Maple Questions and Posts

These are Posts and Questions associated with the product, Maple

Hi,

I have been trying to duplicate a solution to Schrodinger Eq from a utube video...the presenter use Wolfram software to graph and 

animate the plot...I have working on this all day..I a new user (several months)..any help would be appreciated.

I am attaching a screenshot

Thanks 

Frank

 

I am attaching my Maple worksheet for reference 
 

NULL

BELOW IS ADRESSING PARTICLE MOTION AND HOW ELECTRONS MOVE AROUND AND HOW MAGNETIC FIELDS AFFECTION THE MOTION OF ELECTRONS

 

PARTICLE MOTION "IGNORING SPIN" WILL COME BACK TO THAT

restart

with(Physics); interface(imaginaryunit = i)

Setup(hermitianoperators = {H, O__H, O__S}, realobjects = {`ℏ`, m, t, x_}, combinepowersofsamebase = true, mathematicalnotation = true)

[combinepowersofsamebase = true, hermitianoperators = {H, O__H, O__S}, mathematicalnotation = true, realobjects = {`ℏ`, m, t, x_}]

(1)

with(Physics[Vectors])

WAVE FUNCTION OF PARITCLE. t =time , x= some position vector

x_ = `<,>`(x, y, z)

x_ = Vector[column](%id = 36893489722226370188)

(2)

psi(t, x_)

psi(t, x_)

(3)

psi(t, x, y, z)

psi(t, x, y, z)

(4)

p_

p_

(5)

ψ is xome complex number with a real and imaginary number, the absolute value of abs(psi(t, x_))^2
`and`((is*the*probabilty*density*of*finding*the)*particle*at*postion*vector*x, at*time*t), ASSUME*SOME*POSITION*VECTOR*x, with*an*infintesmial*cube*around*it, infintesimal*volume*dV, PROBABILY*DENSITY*IS*abs(psi(t, x_))^2*dV, int(abs(psi(t, x_))^2, V) = 1

abs(psi(t, x_))^2

 

is*the^2*probabilty*density*of*finding*particle*at*postion*vector*x and at*time*t, ASSUME*SOME*POSITION*VECTOR*x, with*an*infintesmial*cube*around*it, infintesimal*volume*dV, PROBABILY*DENSITY*IS*abs(psi(t, x_))^2*dV, abs(psi(t, x_))^2*V = 1

(6)

THE ABOVE EQUATION IS TRUE IF THE WAVE FUNCTION IS "PROPERLY NORMALIZED"

THE WAVE FUNCTION EVOLVES IN TIME ACCORDING TO SCHRODINGER EQ

"`i&hbar;`(&PartialD;Psi)/(&PartialD;t)= -(`&hbar;`^(2))/(2 m)(((&PartialD;)^2)/((&PartialD;)^( )x^2)(psi)+((&PartialD;)^2)/((&PartialD;)^( )y^2)(psi)+((&PartialD;)^2)/((&PartialD;)^( )z^2)(psi))",
diff(psi, x, x)+diff(psi, y, y)+((diff(psi, z, z))*IS*THE*KENETIC*ENERGY*OF*THE)*PARTICLE

restart

psi(t, x, y, z)

psi(t, x, y, z)

(7)

Loading PDEtools

I*`&hbar;`*(diff(Ket(psi, t), t))

I*`&hbar;`*(diff(Ket(psi, t), t))

(8)

SElns := I*`&hbar;`*(diff(Ket(psi, t), t)); 'SElns'

SElns

(9)

SErhs1 := `&hbar;`^2*(diff(psi, t, x, x)+diff(psi, t, y, y)+diff(psi, t, z, z))/(2*m)

0

(10)

``

 

``

Classical physics example

KE = p^2/(2*m)

KE = (1/2)*p^2/m

(11)

KE = (p[x]^2+p[y]^2+p[z]^2)/(2*m)

KE = (1/2)*(p[x]^2+p[y]^2+p[z]^2)/m

(12)

QUANTUM MECHANICS

``

p[x] = `&hbar;`*(Diff(p[x], x))/(I)

p[x] = -I*`&hbar;`*(Diff(p[x], x))

(13)

 

p[x]^2 = Diff(rhs(p[x] = -I*`&hbar;`*(Diff(p[x], x))))

p[x]^2 = Diff(-I*`&hbar;`*(Diff(p[x], x)))

(14)

substituting each value of p[x], p[y],p[z]  IN EQ 11 is the KE

ONE VERY IMPORTANT SOLUTUION TO SE IS LISTED BELOW

psi(t, `#mover(mi("x"),mo("&rarr;"))`)= "Pi^(-3/(4)) sigma^(-3/(2))C(t)^(-3/(2))Exp((-1/(2))(((x)^(2))/(sigma^(2 )C(t)))+ ((i p *x-(i( p)^(2)(t/(`&hbar;`^())))/(2 m))/(C(t)))"

C(t) = 1 +  "(`i&hbar;` t))/((m sigma^(2))), sigma= initial position uncertainty of the particle,m,mass of particle"

```#mover(mi("p"),mo("&rarr;"))`=<p[x],p[y],p[z]>...just 3 Real no...this is NOT THE SAME AS EQ 14

There are 3 parmeters in the above eq σ (NOT PAULI), m ,`#mover(mi("p"),mo("&rarr;"))`

abs(psi(t, `#mover(mi("x"),mo("&rarr;"))`))^2 = 1/Pi^(3/2)Exp(-(`#mover(mi("x"),mo("&rarr;"))`-i*`#mover(mi("p"),mo("&rarr;"))`(t/m))^2/(sigma^2+(`#msup(mi("&hbar;"),mo("&InvisibleTimes;"))`*t/(sigma*m))^2))/(sigma^2+(`#msup(mi("&hbar;"),mo("&InvisibleTimes;"))`*t/(sigma*m))^2)^(3/2)

int(abs(psi(t, `#mover(mi("x",fontweight = "bold"),mo("&rarr;",fontweight = "bold"))`))^2, V) = 1

THE ABOVE FUNCTION WILL BE A MAXIMUM WHEN `#mover(mi("x"),mo("&rarr;"))` = `#mover(mi("p"),mo("&rarr;"))`*t/m

distribution,

n. 1. (Statistics) the set of possible values of a random variable, or points in a sample space , considered in terms of their theoretical or observed frequency . 2. also called generalized function. a generalization of the concept of a function, defined as continuous linear functionals  over spaces of infinitely differentiable functions, introduced so that all continuous functions possess partial distributional derivatives (also called Schwartzian derivatives) that are again distributions. This leads to so-called weak solutions of differential equations and is of importance in the theory of partial differential equations ...

THE EQ YIEDS A GAUSSIAN "BELL SHAPE IN 2 D ONLY, CANNOT BE DRAWN 3D, 
abs(psi)^2*y*axis, `#mover(mi("x"),mo("&rarr;"))` = `#mover(mi("p"),mo("&rarr;"))`*t*x*axis/m, width = sqrt(sigma^2+(`#msup(mi("&hbar;"),mo("&InvisibleTimes;"))`*t/(sigma*m))^2)*so*at*t and sqrt(sigma^2+(`#msup(mi("&hbar;"),mo("&InvisibleTimes;"))`*t/(sigma*m))^2)*so*at*t = ((0*this)*will*equal*sigma*initial*uncertainity*of*the*position*of)*the*particle

t→∞ width = `#msup(mi("&hbar;"),mo("&InvisibleTimes;"))`*t/(sigma*m)

``

restart

with(Student[VectorCalculus])

with(VectorCalculus)

with(plots)

 

ln(1) := ts

ts

(15)

ts := 2

2

(16)

sigma := 4

4

(17)

h := 1

1

(18)

M := 1

1

(19)

P := 1

1

(20)

x

x

(21)

psi(x, t)

psi(x, t)

(22)

I = sqrt(-1)

I = I

(23)

about(I)

I:
  All numeric values are properties as well as objects.
  Their location in the property lattice is obvious,
  in this case complex(extended_numeric).
 

 

h, I, ts, M

1, I, 2, 1

(24)

sigma^2

16

(25)

I*h*ts/M

2*I

(26)

 

about(I)

I:
  All numeric values are properties as well as objects.
  Their location in the property lattice is obvious,
  in this case complex(extended_numeric).
 

 

2+2*I

2+2*I

(27)

(-1/2)*(x^2)

-(1/2)*x^2

(28)

"((-1/2)((x^2)/((sigma^2+(I*h*(t/M))))"

NULL

-(1/2)*x^2/(2+2*I)

(-1/8+(1/8)*I)*x^2

(29)

``

``

"Exp(((-1/2)((x^2)/((sigma^2+(I*h*(t/M)))))+(((I *P* (x/h))- (I* ((P^2)/(2*M))*(t/h))/((1+(((I*h*t))/((M+sigma^2))))"

NULL

I*P*x/h

I*x

(30)

 

I*P^2*t/((2*M)*h)

((1/2)*I)*t

(31)

I*x-((1/2)*I)*t

I*x-((1/2)*I)*t

(32)

"((I *P* (x/h))- (I* ((P^2)/(2*M))*(t/h))/((1+(((I*h*t))/((M+sigma^2))))"

``

NULL

I*h*t

I*t

(33)

sigma^2+M

17

(34)

1+I*t*(1/17)

1+((1/17)*I)*t

(35)

(I*x-((1/2)*I)*t)/(1+((1/17)*I)*t)

(I*x-((1/2)*I)*t)/(1+((1/17)*I)*t)

(36)

NULL

exp(I*x-((1/2)*I)*t+(I*x-((1/2)*I)*t)/(1+((1/17)*I)*t))

exp(I*x-((1/2)*I)*t+(I*x-((1/2)*I)*t)/(1+((1/17)*I)*t))

(37)

psi(x, t) = exp(I*x-((1/2)*I)*t+(I*x-((1/2)*I)*t)/(1+((1/17)*I)*t))

psi(x, t) = exp(I*x-((1/2)*I)*t+(I*x-((1/2)*I)*t)/(1+((1/17)*I)*t))

(38)

simplify(psi(x, t) = exp(I*x-((1/2)*I)*t+(I*x-((1/2)*I)*t)/(1+((1/17)*I)*t)))

psi(x, t) = exp(-I*(-2*x+t)*(I*t+34)/((2*I)*t+34))

 

Explore(psi(x, t) = exp(VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(VectorCalculus:-`*`(I, `-`(2*x)+t), VectorCalculus:-`+`(VectorCalculus:-`*`(I, t), 34)), 1/VectorCalculus:-`+`(VectorCalculus:-`*`(VectorCalculus:-`*`(2, I), t), 34)))), parameters = [[t = 0 .. 40, controller = slider], [x = -20 .. 80, controller = slider]], loop = never, size = NoUserValue, numeric = false, echoexpression = true)

(39)

with(plots)

implicitplot(abs(psi(x, ts*t)), Re(psi(x, ts*t)), Im(psi(x, ts*t)), x = -20 .. 80, scaling = constrained)

Error, (in plots/implicitplot) invalid input: lhs received Im(psi(x, 2*t)), which is not valid for its 1st argument, expr

 

NULL


 

Download Lec7QuantumWaveSE.mw
 

NULL

BELOW IS ADRESSING PARTICLE MOTION AND HOW ELECTRONS MOVE AROUND AND HOW MAGNETIC FIELDS AFFECTION THE MOTION OF ELECTRONS

 

PARTICLE MOTION "IGNORING SPIN" WILL COME BACK TO THAT

restart

with(Physics); interface(imaginaryunit = i)

Setup(hermitianoperators = {H, O__H, O__S}, realobjects = {`&hbar;`, m, t, x_}, combinepowersofsamebase = true, mathematicalnotation = true)

[combinepowersofsamebase = true, hermitianoperators = {H, O__H, O__S}, mathematicalnotation = true, realobjects = {`&hbar;`, m, t, x_}]

(1)

with(Physics[Vectors])

WAVE FUNCTION OF PARITCLE. t =time , x= some position vector

x_ = `<,>`(x, y, z)

x_ = Vector[column](%id = 36893489722226370188)

(2)

psi(t, x_)

psi(t, x_)

(3)

psi(t, x, y, z)

psi(t, x, y, z)

(4)

p_

p_

(5)

ψ is xome complex number with a real and imaginary number, the absolute value of abs(psi(t, x_))^2
`and`((is*the*probabilty*density*of*finding*the)*particle*at*postion*vector*x, at*time*t), ASSUME*SOME*POSITION*VECTOR*x, with*an*infintesmial*cube*around*it, infintesimal*volume*dV, PROBABILY*DENSITY*IS*abs(psi(t, x_))^2*dV, int(abs(psi(t, x_))^2, V) = 1

abs(psi(t, x_))^2

 

is*the^2*probabilty*density*of*finding*particle*at*postion*vector*x and at*time*t, ASSUME*SOME*POSITION*VECTOR*x, with*an*infintesmial*cube*around*it, infintesimal*volume*dV, PROBABILY*DENSITY*IS*abs(psi(t, x_))^2*dV, abs(psi(t, x_))^2*V = 1

(6)

THE ABOVE EQUATION IS TRUE IF THE WAVE FUNCTION IS "PROPERLY NORMALIZED"

THE WAVE FUNCTION EVOLVES IN TIME ACCORDING TO SCHRODINGER EQ

"`i&hbar;`(&PartialD;Psi)/(&PartialD;t)= -(`&hbar;`^(2))/(2 m)(((&PartialD;)^2)/((&PartialD;)^( )x^2)(psi)+((&PartialD;)^2)/((&PartialD;)^( )y^2)(psi)+((&PartialD;)^2)/((&PartialD;)^( )z^2)(psi))",
diff(psi, x, x)+diff(psi, y, y)+((diff(psi, z, z))*IS*THE*KENETIC*ENERGY*OF*THE)*PARTICLE

restart

psi(t, x, y, z)

psi(t, x, y, z)

(7)

Loading PDEtools

I*`&hbar;`*(diff(Ket(psi, t), t))

I*`&hbar;`*(diff(Ket(psi, t), t))

(8)

SElns := I*`&hbar;`*(diff(Ket(psi, t), t)); 'SElns'

SElns

(9)

SErhs1 := `&hbar;`^2*(diff(psi, t, x, x)+diff(psi, t, y, y)+diff(psi, t, z, z))/(2*m)

0

(10)

``

 

``

Classical physics example

KE = p^2/(2*m)

KE = (1/2)*p^2/m

(11)

KE = (p[x]^2+p[y]^2+p[z]^2)/(2*m)

KE = (1/2)*(p[x]^2+p[y]^2+p[z]^2)/m

(12)

QUANTUM MECHANICS

``

p[x] = `&hbar;`*(Diff(p[x], x))/(I)

p[x] = -I*`&hbar;`*(Diff(p[x], x))

(13)

 

p[x]^2 = Diff(rhs(p[x] = -I*`&hbar;`*(Diff(p[x], x))))

p[x]^2 = Diff(-I*`&hbar;`*(Diff(p[x], x)))

(14)

substituting each value of p[x], p[y],p[z]  IN EQ 11 is the KE

ONE VERY IMPORTANT SOLUTUION TO SE IS LISTED BELOW

psi(t, `#mover(mi("x"),mo("&rarr;"))`)= "Pi^(-3/(4)) sigma^(-3/(2))C(t)^(-3/(2))Exp((-1/(2))(((x)^(2))/(sigma^(2 )C(t)))+ ((i p *x-(i( p)^(2)(t/(`&hbar;`^())))/(2 m))/(C(t)))"

C(t) = 1 +  "(`i&hbar;` t))/((m sigma^(2))), sigma= initial position uncertainty of the particle,m,mass of particle"

```#mover(mi("p"),mo("&rarr;"))`=<p[x],p[y],p[z]>...just 3 Real no...this is NOT THE SAME AS EQ 14

There are 3 parmeters in the above eq σ (NOT PAULI), m ,`#mover(mi("p"),mo("&rarr;"))`

abs(psi(t, `#mover(mi("x"),mo("&rarr;"))`))^2 = 1/Pi^(3/2)Exp(-(`#mover(mi("x"),mo("&rarr;"))`-i*`#mover(mi("p"),mo("&rarr;"))`(t/m))^2/(sigma^2+(`#msup(mi("&hbar;"),mo("&InvisibleTimes;"))`*t/(sigma*m))^2))/(sigma^2+(`#msup(mi("&hbar;"),mo("&InvisibleTimes;"))`*t/(sigma*m))^2)^(3/2)

int(abs(psi(t, `#mover(mi("x",fontweight = "bold"),mo("&rarr;",fontweight = "bold"))`))^2, V) = 1

THE ABOVE FUNCTION WILL BE A MAXIMUM WHEN `#mover(mi("x"),mo("&rarr;"))` = `#mover(mi("p"),mo("&rarr;"))`*t/m

distribution,

n. 1. (Statistics) the set of possible values of a random variable, or points in a sample space , considered in terms of their theoretical or observed frequency . 2. also called generalized function. a generalization of the concept of a function, defined as continuous linear functionals  over spaces of infinitely differentiable functions, introduced so that all continuous functions possess partial distributional derivatives (also called Schwartzian derivatives) that are again distributions. This leads to so-called weak solutions of differential equations and is of importance in the theory of partial differential equations ...

THE EQ YIEDS A GAUSSIAN "BELL SHAPE IN 2 D ONLY, CANNOT BE DRAWN 3D, 
abs(psi)^2*y*axis, `#mover(mi("x"),mo("&rarr;"))` = `#mover(mi("p"),mo("&rarr;"))`*t*x*axis/m, width = sqrt(sigma^2+(`#msup(mi("&hbar;"),mo("&InvisibleTimes;"))`*t/(sigma*m))^2)*so*at*t and sqrt(sigma^2+(`#msup(mi("&hbar;"),mo("&InvisibleTimes;"))`*t/(sigma*m))^2)*so*at*t = ((0*this)*will*equal*sigma*initial*uncertainity*of*the*position*of)*the*particle

t→∞ width = `#msup(mi("&hbar;"),mo("&InvisibleTimes;"))`*t/(sigma*m)

``

restart

with(Student[VectorCalculus])

with(VectorCalculus)

with(plots)

 

ln(1) := ts

ts

(15)

ts := 2

2

(16)

sigma := 4

4

(17)

h := 1

1

(18)

M := 1

1

(19)

P := 1

1

(20)

x

x

(21)

psi(x, t)

psi(x, t)

(22)

I = sqrt(-1)

I = I

(23)

about(I)

I:
  All numeric values are properties as well as objects.
  Their location in the property lattice is obvious,
  in this case complex(extended_numeric).
 

 

h, I, ts, M

1, I, 2, 1

(24)

sigma^2

16

(25)

I*h*ts/M

2*I

(26)

 

about(I)

I:
  All numeric values are properties as well as objects.
  Their location in the property lattice is obvious,
  in this case complex(extended_numeric).
 

 

2+2*I

2+2*I

(27)

(-1/2)*(x^2)

-(1/2)*x^2

(28)

"((-1/2)((x^2)/((sigma^2+(I*h*(t/M))))"

NULL

-(1/2)*x^2/(2+2*I)

(-1/8+(1/8)*I)*x^2

(29)

``

``

"Exp(((-1/2)((x^2)/((sigma^2+(I*h*(t/M)))))+(((I *P* (x/h))- (I* ((P^2)/(2*M))*(t/h))/((1+(((I*h*t))/((M+sigma^2))))"

NULL

I*P*x/h

I*x

(30)

 

I*P^2*t/((2*M)*h)

((1/2)*I)*t

(31)

I*x-((1/2)*I)*t

I*x-((1/2)*I)*t

(32)

"((I *P* (x/h))- (I* ((P^2)/(2*M))*(t/h))/((1+(((I*h*t))/((M+sigma^2))))"

``

NULL

I*h*t

I*t

(33)

sigma^2+M

17

(34)

1+I*t*(1/17)

1+((1/17)*I)*t

(35)

(I*x-((1/2)*I)*t)/(1+((1/17)*I)*t)

(I*x-((1/2)*I)*t)/(1+((1/17)*I)*t)

(36)

NULL

exp(I*x-((1/2)*I)*t+(I*x-((1/2)*I)*t)/(1+((1/17)*I)*t))

exp(I*x-((1/2)*I)*t+(I*x-((1/2)*I)*t)/(1+((1/17)*I)*t))

(37)

psi(x, t) = exp(I*x-((1/2)*I)*t+(I*x-((1/2)*I)*t)/(1+((1/17)*I)*t))

psi(x, t) = exp(I*x-((1/2)*I)*t+(I*x-((1/2)*I)*t)/(1+((1/17)*I)*t))

(38)

simplify(psi(x, t) = exp(I*x-((1/2)*I)*t+(I*x-((1/2)*I)*t)/(1+((1/17)*I)*t)))

psi(x, t) = exp(-I*(-2*x+t)*(I*t+34)/((2*I)*t+34))

 

Explore(psi(x, t) = exp(VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(VectorCalculus:-`*`(I, `-`(2*x)+t), VectorCalculus:-`+`(VectorCalculus:-`*`(I, t), 34)), 1/VectorCalculus:-`+`(VectorCalculus:-`*`(VectorCalculus:-`*`(2, I), t), 34)))), parameters = [[t = 0 .. 40, controller = slider], [x = -20 .. 80, controller = slider]], loop = never, size = NoUserValue, numeric = false, echoexpression = true)

(39)

with(plots)

implicitplot(abs(psi(x, ts*t)), Re(psi(x, ts*t)), Im(psi(x, ts*t)), x = -20 .. 80, scaling = constrained)

Error, (in plots/implicitplot) invalid input: lhs received Im(psi(x, 2*t)), which is not valid for its 1st argument, expr

 

NULL


 

Download Lec7QuantumWaveSE.mw
 

NULL

BELOW IS ADRESSING PARTICLE MOTION AND HOW ELECTRONS MOVE AROUND AND HOW MAGNETIC FIELDS AFFECTION THE MOTION OF ELECTRONS

 

PARTICLE MOTION "IGNORING SPIN" WILL COME BACK TO THAT

restart

with(Physics); interface(imaginaryunit = i)

Setup(hermitianoperators = {H, O__H, O__S}, realobjects = {`&hbar;`, m, t, x_}, combinepowersofsamebase = true, mathematicalnotation = true)

[combinepowersofsamebase = true, hermitianoperators = {H, O__H, O__S}, mathematicalnotation = true, realobjects = {`&hbar;`, m, t, x_}]

(1)

with(Physics[Vectors])

WAVE FUNCTION OF PARITCLE. t =time , x= some position vector

x_ = `<,>`(x, y, z)

x_ = Vector[column](%id = 36893489722226370188)

(2)

psi(t, x_)

psi(t, x_)

(3)

psi(t, x, y, z)

psi(t, x, y, z)

(4)

p_

p_

(5)

ψ is xome complex number with a real and imaginary number, the absolute value of abs(psi(t, x_))^2
`and`((is*the*probabilty*density*of*finding*the)*particle*at*postion*vector*x, at*time*t), ASSUME*SOME*POSITION*VECTOR*x, with*an*infintesmial*cube*around*it, infintesimal*volume*dV, PROBABILY*DENSITY*IS*abs(psi(t, x_))^2*dV, int(abs(psi(t, x_))^2, V) = 1

abs(psi(t, x_))^2

 

is*the^2*probabilty*density*of*finding*particle*at*postion*vector*x and at*time*t, ASSUME*SOME*POSITION*VECTOR*x, with*an*infintesmial*cube*around*it, infintesimal*volume*dV, PROBABILY*DENSITY*IS*abs(psi(t, x_))^2*dV, abs(psi(t, x_))^2*V = 1

(6)

THE ABOVE EQUATION IS TRUE IF THE WAVE FUNCTION IS "PROPERLY NORMALIZED"

THE WAVE FUNCTION EVOLVES IN TIME ACCORDING TO SCHRODINGER EQ

"`i&hbar;`(&PartialD;Psi)/(&PartialD;t)= -(`&hbar;`^(2))/(2 m)(((&PartialD;)^2)/((&PartialD;)^( )x^2)(psi)+((&PartialD;)^2)/((&PartialD;)^( )y^2)(psi)+((&PartialD;)^2)/((&PartialD;)^( )z^2)(psi))",
diff(psi, x, x)+diff(psi, y, y)+((diff(psi, z, z))*IS*THE*KENETIC*ENERGY*OF*THE)*PARTICLE

restart

psi(t, x, y, z)

psi(t, x, y, z)

(7)

Loading PDEtools

I*`&hbar;`*(diff(Ket(psi, t), t))

I*`&hbar;`*(diff(Ket(psi, t), t))

(8)

SElns := I*`&hbar;`*(diff(Ket(psi, t), t)); 'SElns'

SElns

(9)

SErhs1 := `&hbar;`^2*(diff(psi, t, x, x)+diff(psi, t, y, y)+diff(psi, t, z, z))/(2*m)

0

(10)

``

 

``

Classical physics example

KE = p^2/(2*m)

KE = (1/2)*p^2/m

(11)

KE = (p[x]^2+p[y]^2+p[z]^2)/(2*m)

KE = (1/2)*(p[x]^2+p[y]^2+p[z]^2)/m

(12)

QUANTUM MECHANICS

``

p[x] = `&hbar;`*(Diff(p[x], x))/(I)

p[x] = -I*`&hbar;`*(Diff(p[x], x))

(13)

 

p[x]^2 = Diff(rhs(p[x] = -I*`&hbar;`*(Diff(p[x], x))))

p[x]^2 = Diff(-I*`&hbar;`*(Diff(p[x], x)))

(14)

substituting each value of p[x], p[y],p[z]  IN EQ 11 is the KE

ONE VERY IMPORTANT SOLUTUION TO SE IS LISTED BELOW

psi(t, `#mover(mi("x"),mo("&rarr;"))`)= "Pi^(-3/(4)) sigma^(-3/(2))C(t)^(-3/(2))Exp((-1/(2))(((x)^(2))/(sigma^(2 )C(t)))+ ((i p *x-(i( p)^(2)(t/(`&hbar;`^())))/(2 m))/(C(t)))"

C(t) = 1 +  "(`i&hbar;` t))/((m sigma^(2))), sigma= initial position uncertainty of the particle,m,mass of particle"

```#mover(mi("p"),mo("&rarr;"))`=<p[x],p[y],p[z]>...just 3 Real no...this is NOT THE SAME AS EQ 14

There are 3 parmeters in the above eq σ (NOT PAULI), m ,`#mover(mi("p"),mo("&rarr;"))`

abs(psi(t, `#mover(mi("x"),mo("&rarr;"))`))^2 = 1/Pi^(3/2)Exp(-(`#mover(mi("x"),mo("&rarr;"))`-i*`#mover(mi("p"),mo("&rarr;"))`(t/m))^2/(sigma^2+(`#msup(mi("&hbar;"),mo("&InvisibleTimes;"))`*t/(sigma*m))^2))/(sigma^2+(`#msup(mi("&hbar;"),mo("&InvisibleTimes;"))`*t/(sigma*m))^2)^(3/2)

int(abs(psi(t, `#mover(mi("x",fontweight = "bold"),mo("&rarr;",fontweight = "bold"))`))^2, V) = 1

THE ABOVE FUNCTION WILL BE A MAXIMUM WHEN `#mover(mi("x"),mo("&rarr;"))` = `#mover(mi("p"),mo("&rarr;"))`*t/m

distribution,

n. 1. (Statistics) the set of possible values of a random variable, or points in a sample space , considered in terms of their theoretical or observed frequency . 2. also called generalized function. a generalization of the concept of a function, defined as continuous linear functionals  over spaces of infinitely differentiable functions, introduced so that all continuous functions possess partial distributional derivatives (also called Schwartzian derivatives) that are again distributions. This leads to so-called weak solutions of differential equations and is of importance in the theory of partial differential equations ...

THE EQ YIEDS A GAUSSIAN "BELL SHAPE IN 2 D ONLY, CANNOT BE DRAWN 3D, 
abs(psi)^2*y*axis, `#mover(mi("x"),mo("&rarr;"))` = `#mover(mi("p"),mo("&rarr;"))`*t*x*axis/m, width = sqrt(sigma^2+(`#msup(mi("&hbar;"),mo("&InvisibleTimes;"))`*t/(sigma*m))^2)*so*at*t and sqrt(sigma^2+(`#msup(mi("&hbar;"),mo("&InvisibleTimes;"))`*t/(sigma*m))^2)*so*at*t = ((0*this)*will*equal*sigma*initial*uncertainity*of*the*position*of)*the*particle

t→∞ width = `#msup(mi("&hbar;"),mo("&InvisibleTimes;"))`*t/(sigma*m)

``

restart

with(Student[VectorCalculus])

with(VectorCalculus)

with(plots)

 

ln(1) := ts

ts

(15)

ts := 2

2

(16)

sigma := 4

4

(17)

h := 1

1

(18)

M := 1

1

(19)

P := 1

1

(20)

x

x

(21)

psi(x, t)

psi(x, t)

(22)

I = sqrt(-1)

I = I

(23)

about(I)

I:
  All numeric values are properties as well as objects.
  Their location in the property lattice is obvious,
  in this case complex(extended_numeric).
 

 

h, I, ts, M

1, I, 2, 1

(24)

sigma^2

16

(25)

I*h*ts/M

2*I

(26)

 

about(I)

I:
  All numeric values are properties as well as objects.
  Their location in the property lattice is obvious,
  in this case complex(extended_numeric).
 

 

2+2*I

2+2*I

(27)

(-1/2)*(x^2)

-(1/2)*x^2

(28)

"((-1/2)((x^2)/((sigma^2+(I*h*(t/M))))"

NULL

-(1/2)*x^2/(2+2*I)

(-1/8+(1/8)*I)*x^2

(29)

``

``

"Exp(((-1/2)((x^2)/((sigma^2+(I*h*(t/M)))))+(((I *P* (x/h))- (I* ((P^2)/(2*M))*(t/h))/((1+(((I*h*t))/((M+sigma^2))))"

NULL

I*P*x/h

I*x

(30)

 

I*P^2*t/((2*M)*h)

((1/2)*I)*t

(31)

I*x-((1/2)*I)*t

I*x-((1/2)*I)*t

(32)

"((I *P* (x/h))- (I* ((P^2)/(2*M))*(t/h))/((1+(((I*h*t))/((M+sigma^2))))"

``

NULL

I*h*t

I*t

(33)

sigma^2+M

17

(34)

1+I*t*(1/17)

1+((1/17)*I)*t

(35)

(I*x-((1/2)*I)*t)/(1+((1/17)*I)*t)

(I*x-((1/2)*I)*t)/(1+((1/17)*I)*t)

(36)

NULL

exp(I*x-((1/2)*I)*t+(I*x-((1/2)*I)*t)/(1+((1/17)*I)*t))

exp(I*x-((1/2)*I)*t+(I*x-((1/2)*I)*t)/(1+((1/17)*I)*t))

(37)

psi(x, t) = exp(I*x-((1/2)*I)*t+(I*x-((1/2)*I)*t)/(1+((1/17)*I)*t))

psi(x, t) = exp(I*x-((1/2)*I)*t+(I*x-((1/2)*I)*t)/(1+((1/17)*I)*t))

(38)

simplify(psi(x, t) = exp(I*x-((1/2)*I)*t+(I*x-((1/2)*I)*t)/(1+((1/17)*I)*t)))

psi(x, t) = exp(-I*(-2*x+t)*(I*t+34)/((2*I)*t+34))

 

Explore(psi(x, t) = exp(VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(VectorCalculus:-`*`(I, `-`(2*x)+t), VectorCalculus:-`+`(VectorCalculus:-`*`(I, t), 34)), 1/VectorCalculus:-`+`(VectorCalculus:-`*`(VectorCalculus:-`*`(2, I), t), 34)))), parameters = [[t = 0 .. 40, controller = slider], [x = -20 .. 80, controller = slider]], loop = never, size = NoUserValue, numeric = false, echoexpression = true)

(39)

with(plots)

implicitplot(abs(psi(x, ts*t)), Re(psi(x, ts*t)), Im(psi(x, ts*t)), x = -20 .. 80, scaling = constrained)

Error, (in plots/implicitplot) invalid input: lhs received Im(psi(x, 2*t)), which is not valid for its 1st argument, expr

 

NULL


 

Download Lec7QuantumWaveSE.mw

 

 

I am trying to plot a Runge-Kutta method for 1+ tsin(tx). When ever I try to do the plot data command an empty graph shows up. I noticed that some of my values from the algorithm did not calculate properly. How do I fix this problem? This is what I typed in for the calculations. 

f := (t, x) -> 1 + t*sin(x);
t[0] := 0;x[0] := 0;
h := 0.1;
 

for n to 20 do
    t[n] := n*h;
    m1 := f(t[n - 1], x[n - 1]);
    m2 := f(t[n - 1] + h/2, x[n - 1] + m1*h/2);
    m3 := f(t[n - 1] + h/2, x[n - 1] + m2*h/2);
    m4 := f(t[n - 1] + h, h*m3 + x[n - 1]);
    x[n] := x[n - 1] + h/6*(m1 + 2*m2 + 2*m3 + m4);
end;
 

Hi

I am trying to follow this paper

http://euclid.trentu.ca/aejm/V4N1/Chatterjee.V4N1.pdf

Lets start with the easier problem, equal poles. Assume that the length of the cable is 120m and the two poles have equal height of 50m. Our goal is to determine the minimum distance between the two poles that will prevent the cable from touching the ground.

I was trying to get Maple to agree with their derived formula, namely

y(x)= 11*cosh(1/11*x) - 61,

but I think I have not set the IC's correctly. or provided for the length of the cable.

restart:
int(sqrt(1+diff(y(t),t)^2),t=0..x)=120/2

//can't solve the above directly, or maybe someone clever here can

//a is a constant
DIV := diff(y(x), x, x) = a*sqrt(1 + diff(y(x), x)^2);
RV := y(0) = 0, D(y)(0) = -50;
dsolve({DIV});
Opl := dsolve({DIV, RV}, y(x));
allvalues(%)
 

 

Dear all,

Reversion of series---computing a series for the functional inverse of a function---has been in Maple since forever, but many people are not aware of how easy it is.  Here's an example, where we are looking for "self-reverting" series---which I called "ambiverts".  Anyway have fun.

 

https://maple.cloud/app/5974582695821312/Series+Reversion%3A+Looking+for+ambiverts

PS There looks to be some "code rot" in the branch point series for Lambert W in Maple, which we encounter in that worksheet.  Or, I may simply have not coded it very well in the first place (yeah, that was mine, once upon a time).  Checking now.  But there is a workaround (albeit an ugly one) shown in that worksheet.

 

Hi I have experienced another Maple 2021 error with those of my students who Maple 2021 Mac edition. 

Lets say their have saved a .mw on their main drive and tries to open the file from inside Maple. Maple gives an error like "file cannot be opened - please try to another". This also happens when trying to open the file from outside Maple. 

This never happens on the Windows version. So any idea what could be causing this ?

 

 

 

 

 

"D1(s,t) :=P- (alpha1-beta*S) +  alpha2 + beta2 *q(t)^();"

proc (s, t) options operator, arrow; P+beta*S-alpha1+alpha2+beta2*q(t) end proc

(1)

"(->)"

dem

(2)

``

ode1 := diff(q(t), t)+theta*q(t)/(1+N-t) = -D1(s, t)

diff(q(t), t)+theta*q(t)/(1+N-t) = -P-beta*S+alpha1-alpha2-beta2*q(t)

(3)

fn1 := q(t)

q(t)

(4)

ic1 := q(T) = 0

q(T) = 0

(5)

sol1 := simplify(dsolve({ic1, ode1}, fn1))

q(t) = (-S*beta-P+alpha1-alpha2)*(Int(exp(beta2*_z1)*(1+N-_z1)^(-theta), _z1 = T .. t))*exp(-beta2*t)*(1+N-t)^theta

(6)

NULL

Download data.mw

Hello all. I'm trying to solve the following first-order differential equation. 

Please help in understanding why the equation (6) doesn't contain proper solution for the function q(t) on solving the ode1 with the given initial condition

How (can I?) display the value in a legend in Engineering format -- 10^3, 10^-6, etc?

Lres := 1/((2*Pi*freq)^2*Cres);
ftest := 10e6;
p1 := plot(eval(subs(freq = ftest, Lres)), Cres = 0.10000000 .. 0.10000000, labels = [Cres, 'Lres'], legend = ftest, color = red, title = 'Inductance*Value*as*a*Function*of*Resonant*Capacitance', axis = [gridlines = [default]]);

I would like the legend to display 10^6 rather than 1^7.

I've tried changing the default number format for the whole worksheet to Engineering, but that doesn't seem to apply to legends.

 

thank you.

Hi,

I'd like to know, if it is possible to define any sort of range for parameters in NonlinearFit. E. g. I know that one of parameters should be somewhere between 0.2 - 0.4. I know there is a possibility of initalvalues, but using it doesn't lead into this range.

Thanks.

Dear all,

Recently I discovered the noncommuting variables in the Physics package due to Edgardo Cheb-Terrab; doubtless there are many posts here on Maple Primes describing them.  Here is one more, which shows how to use this package to prove the Schur complement formula.

https://maple.cloud/app/6080387763929088/Schur+Complement+Proof+in+Maple

I guess I have a newbie's question: how well-integrated are Maple Primes and the Maple Cloud?  Anyway that seemed the easiest way to share this.

-r

Dear all;

Some of you will have heard of the new open access (and free of page charges) journal Maple Transactions https://mapletransactions.org which is intended to publish expositions on topics of interest to the Maple community. What you might not have noticed is that it is possible to publish your papers as Maple documents or as Maple workbooks.  The actual publication is on Maple Cloud, so that even people who don't have Maple can read the papers.

Two examples: one by Jürgen Gerhard, https://mapletransactions.org/index.php/maple/article/view/14038 on Fibonacci numbers

and one by me, https://mapletransactions.org/index.php/maple/article/view/14039 on Bohemian Matrices (my profile picture here is a Bohemian matrix eigenvalue image).

I invite you to read those papers (and the others in the journal) and to think about contributing.  You can also contribute a video, if you'd rather.

I look forward to seeing your submissions.

Rob Corless, Editor-in-Chief, Maple Transactions

 

Dear all,

Recently we learned that the idea of "anti-secularity" in perturbation methods was known to Mathieu already by 1868, predating Lindstedt by several years.  The Maple worksheet linked below recapitulates Mathieu's computations:

https://github.com/rcorless/MathieuPerturbationMethod

Nic Fillion and I wrote a more general introduction to perturbation methods using Maple and you can find that paper at 

https://arxiv.org/abs/1609.01321

and the supporting Maple code in a workbook at 

https://github.com/rcorless/Perturbation-Methods-in-Maple

For instance, one of the problems solved is the lengthening pendulum and when we do so taking proper account of anti-secularity (we use renormalization for that one, I seem to remember) we get an error curve that is bounded over time.

 

 

Hope that some of you find this useful.

In a french magazine written by High Schools teachers I found this problem:

let a, b, p, q four strictly positive integers such that a > b^2 and p > q+1;
find 4-tuples (a, b, p, q) such that 

(a^2 - b^4) = p!/q!

Given the source of this problem I suspect that there is a trick to answering this question.
After some hours spent, I have found no general method to solve it, only a few solutions (first one and second one are almost obvious), for instance

rel := a^2 - b^4 = p!/q!:

eval(rel, [a= 5, b=1, q=1, p=4]);   
eval(rel, [a=11, b=1, q=1, p=5]);
eval(rel, [a=71, b=1, q=1, p=7]);
eval(rel, [a= 2, b=1, q=2, p=3]);
eval(rel, [a=19, b=1, q=2, p=6]);
eval(rel, [a=21, b=3, q=2, p=6]);

Do you have any idea how to solve this problem?
Could it be handled by Maple (without a systematic exploration of a part of N^4)?

Thanks in advance

lets say we have one or two lines 

y=2x-4 and y = -2x+4 is it possible to get Maple to illustrate the angle between these two lines in a plot? Or the angle of inclination in respect to the x-axes for them individually? 

Welcome to Maplesoft Orientation Week!  We know what a difference math software can make when it comes to enhancing student learning, but we also know that everyone is very busy at the beginning of the school year! So our goal for this week is to make it easier for high school and university students to select the best math tool for their needs, and help them get on track for a great math year.  The week’s activities include free training on Maple and Maple Learn, discounts on Student Maple, live events with some of your favorite math TikTok personalities, and even the chance to win an iPad Air!  Check out all the activities now, and plan your week or tell your students.

Orientation week runs Mon. Sept. 20 – Fri. Sept. 24.

kindly help me to find the inverse Laplace of this function. I tried but maple leaves the integral unevaluated.
 

restart

with(inttrans)

expr := exp(a-sqrt(a^2+b*s))/s

exp(a-(a^2+b*s)^(1/2))/s

(1)

`assuming`([invlaplace(expr, s, t)], [b > 0])

(1/2)*(b/Pi)^(1/2)*(int(exp(-a^2*_U1/b+a-(1/4)*b/_U1)/_U1^(3/2), _U1 = 0 .. t))

(2)

NULL


 

Download invrslplc.mw

First 379 380 381 382 383 384 385 Last Page 381 of 2224