^2)

(12)

P6 := beta*ND(F, F, [x, y])

0

(13)

P7 := gamma*ND(F, F, [x, z])

0

(14)

Download define.mw

L. B. Johnson once said: “I may not know much, but I know chicken sh#t from chicken salad.” And the same goes for mathematical software,  Maple is a good chicken salad.

These two numbers can be used to factor two previously factored RSA Challenge numbers:

4492372899485266683229032112393311539091890452003150017722229708882931615085372733373343061967162688807713966063216561545461119244883848142568154156987418243095913219694108294875951005535802313105656690937568115044857082104972025


252470349467980886727391223577367145704558455488893488785280129051457755334632136343591527439288590916228345021218177497619016135424030834870037054353008183582467637830682000623550252325843511739294850378626625818394419012275747807

I'm curious to see if anyone can identify the numbers and do the factorization. If no one has been able to solve this, I will post the solution context at a future date. There exists some very interesting mathematics behind this question that goes beyond a simple recreational diversion.
 

I am very confused by the y-value of the rightmost point on the plot below.

restart

I'd like to find the values of x for which x^2/(10^(-8)-x) = 5*10^(-3).

So I ask Maple to solve this equation.

evalf(solve(x^2/(10^(-8)-x) = 5*10^(-3)))

-0.5000010000e-2, 0.10000e-7

(1)

Do these solutions work?

eval(x^2/(10^(-8)-x), x = 1.0000*10^(-8)) = Float(infinity) 

eval(x^2/(10^(-8)-x), x = -0.5000010000e-2) = 0.5000000000e-2 NULL

Suppose I define the function

f := proc (x) options operator, arrow; x^2/(1/100000000-x) end proc = proc (x) options operator, arrow; x^2/(1/100000000-x) end proc 

f(10^(-8))

Error, (in f) numeric exception: division by zero

 

f(.999999*10^(-8)) = 0.9999980000e-2NULL

f(.99999*10^(-8)) = 0.9999800001e-3NULL

Now, the function seems continuous between these two points

plot(f, .99999*10^(-8) .. .999999*10^(-8))

 

It is late, and perhaps I am just tired and not seeing things clearly. I expected the topmost point on the right to have a y-value of 0.00999998, ie almost 0.01.

I expected that the bottom leftmost point to be 0.0009999800001, ie almost 0.001, and it is.

And I thus expected to show that there must be some x for which we have f(x)=0.005, which if I am not mistaken is between the two numbers. After all, 0.999998e-2-0.5e-2 = 0.499998e-2NULL

0.5e-2-0.9999800001e-3 = 0.4000020000e-2NULL

what am i missing here?


Download plotq.mw

I have a question about a calculation I was just trying to do. For some context, I am trying to calculate the pH of a solution of a weak acid in water. When the concentration of the weak acid is low enough, we need to consider the effect of ionization of the water itself (ie, autoprotolysis of water), since the order of magnitude of this ionization is the same as the order of magnitude of the ions due to the weak acid in this case of very low concentration.

There is a specific formula that can be used for this, which is shown below.

K_a is a constant that depends on the weak acid being considered, and K_w is a constant as well (for the autoprotolysis of water). I am interested in solving for the concentration of hydronium, given an initial concentration of the weak acid [HA]_initial.

I'd like to solve the equation for different values of [HA]_initial.

In the calculations below, I am trying to solve for [H__3*LinearAlgebra:-Transpose(O)] in the expression

K__a = ([H__3*LinearAlgebra:-Transpose(O)])([H__3*LinearAlgebra:-Transpose(O)]-K__w/[H__3*LinearAlgebra:-Transpose(O)])/(HA__initial+[-H__3*LinearAlgebra:-Transpose(O)]+K__w/[H__3*LinearAlgebra:-Transpose(O)])

Below, I use x as the concentration of hydronium [H__3*LinearAlgebra:-Transpose(O)] and K__a = 5*10^(-3), K__w = 10^(-14), HA__initial = 10^(-3)

evalf(solve((x^2-10^(-14))/(10^(-3)-x+10^(-14)/x) = 5*10^(-3), x))

0.854101976e-3-0.4e-11*I, -0.5854101969e-2-0.465063510e-12*I, -0.9e-11+0.3865063510e-11*I

(1)

If I use a manual simplification (noting that K__w is extremely small compared to reasonable values of [H__3*LinearAlgebra:-Transpose(O)], then I am able to get real solutions.

evalf(solve(x^2/(10^(-3)-x) = 5*10^(-3), x))

-0.5854101966e-2, 0.854101966e-3

(2)

Now, looking at the complex solutions, the imaginary parts are very small and the real parts of two of the three solutions match the real solutions above, so I guess perhaps I could have just ignored those complex parts.

On the other hand, if I try to do similar calculations but with HA__initial = 10^(-6), I get

evalf(solve((x^2-10^(-14))/(10^(-6)-x+10^(-14)/x) = 5*10^(-3), x))

0.1009702e-5-0.3e-11*I, -0.5000999802e-2-0.332050808e-12*I, -0.9902e-8+0.3132050808e-11*I

(3)

evalf(solve(x^2/(10^(-6)-x) = 5*10^(-3), x))

-0.5000999800e-2, 0.999800e-6

(4)

So here, I don't see a complex solution that looks like the positive real solution above. Which means that I am not sure if the equation with the complex solutions (which is not simplified) is useful to me (I am doing various such calculations with different values of "`HA__initial`)".

Download concentrations.mw

Just found new regression in Maple 2025. This internal error can not be cought and was not there in Maple 2024.2. This is new from the ones reprted earlier in Collection-Of-Problems-In-Maple-2025 

Here it is , using latest SupportTools

restart;

interface(version);

`Standard Worksheet Interface, Maple 2025.0, Linux, March 24 2025 Build ID 1909157`

Physics:-Version();

`The "Physics Updates" version in the MapleCloud is 1862 and is the same as the version installed in this computer, created 2025, April 25, 10:33 hours Pacific Time.`

SupportTools:-Version();

`The Customer Support Updates version in the MapleCloud is 13 and is the same as the version installed in this computer, created April 22, 2025, 15:14 hours Eastern Time.`

restart;

#17593
eq:=2*A[6]*exp(-2*t)*cos(t)+2*A[3]*exp(-2*t)*sin(t)-2*A[4]*exp(-2*t)*cos(t)-4*A[7]*exp(-t)*sin(2*t)+4*A[8]*exp(-t)*cos(2*t)-2*A[5]*exp(-2*t)*sin(t)+4*A[2]*exp(-t)+4*A[1]*t*exp(-t)+4*A[3]*exp(-2*t)*cos(t)+4*A[4]*exp(-2*t)*sin(t)+2*A[9]*exp(-t)*cos(2*t)-8*A[9]*t*exp(-t)*sin(2*t)+2*A[10]*exp(-t)*sin(2*t)+8*A[10]*t*exp(-t)*cos(2*t)-2*A[5]*exp(-2*t)*cos(t)+2*A[5]*t*exp(-2*t)*sin(t)-2*A[6]*exp(-2*t)*sin(t)-2*A[6]*t*exp(-2*t)*cos(t)+4*A[5]*t*exp(-2*t)*cos(t)+4*A[6]*t*exp(-2*t)*sin(t) = 3*t*exp(-t)*cos(2*t)-2*t*exp(-2*t)*cos(t):


trial_solution_constants:=[A[1], A[2], A[3], A[4], A[5], A[6], A[7], A[8], A[9], A[10]]:

try
     timelimit(30,[solve(identity(eq,t),trial_solution_constants) ]);
catch:
     print("OK cought error");
end try;

Error, (in type/trig) too many levels of recursion

 

 

Download regression_maple_2025_april_26_2025.mw

Here is the same code in Maple 2024.2 but using windows. No internal error and timeout was cought as expected.

restart;
interface(version);

`Standard Worksheet Interface, Maple 2024.2, Windows 10, October 29 2024 Build ID 1872373`

Physics:-Version();

`The "Physics Updates" version in the MapleCloud is 1862. The version installed in this computer is 1849 created 2025, March 12, 12:37 hours Pacific Time, found in the directory C:\Users\Owner\maple\toolbox\2024\Physics Updates\lib\`

#17593
eq:=2*A[6]*exp(-2*t)*cos(t)+2*A[3]*exp(-2*t)*sin(t)-2*A[4]*exp(-2*t)*cos(t)-4*A[7]*exp(-t)*sin(2*t)+4*A[8]*exp(-t)*cos(2*t)-2*A[5]*exp(-2*t)*sin(t)+4*A[2]*exp(-t)+4*A[1]*t*exp(-t)+4*A[3]*exp(-2*t)*cos(t)+4*A[4]*exp(-2*t)*sin(t)+2*A[9]*exp(-t)*cos(2*t)-8*A[9]*t*exp(-t)*sin(2*t)+2*A[10]*exp(-t)*sin(2*t)+8*A[10]*t*exp(-t)*cos(2*t)-2*A[5]*exp(-2*t)*cos(t)+2*A[5]*t*exp(-2*t)*sin(t)-2*A[6]*exp(-2*t)*sin(t)-2*A[6]*t*exp(-2*t)*cos(t)+4*A[5]*t*exp(-2*t)*cos(t)+4*A[6]*t*exp(-2*t)*sin(t) = 3*t*exp(-t)*cos(2*t)-2*t*exp(-2*t)*cos(t):


trial_solution_constants:=[A[1], A[2], A[3], A[4], A[5], A[6], A[7], A[8], A[9], A[10]]:

 

try
     timelimit(30,[solve(identity(eq,t),trial_solution_constants) ]);
catch:
     print("OK cought error");
end try;


Download no_problem_in_maple_2024_april_26_2025.mw

Today I was working on some plots involving pH, which is defined as -log_10 ([hydronium]), that is, the negative of the base 10 logarithm of the concentration of hydronium in a solution.

I reached an expression for a variable x that is a function of an initial concentration C_i.

I wanted to plot the pH given by -log_10 (0.0001+x).

Note that x(0)=0, and so for this latter plot we should have the point (0, 4).

I am not able to see any part of the plot near (0,4), as can be seen below.

plot(-log[10](0.1e-3+x))

 

x := -0.2550000000e-2+0.5000000000e-4*sqrt(2601.+(2.000000000*10^6)*C__i)

-0.2550000000e-2+0.5000000000e-4*(2601.+2000000.000*C__i)^(1/2)

(1)

plot(-log[10](0.1e-3+x))

 

I want to see the plot being 4 at C__i = 0.

 

Note that subs({C__i = 0}, x) = 0. and evalf(subs({C__i = 0}, -log[10](0.1e-3+x))) = 4.000000000 

NULL

plot(-log[10](0.1e-3+x), C__i = 0 .. 1)

 

plot(-log[10](0.1e-3+x), C__i = 0 .. 1, view = [0 .. 1, 1 .. 4])

 

plot(-log[10](0.1e-3+x), C__i = 0 .. 1, view = [0 .. .1, 1 .. 4])

 

NULL

Download plotatzero.mw

I try to construct a system of coefficient but  i don't know why distribute of them is not working, beside this there is any other way for build this kind of systems 

restart

with(PDEtools)

with(LinearAlgebra)

NULL

with(SolveTools)

_local(gamma)

``

`There is no more prime differentiation variable; all derivatives will be displayed as indexed functions`

(1)

declare(u(x, y, z, t))

u(x, y, z, t)*`will now be displayed as`*u

(2)

declare(f(x, y, z, t))

f(x, y, z, t)*`will now be displayed as`*f

(3)

pde := 9*(diff(u(x, y, z, t), t, x))+diff(u(x, y, z, t), `$`(x, 6))-5*(diff(u(x, y, z, t), `$`(x, 3), y)+diff(u(x, y, z, t), `$`(y, 2)))+15*((diff(u(x, y, z, t), `$`(x, 2)))*(diff(u(x, y, z, t), `$`(x, 3)))+(diff(u(x, y, z, t), x))*(diff(u(x, y, z, t), `$`(x, 4)))-(diff(u(x, y, z, t), x))*(diff(u(x, y, z, t), x, y))-(diff(u(x, y, z, t), `$`(x, 2)))*(diff(u(x, y, z, t), y)))+45*(diff(u(x, y, z, t), x))^2*(diff(u(x, y, z, t), `$`(x, 2)))+alpha*(diff(u(x, y, z, t), `$`(x, 2)))+beta*(diff(u(x, y, z, t), x, y))+delta*(diff(u(x, y, z, t), x, z))

9*(diff(diff(u(x, y, z, t), t), x))+diff(diff(diff(diff(diff(diff(u(x, y, z, t), x), x), x), x), x), x)-5*(diff(diff(diff(diff(u(x, y, z, t), x), x), x), y))-5*(diff(diff(u(x, y, z, t), y), y))+15*(diff(diff(u(x, y, z, t), x), x))*(diff(diff(diff(u(x, y, z, t), x), x), x))+15*(diff(u(x, y, z, t), x))*(diff(diff(diff(diff(u(x, y, z, t), x), x), x), x))-15*(diff(u(x, y, z, t), x))*(diff(diff(u(x, y, z, t), x), y))-15*(diff(diff(u(x, y, z, t), x), x))*(diff(u(x, y, z, t), y))+45*(diff(u(x, y, z, t), x))^2*(diff(diff(u(x, y, z, t), x), x))+alpha*(diff(diff(u(x, y, z, t), x), x))+beta*(diff(diff(u(x, y, z, t), x), y))+delta*(diff(diff(u(x, y, z, t), x), z))

(4)

``

oppde := [op(expand(pde))]; u_occurrences := map(proc (i) options operator, arrow; numelems(select(has, [op([op(i)])], u)) end proc, oppde); linear_op_indices := ListTools:-SearchAll(1, u_occurrences); pde_linear := add(oppde[[linear_op_indices]]); pde_nonlinear := expand(simplify(expand(pde)-pde_linear))

9*(diff(diff(u(x, y, z, t), t), x))+diff(diff(diff(diff(diff(diff(u(x, y, z, t), x), x), x), x), x), x)-5*(diff(diff(diff(diff(u(x, y, z, t), x), x), x), y))-5*(diff(diff(u(x, y, z, t), y), y))+alpha*(diff(diff(u(x, y, z, t), x), x))+beta*(diff(diff(u(x, y, z, t), x), y))+delta*(diff(diff(u(x, y, z, t), x), z))

 

15*(diff(diff(u(x, y, z, t), x), x))*(diff(diff(diff(u(x, y, z, t), x), x), x))+15*(diff(u(x, y, z, t), x))*(diff(diff(diff(diff(u(x, y, z, t), x), x), x), x))-15*(diff(u(x, y, z, t), x))*(diff(diff(u(x, y, z, t), x), y))-15*(diff(diff(u(x, y, z, t), x), x))*(diff(u(x, y, z, t), y))+45*(diff(u(x, y, z, t), x))^2*(diff(diff(u(x, y, z, t), x), x))

(5)

H := u(x, y, z, t) = 2*(diff(ln(f(x, y, z, t)), x))

u(x, y, z, t) = 2*(diff(f(x, y, z, t), x))/f(x, y, z, t)

(6)

H1 := int(pde_linear, x)

(diff(u(x, y, z, t), z))*delta+alpha*(diff(u(x, y, z, t), x))+beta*(diff(u(x, y, z, t), y))-5*(int(diff(diff(u(x, y, z, t), y), y), x))+9*(diff(u(x, y, z, t), t))+diff(diff(diff(diff(diff(u(x, y, z, t), x), x), x), x), x)-5*(diff(diff(diff(u(x, y, z, t), x), x), y))

(7)

L := eval(H1, H) = 0

-18*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), t))/f(x, y, z, t)^2-12*(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x))*(diff(f(x, y, z, t), x))/f(x, y, z, t)^2-30*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)^2-20*(diff(diff(diff(f(x, y, z, t), x), x), x))^2/f(x, y, z, t)^2+60*(diff(diff(f(x, y, z, t), x), x))^3/f(x, y, z, t)^3-240*(diff(f(x, y, z, t), x))^6/f(x, y, z, t)^6+10*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^2+30*(diff(diff(diff(f(x, y, z, t), x), x), y))*(diff(f(x, y, z, t), x))/f(x, y, z, t)^2+30*(diff(diff(f(x, y, z, t), x), x))*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)^2-60*(diff(f(x, y, z, t), x))^2*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)^3+60*(diff(f(x, y, z, t), x))^3*(diff(f(x, y, z, t), y))/f(x, y, z, t)^4+60*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(f(x, y, z, t), x))^2/f(x, y, z, t)^3-240*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))^3/f(x, y, z, t)^4+240*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)^3+720*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))^4/f(x, y, z, t)^5-540*(diff(diff(f(x, y, z, t), x), x))^2*(diff(f(x, y, z, t), x))^2/f(x, y, z, t)^4-60*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^3+(2*(diff(diff(f(x, y, z, t), x), z))/f(x, y, z, t)-2*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), z))/f(x, y, z, t)^2)*delta+alpha*(2*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)-2*(diff(f(x, y, z, t), x))^2/f(x, y, z, t)^2)+beta*(2*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)-2*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^2)-10*(diff(diff(f(x, y, z, t), y), y))/f(x, y, z, t)+10*(diff(f(x, y, z, t), y))^2/f(x, y, z, t)^2+18*(diff(diff(f(x, y, z, t), t), x))/f(x, y, z, t)+2*(diff(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x), x))/f(x, y, z, t)-10*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), y))/f(x, y, z, t) = 0

(8)

numer(lhs(240*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)^3-60*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^3-18*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), t))/f(x, y, z, t)^2-12*(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x))*(diff(f(x, y, z, t), x))/f(x, y, z, t)^2-30*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)^2+10*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^2+30*(diff(diff(diff(f(x, y, z, t), x), x), y))*(diff(f(x, y, z, t), x))/f(x, y, z, t)^2+30*(diff(diff(f(x, y, z, t), x), x))*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)^2-60*(diff(f(x, y, z, t), x))^2*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)^3+60*(diff(f(x, y, z, t), x))^3*(diff(f(x, y, z, t), y))/f(x, y, z, t)^4+60*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(f(x, y, z, t), x))^2/f(x, y, z, t)^3-240*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))^3/f(x, y, z, t)^4+720*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))^4/f(x, y, z, t)^5-540*(diff(diff(f(x, y, z, t), x), x))^2*(diff(f(x, y, z, t), x))^2/f(x, y, z, t)^4+beta*(2*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)-2*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^2)-20*(diff(diff(diff(f(x, y, z, t), x), x), x))^2/f(x, y, z, t)^2+60*(diff(diff(f(x, y, z, t), x), x))^3/f(x, y, z, t)^3-240*(diff(f(x, y, z, t), x))^6/f(x, y, z, t)^6-10*(diff(diff(f(x, y, z, t), y), y))/f(x, y, z, t)+10*(diff(f(x, y, z, t), y))^2/f(x, y, z, t)^2+18*(diff(diff(f(x, y, z, t), t), x))/f(x, y, z, t)+2*(diff(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x), x))/f(x, y, z, t)-10*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), y))/f(x, y, z, t)+(2*(diff(diff(f(x, y, z, t), x), z))/f(x, y, z, t)-2*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), z))/f(x, y, z, t)^2)*delta+alpha*(2*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)-2*(diff(f(x, y, z, t), x))^2/f(x, y, z, t)^2) = 0))*denom(rhs(240*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)^3-60*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^3-18*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), t))/f(x, y, z, t)^2-12*(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x))*(diff(f(x, y, z, t), x))/f(x, y, z, t)^2-30*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)^2+10*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^2+30*(diff(diff(diff(f(x, y, z, t), x), x), y))*(diff(f(x, y, z, t), x))/f(x, y, z, t)^2+30*(diff(diff(f(x, y, z, t), x), x))*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)^2-60*(diff(f(x, y, z, t), x))^2*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)^3+60*(diff(f(x, y, z, t), x))^3*(diff(f(x, y, z, t), y))/f(x, y, z, t)^4+60*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(f(x, y, z, t), x))^2/f(x, y, z, t)^3-240*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))^3/f(x, y, z, t)^4+720*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))^4/f(x, y, z, t)^5-540*(diff(diff(f(x, y, z, t), x), x))^2*(diff(f(x, y, z, t), x))^2/f(x, y, z, t)^4+beta*(2*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)-2*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^2)-20*(diff(diff(diff(f(x, y, z, t), x), x), x))^2/f(x, y, z, t)^2+60*(diff(diff(f(x, y, z, t), x), x))^3/f(x, y, z, t)^3-240*(diff(f(x, y, z, t), x))^6/f(x, y, z, t)^6-10*(diff(diff(f(x, y, z, t), y), y))/f(x, y, z, t)+10*(diff(f(x, y, z, t), y))^2/f(x, y, z, t)^2+18*(diff(diff(f(x, y, z, t), t), x))/f(x, y, z, t)+2*(diff(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x), x))/f(x, y, z, t)-10*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), y))/f(x, y, z, t)+(2*(diff(diff(f(x, y, z, t), x), z))/f(x, y, z, t)-2*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), z))/f(x, y, z, t)^2)*delta+alpha*(2*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)-2*(diff(f(x, y, z, t), x))^2/f(x, y, z, t)^2) = 0)) = numer(rhs(240*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)^3-60*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^3-18*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), t))/f(x, y, z, t)^2-12*(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x))*(diff(f(x, y, z, t), x))/f(x, y, z, t)^2-30*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)^2+10*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^2+30*(diff(diff(diff(f(x, y, z, t), x), x), y))*(diff(f(x, y, z, t), x))/f(x, y, z, t)^2+30*(diff(diff(f(x, y, z, t), x), x))*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)^2-60*(diff(f(x, y, z, t), x))^2*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)^3+60*(diff(f(x, y, z, t), x))^3*(diff(f(x, y, z, t), y))/f(x, y, z, t)^4+60*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(f(x, y, z, t), x))^2/f(x, y, z, t)^3-240*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))^3/f(x, y, z, t)^4+720*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))^4/f(x, y, z, t)^5-540*(diff(diff(f(x, y, z, t), x), x))^2*(diff(f(x, y, z, t), x))^2/f(x, y, z, t)^4+beta*(2*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)-2*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^2)-20*(diff(diff(diff(f(x, y, z, t), x), x), x))^2/f(x, y, z, t)^2+60*(diff(diff(f(x, y, z, t), x), x))^3/f(x, y, z, t)^3-240*(diff(f(x, y, z, t), x))^6/f(x, y, z, t)^6-10*(diff(diff(f(x, y, z, t), y), y))/f(x, y, z, t)+10*(diff(f(x, y, z, t), y))^2/f(x, y, z, t)^2+18*(diff(diff(f(x, y, z, t), t), x))/f(x, y, z, t)+2*(diff(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x), x))/f(x, y, z, t)-10*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), y))/f(x, y, z, t)+(2*(diff(diff(f(x, y, z, t), x), z))/f(x, y, z, t)-2*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), z))/f(x, y, z, t)^2)*delta+alpha*(2*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)-2*(diff(f(x, y, z, t), x))^2/f(x, y, z, t)^2) = 0))*denom(lhs(240*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)^3-60*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^3-18*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), t))/f(x, y, z, t)^2-12*(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x))*(diff(f(x, y, z, t), x))/f(x, y, z, t)^2-30*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)^2+10*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^2+30*(diff(diff(diff(f(x, y, z, t), x), x), y))*(diff(f(x, y, z, t), x))/f(x, y, z, t)^2+30*(diff(diff(f(x, y, z, t), x), x))*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)^2-60*(diff(f(x, y, z, t), x))^2*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)^3+60*(diff(f(x, y, z, t), x))^3*(diff(f(x, y, z, t), y))/f(x, y, z, t)^4+60*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(f(x, y, z, t), x))^2/f(x, y, z, t)^3-240*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))^3/f(x, y, z, t)^4+720*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))^4/f(x, y, z, t)^5-540*(diff(diff(f(x, y, z, t), x), x))^2*(diff(f(x, y, z, t), x))^2/f(x, y, z, t)^4+beta*(2*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)-2*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^2)-20*(diff(diff(diff(f(x, y, z, t), x), x), x))^2/f(x, y, z, t)^2+60*(diff(diff(f(x, y, z, t), x), x))^3/f(x, y, z, t)^3-240*(diff(f(x, y, z, t), x))^6/f(x, y, z, t)^6-10*(diff(diff(f(x, y, z, t), y), y))/f(x, y, z, t)+10*(diff(f(x, y, z, t), y))^2/f(x, y, z, t)^2+18*(diff(diff(f(x, y, z, t), t), x))/f(x, y, z, t)+2*(diff(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x), x))/f(x, y, z, t)-10*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), y))/f(x, y, z, t)+(2*(diff(diff(f(x, y, z, t), x), z))/f(x, y, z, t)-2*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), z))/f(x, y, z, t)^2)*delta+alpha*(2*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)-2*(diff(f(x, y, z, t), x))^2/f(x, y, z, t)^2) = 0))

2*f(x, y, z, t)^5*(diff(diff(f(x, y, z, t), x), x))*alpha+2*f(x, y, z, t)^5*(diff(diff(f(x, y, z, t), x), y))*beta+720*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))^4*f(x, y, z, t)-240*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))^3*f(x, y, z, t)^2+60*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(f(x, y, z, t), x))^2*f(x, y, z, t)^3-60*(diff(f(x, y, z, t), x))^2*(diff(diff(f(x, y, z, t), x), y))*f(x, y, z, t)^3-540*(diff(diff(f(x, y, z, t), x), x))^2*(diff(f(x, y, z, t), x))^2*f(x, y, z, t)^2-18*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), t))*f(x, y, z, t)^4-12*(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x))*(diff(f(x, y, z, t), x))*f(x, y, z, t)^4+30*(diff(diff(diff(f(x, y, z, t), x), x), y))*(diff(f(x, y, z, t), x))*f(x, y, z, t)^4-30*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(diff(f(x, y, z, t), x), x))*f(x, y, z, t)^4+30*(diff(diff(f(x, y, z, t), x), x))*(diff(diff(f(x, y, z, t), x), y))*f(x, y, z, t)^4+10*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), y))*f(x, y, z, t)^4+2*(diff(diff(f(x, y, z, t), x), z))*delta*f(x, y, z, t)^5+60*(diff(f(x, y, z, t), x))^3*(diff(f(x, y, z, t), y))*f(x, y, z, t)^2-2*(diff(f(x, y, z, t), x))^2*alpha*f(x, y, z, t)^4-240*(diff(f(x, y, z, t), x))^6-2*(diff(f(x, y, z, t), x))*f(x, y, z, t)^4*(diff(f(x, y, z, t), y))*beta-2*(diff(f(x, y, z, t), x))*f(x, y, z, t)^4*(diff(f(x, y, z, t), z))*delta+240*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), x))*f(x, y, z, t)^3-60*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), y))*f(x, y, z, t)^3+2*(diff(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x), x))*f(x, y, z, t)^5-10*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), y))*f(x, y, z, t)^5-20*(diff(diff(diff(f(x, y, z, t), x), x), x))^2*f(x, y, z, t)^4+60*(diff(diff(f(x, y, z, t), x), x))^3*f(x, y, z, t)^3+18*(diff(diff(f(x, y, z, t), t), x))*f(x, y, z, t)^5-10*(diff(diff(f(x, y, z, t), y), y))*f(x, y, z, t)^5+10*(diff(f(x, y, z, t), y))^2*f(x, y, z, t)^4 = 0

(9)

simplify(2*(diff(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x), x))*f(x, y, z, t)^5-10*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), y))*f(x, y, z, t)^5-20*(diff(diff(diff(f(x, y, z, t), x), x), x))^2*f(x, y, z, t)^4+60*(diff(diff(f(x, y, z, t), x), x))^3*f(x, y, z, t)^3+18*(diff(diff(f(x, y, z, t), t), x))*f(x, y, z, t)^5-10*(diff(diff(f(x, y, z, t), y), y))*f(x, y, z, t)^5+10*(diff(f(x, y, z, t), y))^2*f(x, y, z, t)^4+2*f(x, y, z, t)^5*(diff(diff(f(x, y, z, t), x), y))*beta+720*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))^4*f(x, y, z, t)-240*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))^3*f(x, y, z, t)^2+60*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(f(x, y, z, t), x))^2*f(x, y, z, t)^3-60*(diff(f(x, y, z, t), x))^2*(diff(diff(f(x, y, z, t), x), y))*f(x, y, z, t)^3-540*(diff(diff(f(x, y, z, t), x), x))^2*(diff(f(x, y, z, t), x))^2*f(x, y, z, t)^2-18*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), t))*f(x, y, z, t)^4-12*(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x))*(diff(f(x, y, z, t), x))*f(x, y, z, t)^4+30*(diff(diff(diff(f(x, y, z, t), x), x), y))*(diff(f(x, y, z, t), x))*f(x, y, z, t)^4-30*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(diff(f(x, y, z, t), x), x))*f(x, y, z, t)^4+30*(diff(diff(f(x, y, z, t), x), x))*(diff(diff(f(x, y, z, t), x), y))*f(x, y, z, t)^4+10*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), y))*f(x, y, z, t)^4+2*(diff(diff(f(x, y, z, t), x), z))*delta*f(x, y, z, t)^5+60*(diff(f(x, y, z, t), x))^3*(diff(f(x, y, z, t), y))*f(x, y, z, t)^2-2*(diff(f(x, y, z, t), x))^2*alpha*f(x, y, z, t)^4+2*f(x, y, z, t)^5*(diff(diff(f(x, y, z, t), x), x))*alpha-240*(diff(f(x, y, z, t), x))^6-2*(diff(f(x, y, z, t), x))*f(x, y, z, t)^4*(diff(f(x, y, z, t), y))*beta-2*(diff(f(x, y, z, t), x))*f(x, y, z, t)^4*(diff(f(x, y, z, t), z))*delta+240*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), x))*f(x, y, z, t)^3-60*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), y))*f(x, y, z, t)^3 = 0)

2*(diff(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x), x))*f(x, y, z, t)^5-12*(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x))*(diff(f(x, y, z, t), x))*f(x, y, z, t)^4+30*(2*(diff(f(x, y, z, t), x))^2*f(x, y, z, t)^3-f(x, y, z, t)^4*(diff(diff(f(x, y, z, t), x), x)))*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))-10*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), y))*f(x, y, z, t)^5-20*(diff(diff(diff(f(x, y, z, t), x), x), x))^2*f(x, y, z, t)^4+10*(-24*(diff(f(x, y, z, t), x))^3*f(x, y, z, t)^2+24*(diff(f(x, y, z, t), x))*f(x, y, z, t)^3*(diff(diff(f(x, y, z, t), x), x))+(diff(f(x, y, z, t), y))*f(x, y, z, t)^4)*(diff(diff(diff(f(x, y, z, t), x), x), x))+30*(diff(diff(diff(f(x, y, z, t), x), x), y))*(diff(f(x, y, z, t), x))*f(x, y, z, t)^4+60*(diff(diff(f(x, y, z, t), x), x))^3*f(x, y, z, t)^3-540*(diff(diff(f(x, y, z, t), x), x))^2*(diff(f(x, y, z, t), x))^2*f(x, y, z, t)^2+2*(alpha*f(x, y, z, t)^5+360*(diff(f(x, y, z, t), x))^4*f(x, y, z, t)-30*(diff(f(x, y, z, t), y))*f(x, y, z, t)^3*(diff(f(x, y, z, t), x))+15*f(x, y, z, t)^4*(diff(diff(f(x, y, z, t), x), y)))*(diff(diff(f(x, y, z, t), x), x))+2*(beta*f(x, y, z, t)^5-30*(diff(f(x, y, z, t), x))^2*f(x, y, z, t)^3)*(diff(diff(f(x, y, z, t), x), y))+18*(diff(diff(f(x, y, z, t), t), x))*f(x, y, z, t)^5+2*(diff(diff(f(x, y, z, t), x), z))*delta*f(x, y, z, t)^5-10*(diff(diff(f(x, y, z, t), y), y))*f(x, y, z, t)^5-240*(diff(f(x, y, z, t), x))^6+60*(diff(f(x, y, z, t), x))^3*(diff(f(x, y, z, t), y))*f(x, y, z, t)^2-2*(diff(f(x, y, z, t), x))^2*alpha*f(x, y, z, t)^4-2*f(x, y, z, t)^4*(beta*(diff(f(x, y, z, t), y))+(diff(f(x, y, z, t), z))*delta+9*(diff(f(x, y, z, t), t)))*(diff(f(x, y, z, t), x))+10*(diff(f(x, y, z, t), y))^2*f(x, y, z, t)^4 = 0

(10)

F1 := %*(1/2)

(diff(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x), x))*f(x, y, z, t)^5-6*(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x))*(diff(f(x, y, z, t), x))*f(x, y, z, t)^4+15*(2*(diff(f(x, y, z, t), x))^2*f(x, y, z, t)^3-f(x, y, z, t)^4*(diff(diff(f(x, y, z, t), x), x)))*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))-5*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), y))*f(x, y, z, t)^5-10*(diff(diff(diff(f(x, y, z, t), x), x), x))^2*f(x, y, z, t)^4+5*(-24*(diff(f(x, y, z, t), x))^3*f(x, y, z, t)^2+24*(diff(f(x, y, z, t), x))*f(x, y, z, t)^3*(diff(diff(f(x, y, z, t), x), x))+(diff(f(x, y, z, t), y))*f(x, y, z, t)^4)*(diff(diff(diff(f(x, y, z, t), x), x), x))+15*(diff(diff(diff(f(x, y, z, t), x), x), y))*(diff(f(x, y, z, t), x))*f(x, y, z, t)^4+30*(diff(diff(f(x, y, z, t), x), x))^3*f(x, y, z, t)^3-270*(diff(diff(f(x, y, z, t), x), x))^2*(diff(f(x, y, z, t), x))^2*f(x, y, z, t)^2+(alpha*f(x, y, z, t)^5+360*(diff(f(x, y, z, t), x))^4*f(x, y, z, t)-30*(diff(f(x, y, z, t), y))*f(x, y, z, t)^3*(diff(f(x, y, z, t), x))+15*f(x, y, z, t)^4*(diff(diff(f(x, y, z, t), x), y)))*(diff(diff(f(x, y, z, t), x), x))+(beta*f(x, y, z, t)^5-30*(diff(f(x, y, z, t), x))^2*f(x, y, z, t)^3)*(diff(diff(f(x, y, z, t), x), y))+9*(diff(diff(f(x, y, z, t), t), x))*f(x, y, z, t)^5+(diff(diff(f(x, y, z, t), x), z))*delta*f(x, y, z, t)^5-5*(diff(diff(f(x, y, z, t), y), y))*f(x, y, z, t)^5-120*(diff(f(x, y, z, t), x))^6+30*(diff(f(x, y, z, t), x))^3*(diff(f(x, y, z, t), y))*f(x, y, z, t)^2-(diff(f(x, y, z, t), x))^2*alpha*f(x, y, z, t)^4-f(x, y, z, t)^4*(beta*(diff(f(x, y, z, t), y))+(diff(f(x, y, z, t), z))*delta+9*(diff(f(x, y, z, t), t)))*(diff(f(x, y, z, t), x))+5*(diff(f(x, y, z, t), y))^2*f(x, y, z, t)^4 = 0

(11)

collect(F1, {alpha, beta, f(x, y, z, t)})

(-f(x, y, z, t)^4*(diff(f(x, y, z, t), x))^2+f(x, y, z, t)^5*(diff(diff(f(x, y, z, t), x), x)))*alpha+(-(diff(f(x, y, z, t), y))*f(x, y, z, t)^4*(diff(f(x, y, z, t), x))+f(x, y, z, t)^5*(diff(diff(f(x, y, z, t), x), y)))*beta+((diff(diff(f(x, y, z, t), x), z))*delta+diff(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x), x)-5*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), y))+9*(diff(diff(f(x, y, z, t), t), x))-5*(diff(diff(f(x, y, z, t), y), y)))*f(x, y, z, t)^5+(-6*(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x))*(diff(f(x, y, z, t), x))-15*(diff(diff(f(x, y, z, t), x), x))*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))-10*(diff(diff(diff(f(x, y, z, t), x), x), x))^2+5*(diff(f(x, y, z, t), y))*(diff(diff(diff(f(x, y, z, t), x), x), x))+15*(diff(diff(diff(f(x, y, z, t), x), x), y))*(diff(f(x, y, z, t), x))+15*(diff(diff(f(x, y, z, t), x), y))*(diff(diff(f(x, y, z, t), x), x))-((diff(f(x, y, z, t), z))*delta+9*(diff(f(x, y, z, t), t)))*(diff(f(x, y, z, t), x))+5*(diff(f(x, y, z, t), y))^2)*f(x, y, z, t)^4+(30*(diff(f(x, y, z, t), x))^2*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))-30*(diff(f(x, y, z, t), x))^2*(diff(diff(f(x, y, z, t), x), y))+120*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), x))*(diff(diff(diff(f(x, y, z, t), x), x), x))-30*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), y))*(diff(diff(f(x, y, z, t), x), x))+30*(diff(diff(f(x, y, z, t), x), x))^3)*f(x, y, z, t)^3+(-120*(diff(f(x, y, z, t), x))^3*(diff(diff(diff(f(x, y, z, t), x), x), x))+30*(diff(f(x, y, z, t), x))^3*(diff(f(x, y, z, t), y))-270*(diff(diff(f(x, y, z, t), x), x))^2*(diff(f(x, y, z, t), x))^2)*f(x, y, z, t)^2+360*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))^4*f(x, y, z, t)-120*(diff(f(x, y, z, t), x))^6 = 0

(12)

NULL

T := f(x, y, z, t) = g(x, y, z, t)^2+h(x, y, z, t)^2+a[11]

T1 := g(x, y, z, t) = t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5]

T2 := h(x, y, z, t) = t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10]

L2 := subs({T1, T2}, T)

f(x, y, z, t) = (t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])^2+(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])^2+a[11]

(13)

L3 := eval(F1, L2)

30*(2*a[1]^2+2*a[6]^2)^3*((t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])^2+(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])^2+a[11])^3-270*(2*a[1]^2+2*a[6]^2)^2*(2*(t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])*a[1]+2*(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])*a[6])^2*((t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])^2+(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])^2+a[11])^2+(alpha*((t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])^2+(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])^2+a[11])^5+360*(2*(t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])*a[1]+2*(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])*a[6])^4*((t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])^2+(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])^2+a[11])-30*(2*(t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])*a[2]+2*(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])*a[7])*((t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])^2+(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])^2+a[11])^3*(2*(t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])*a[1]+2*(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])*a[6])+15*((t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])^2+(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])^2+a[11])^4*(2*a[1]*a[2]+2*a[6]*a[7]))*(2*a[1]^2+2*a[6]^2)+(beta*((t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])^2+(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])^2+a[11])^5-30*(2*(t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])*a[1]+2*(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])*a[6])^2*((t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])^2+(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])^2+a[11])^3)*(2*a[1]*a[2]+2*a[6]*a[7])+9*(2*a[1]*a[4]+2*a[6]*a[9])*((t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])^2+(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])^2+a[11])^5+(2*a[1]*a[3]+2*a[6]*a[8])*delta*((t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])^2+(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])^2+a[11])^5-5*(2*a[2]^2+2*a[7]^2)*((t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])^2+(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])^2+a[11])^5-120*(2*(t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])*a[1]+2*(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])*a[6])^6+30*(2*(t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])*a[1]+2*(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])*a[6])^3*(2*(t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])*a[2]+2*(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])*a[7])*((t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])^2+(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])^2+a[11])^2-(2*(t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])*a[1]+2*(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])*a[6])^2*alpha*((t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])^2+(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])^2+a[11])^4-((t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])^2+(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])^2+a[11])^4*(beta*(2*(t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])*a[2]+2*(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])*a[7])+(2*(t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])*a[3]+2*(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])*a[8])*delta+18*(t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])*a[4]+18*(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])*a[9])*(2*(t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])*a[1]+2*(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])*a[6])+5*(2*(t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])*a[2]+2*(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])*a[7])^2*((t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])^2+(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])^2+a[11])^4 = 0

(14)

L4 := collect(L3, [x, y, z, t], 'distributed')

Warning,  computation interrupted

 

` `

(15)

Download systems.mw

This never happened to me before.

Without any changes made in the worksheet, and just executing it again, suddenly Maple 24 gives me all output that starts with

typesetting:-mprintslash

etc

What the heck is this ? and where has the normal output suddenly gone to ?

Before this change Maple did not want to stop an execution on a limit. I had to kill the mserver which then allowed me to save the docuemnt. After that the document has all this unusable typeset nonsense as output.

I opened a new page and pasted the commands into that document. Problem remains the same, so it seems to be something in the system wide config that was changed.

Here is what is causing the problem:

What I noticed  is that my output is now "Line Printer" as default. How did that happen ? I never did that. It must be a consequence of the infinite limit calculation that could not be interrupted (whish Maple will fix their break and interrupt commands).

So how do I set all output to Maple Output. I see no such ability in config. It states there that "Output Display" is set to "Maple Output" , but every new document has line printer as output !!!

Totally unusable now.

First 13 14 15 16 17 18 19 Last Page 15 of 2214