Maple Questions and Posts

These are Posts and Questions associated with the product, Maple

A lot of scientific software propose packages enabling drawing figures in XKCD style/
Up to now I thought this was restricted to open products (R, Python, ...) but I recently discovered Matlab and even Mathematica were doing same.

Layton S (2012). “XKCDIFY! Adding flair to boring Matlab Axes one plot at a time.” Last accessed on December 08, 2014, URL https://github.com/slayton/matlab-xkcdify.

Woods S (2012). “xkcd-style graphs.” Last accessed on December 08, 2014, URL http://mathematica.stackexchange.com/questions/11350/xkcd-style-graphs/ 11355#11355.

 

So why not Maple?

As a regular user of R, I could have visualize the body of the corresponding procedures to see how these drawings were made and just translate theminto Maple.
But copying for the sake of copying is not of much interest.
So I started to develop some primitives for "XKCD-drawing" lines, polygons, circles and even histograms.
My goal is not to write an XKCD package (I don't have the skills for that) but just to arouse the interest of (maybe) a few people here who could continue this preliminary work


A main problem is the one of the XKCD fonts: no question to redefine them in Maple and I guess using them in a commercial code is not legal (?). So no XKCD font in this first work, nor even the funny guy who appears recurently on the drawings (but it could be easily constructed in Maple).

In a recent post (Plot styling - experimenting with Maple's plotting...) Samir Khan proposed a few styles made of several plotting options,  some of which he named "Excel style" or "Oscilloscope style"... maybe a future "XKCD xtyle" in Maple ?


This work has been done with Maple 2015 and reuses an old version of a 1D-Kriging procedure 

 

restart:

with(LinearAlgebra):
with(plots):
with(Statistics):

 

The principle is always the same:
    1/   Let L a straight line which is either defined by its two ending points (xkvd_hline) or taken as the default [0, 0], [1, 0] line.
          For xkvd_hline the given line L is firstly rotate to be aligned with the horizontal axis.

    2/   Let P1, ..., PN N points on L. Each Pn writes [xn, yn]

    3/   A random perturbation rn is added yo the values y1, ..., yN

    4/   A stationnary random process RP, with gaussian correlation function is used to build a smooth curve passing through the points
          (x1, y1+r1), ..., (xN, yN+rN) (procedure KG where "KG" stands for "Kriging")

    5/   The result is drawn or mapped to some predefined shape :
                  xkcd_hist,
                  xkcd_polyline,
                  xkcd_circle

    6/   A procedure xkcd_func is also provided to draw functions defined by an explicit relation.
 

KG := proc(X, Y, psi, sigma)
  local NX, DX, K, mu, k, y:
  NX := numelems(X);
  DX := < seq(Vector[row](NX, X), k=1..NX) >^+:
  K  := (sigma, psi) -> evalf( sigma^2 *~ exp~(-((DX - DX^+) /~ psi)^~2) ):
  mu := add(Y) / NX;
  k  := (x, sigma, psi) -> evalf( convert(sigma^2 *~ exp~(-((x -~ X ) /~ psi)^~2), Vector[row]) ):
  y  := mu + k(x, sigma, psi) . (K(sigma, psi))^(-1) . convert((Y -~ mu), Vector[column]):
  return y
end proc:


xkcd_hline := proc(p1::list, p2::list, a::nonnegative, lc::positive, col)
  # p1 : first ending point
  # p2 : second ending point
  # a  : amplitude of the random perturbations
  # lc : correlation length
  # col: color
  local roll, NX, LX, X, Z:
  roll := rand(-1.0 .. 1.0):
  NX   := 10:
  LX   := p2[1]-p1[1]:
  X    := [seq(p1[1]..p2[1], LX/(NX-1))]:
  Z    := [p1[2], seq(p1[2]+a*roll(), k=1..NX-1)]:
  return plot(KG(X, Z, lc*LX, 1), x=min(X)..max(X), color=col, scaling=constrained):
end proc:


xkcd_line := proc(L::list, a::nonnegative, lc::positive, col, {lsty::integer:=1})
  # L  : list which contains the two ending point
  # a  : amplitude of the random perturbations
  # lc : correlation length
  # col: color
  local T, roll, NX, DX, DY, LX, A, m, M, X, Z, P:
  T    := (a, x0, y0, l) ->
             plottools:-transform(
               (x,y) -> [ x0 + l * (x*cos(a)-y*sin(a)), y0 + l * (x*sin(a)+y*cos(a)) ]
             ):
  roll := rand(-1.0 .. 1.0):
  NX   := 5:
  DX   := L[2][1]-L[1][1]:
  DY   := L[2][2]-L[1][2]:
  LX := sqrt(DX^2+DY^2):
  if DX <> 0 then
     A := arcsin(DY/LX):
  else
     A:= Pi/2:
  end if:
  X := [seq(0..1, 1/(NX-1))]:
  Z := [ seq(a*roll(), k=1..NX)]:
  P := plot(KG(X, Z, lc, 1), x=0..1, color=col, scaling=constrained, linestyle=lsty):
  return T(A, op(L[1]), LX)(P)
end proc:


xkcd_func := proc(f, r::list, NX::posint, a::positive, lc::positive, col)
  # f  : function to draw
  # r  : plot range
  # NX : number of equidistant "nodes" in the range r (boundaries included)
  # a  : amplitude of the random perturbations
  # lc : correlation length
  # col: color
  local roll, F, LX, Pf, Xf, Zf:
  roll := rand(-1.0 .. 1.0):
  F    := unapply(f, indets(f, name)[1]);
  LX   := r[2]-r[1]:
  Pf   := [seq(r[1]..r[2], LX/(NX-1))]:
  Xf   := Pf +~ [seq(a*roll(), k=1..numelems(Pf))]:
  Zf   := F~(Pf) +~ [seq(a*roll(), k=1..numelems(Pf))]:
  return plot(KG(Xf, Zf, lc*LX, 1), x=min(Xf)..max(Xf), color=col):
end proc:




xkcd_hist := proc(H, ah, av, ax, ay, lch, lcv, lcx, lcy, colh, colxy)
  # H   : Histogram
  # ah  : amplitude of the random perturbations on the horizontal boundaries of the bins
  # av  : amplitude of the random perturbations on the vertical boundaries of the bins
  # ax  : amplitude of the random perturbations on the horizontal axis
  # ay  : amplitude of the random perturbations on the vertical axis
  # lch : correlation length on the horizontal boundaries of the bins
  # lcv : correlation length on the vertical boundaries of the bins
  # lcx : correlation length on the horizontal axis
  # lcy : correlation length on the vertical axis
  # colh: color of the histogram
  # col : color of the axes
  local data, horiz, verti, horizontal_lines, vertical_lines, po, rpo, p1, p2:
  data  := op(1..-2, op(1, H)):
  verti := sort( [seq(data[n][3..4][], n=1..numelems([data]))] , key=(x->x[1]) );
  verti := verti[1],
           map(
                n -> if verti[n][2] > verti[n+1][2] then
                        verti[n]
                      else
                        verti[n+1]
                      end if,
                [seq(2..numelems(verti)-2,2)]
           )[],
           verti[-1];
  horiz := seq(data[n][[4, 3]], n=1..numelems([data])):

  horizontal_lines := NULL:
  for po in horiz do
    horizontal_lines := horizontal_lines, xkcd_hline(po[1], po[2], ah, lch, colh):
  end do:

  vertical_lines := NULL:
  for po in [verti] do
    rpo := po[[2, 1]]:
    vertical_lines := vertical_lines, xkcd_hline([0, rpo[2]], rpo, av, lcv, colh):
  end do:

  p1 := [2*verti[1][1]-verti[2][1], 0]:
  p2 := [2*verti[-1][1]-verti[-2][1], 0]:

  return
    display(
      horizontal_lines,
      T~([vertical_lines]),
      xkcd_hline(p1, p2, ax, lcx, colxy),
      T(xkcd_hline([0, 0], [1.2*max(op~(2, [verti])), 0], ay, lcy, colxy)),
      axes=none,
      scaling=unconstrained
    );
end proc:


xkcd_polyline := proc(L::list, a::nonnegative, lc::positive, col)
  # xkcd_polyline reduces to xkcd_line whebn L has 2 elements
  # L  : List of points
  # a  : amplitude of the random perturbations
  # lc : correlation length
  # col: color
  local T, roll, NX, n, DX, DY, LX, A, m, M, X, Z, P:
  T    := (a, x0, y0, l) ->
             plottools:-transform(
               (x,y) -> [ x0 + l * (x*cos(a)-y*sin(a)), y0 + l * (x*sin(a)+y*cos(a)) ]
             ):
  roll := rand(-1.0 .. 1.0):
  NX   := 5:
  for n from 1 to numelems(L)-1 do
    DX   := L[n+1][1]-L[n][1]:
    DY   := L[n+1][2]-L[n][2]:
    LX := sqrt(DX^2+DY^2):
    if DX <> 0 then
      A := evalf(arcsin(abs(DY)/LX)):
      if DX >= 0 and DY <= 0 then A := -A end if:
      if DX <= 0 and DY >  0 then A := Pi-A end if:
      if DX <= 0 and DY <= 0 then A := Pi+A end if:
    else
      A:= Pi/2:
      if DY < 0 then A := 3*Pi/2 end if:
    end if:
    if n=1 then
      X := [seq(0..1, 1/(NX-1))]:
      Z := [seq(a*roll(), k=1..NX)]:
    else
      X := [0    , seq(1/(NX-1)..1, 1/(NX-1))]:
      Z := [Z[NX], seq(a*roll(), k=1..NX-1)]:
    end if:
    P    := plot(KG(X, Z, lc, 1), x=0..1, color=col, scaling=constrained):
    P||n := T(A, op(L[n]), LX)(P):
  end do;
  return seq(P||n, n=1..numelems(L)-1)
end proc:


xkcd_circle := proc(a::nonnegative, lc::positive, r::positive, cent::list, col)
  # a   : amplitude of the random perturbations
  # lc  : correlation length
  # r   : redius of the circle
  # cent: center of the circle
  # col : color
  local roll, NX, LX, X, Z, xkg, A:
  roll := rand(-1.0 .. 1.0):
  NX   := 10:
  X    := [seq(0..1, 1/(NX-1))]:
  Z    := [0, seq(a*roll(), k=1..NX-1)]:
  xkg  := KG(X, Z, lc, 1):
  A    := Pi*roll():
  return plot([cent[1]+r*(1+xkg)*cos(2*Pi*x+A), cent[2]+r*(1+xkg)*sin(2*Pi*x+A), x=0..1], color=col)
end proc:

T := plottools:-transform((x,y) -> [y, x]):
 

# Axes plot

x_axis := xkcd_hline([0, 0], [10, 0], 0.03, 0.5, black):
y_axis := xkcd_hline([0, 0], [10, 0], 0.03, 0.5, black):
display(
  x_axis,
  T(y_axis),
  axes=none,
  scaling=constrained
)

 

# A simple function

f := 1+10*(x/5-1)^2:
F := xkcd_func(f, [0.5, 9.5], 6, 0.3, 0.4, red):

display(
  x_axis,
  T(y_axis),
  F,
  axes=none,
  scaling=constrained
)

 

# An histogram

S := Sample(Normal(0,1),100):
H := Histogram(S, maxbins=6):
xkcd_hist(H,   0, 0.02, 0.001, 0.01,   1, 0.1, 0.01, 1,   red, black)

 

# Axes plus grid with two red straight lines

r := rand(-0.1 .. 0.1):

x_axis := xkcd_line([[-2, 0], [10, 0]], 0.01, 0.2, black):
y_axis := xkcd_line([[0, -2], [0, 10]], 0.01, 0.2, black):
d1     := xkcd_line([[-1, 1], [9, 9]] , 0.01, 0.2, red):
d2     := xkcd_line([[-1, 9], [9, -1]], 0.01, 0.2, red):
display(
  x_axis, y_axis,
  seq( xkcd_line([[-2+0.3*r(), u+0.3*r()], [10+0.3*r(), u+0.3*r()]], 0.005, 0.5, gray), u in [seq(-1..9, 2)]),
  seq( xkcd_line([[u+0.3*r(), -2+0.3*r()], [u+0.3*r(), 10+0.3*r()]], 0.005, 0.5, gray), u in [seq(-1..9, 2)]),
  d1, d2,
  axes=none,
  scaling=constrained
)

 

# Axes and a couple of polygonal lines

d1 := xkcd_polyline([[0, 0], [1, 3], [3, 5], [7, 1], [9, 7]], 0.01, 1, red):
d2 := xkcd_polyline([[0, 9], [2, 8], [5, 2], [8, 3], [10, -1]], 0.01, 1, blue):

display(
  x_axis, y_axis,
  d1, d2,
  axes=none,
  scaling=constrained
)

 

# A few polygonal shapes

display(
  xkcd_polyline([[0, 0], [1, 0], [1, 1], [0, 1], [0, 0]], 0.01, 1, red),
  xkcd_polyline([[1/3, 1/3], [2/3, 1/3], [2/3, 4/3], [-1, 4/3], [1/3, 1/3]], 0.01, 1, blue),
  xkcd_polyline([[-1/3, -1/3], [4/3, 1/2], [1/2, 1/2], [1/2,-1], [-1/3, -1/3]], 0.01, 1, green),
  axes=none,
  scaling=constrained
)

 

# A few circles

cols  := [red, green, blue, gold, black]:                                # colors
cents := convert( Statistics:-Sample(Uniform(-1, 3), [5, 2]), listlist): # centers
radii := Statistics:-Sample(Uniform(1/2, 2), 5):                         # radii
lcs   := Statistics:-Sample(Uniform(0.2, 0.7), 5):                       # correlations lengths

display(
  seq(
    xkcd_circle(0.02, lcs[n], radii[n], cents[n], cols[n]),
    n=1..5
  ),
  axes=none,
  scaling=constrained
)

 

# A 3D drawing

x_axis := xkcd_line([[0, 0], [5, 0]], 0.01, 0.2, black):
y_axis := xkcd_line([[0, 0], [4, 2]], 0.01, 0.2, black):
z_axis := xkcd_line([[0, 0], [0, 5]], 0.01, 0.2, black):

f1 := 4*cos(x/6)-1:
F1 := xkcd_func(f1, [0.5, 5], 6, 0.001, 0.8, red):
F2 := xkcd_line([[0.5, eval(f1, x=0.5)], [3, 4]], 0.01, 0.2, red):
f3 := 4*cos((x-2)/6):
F3 := xkcd_func(f3, [3, 7], 6, 0.001, 0.8, red):
F4 := xkcd_line([[5, eval(f1, x=5)], [7, eval(f3, x=7)]], 0.01, 0.2, red):

dx := xkcd_line([[2, 1], [4, 1]], 0.01, 0.2, gray, lsty=3):
dy := xkcd_line([[2, 0], [4, 1]], 0.01, 0.2, gray, lsty=3):
dz := xkcd_line([[4, 1], [4, 3]], 0.01, 0.2, gray, lsty=3):

po := xkcd_circle(0.02, 0.3, 0.1, [4, 3], blue):

# Numerical value come from "probe info + copy/paste"

nvect   := xkcd_polyline([[4, 3], [4.57, 4.26], [4.35, 4.1], [4.57, 4.26], [4.58, 4.02]], 0.01, 1, blue):
tg1vect := xkcd_polyline([[4, 3], [4.78, 2.59], [4.49, 2.87], [4.78, 2.59], [4.46, 2.57]], 0.01, 1, blue):
tg2vect := xkcd_polyline([[4, 3], [4.79, 3.35], [4.70, 3.13], [4.79, 3.35], [4.46, 3.35]], 0.01, 1, blue):
rec1    := xkcd_polyline([[4.118, 3.286], [4.365, 3.396], [4.257, 3.108]], 0.01, 1, blue):
rec2    := xkcd_polyline([[4.257, 3.108], [4.476, 2.985], [4.259, 2.876]], 0.01, 1, blue):



display(
  x_axis, y_axis, z_axis,
  F1, F2, F3, F4,
  dx, dy, dz,
  po,
  nvect, tg1vect, tg2vect, rec1, rec2,
  axes=none,
  scaling=constrained
)

 

# Arrow

d1 := xkcd_polyline([[0, 0], [1, 0], [0.9, 0.05], [1, 0], [0.9, -0.05]], 0.01, 1, red):


T := (a, x0, y0, l) ->
             plottools:-transform(
               (x,y) -> [ x0 + l * (x*cos(a)-y*sin(a)), y0 + l * (x*sin(a)+y*cos(a)) ]
             ):


display(
  seq( T(2*Pi*n/10, 0.5, 0, 1/2)(
           display(
              xkcd_polyline(
                  [[0, 0], [1, 0], [0.9, 0.05], [1, 0], [0.9, -0.05]],
                  0.01,
                  1,
                  ColorTools:-Color([rand()/10^12, rand()/10^12, rand()/10^12])
               )
           )
        ),
       n=1..10
  ),
  axes=none,
  scaling=constrained
)

 

 


 

Download XKCD.mw

 

What is the best way to get some one on one training in maple , has anyone done this?

Area of shadow : i have studied one way of solution by hand, but now in Maple ?
Note: for math illustrations : geogebra seems to be wel suited

I would like to plot a specific vector with an initial point of <4,3,-5> and a terminal point of <3,-1,4>. I have been searching through Maple Primes and Maple Soft.

restart;
M1 := 12.3:
M2 := 12.4:
M3 := 12.5:
R := 50:

EQ:={(diff(F(x), x $ 4)) - M1*diff(G(x),x$2) -2*R*F(x)*diff(F(x),x$3)=0, diff(G(x),x$2)+ M2*(diff(F(x),x$2)-2*G(x)) +M3*(diff(F(x),x)*G(x)-2*F(x)*diff(G(x),x))=0}:


IC:={D(F)(-1)=0, D(F)(1)=0,F(-1)=-1,F(1)=1,G(-1)=0,  G(1)=0}:

sol:= dsolve(EQ union IC,numeric,output=Array([-1,-0.9,-0.8,-0.7,-0.6,-0.5,-0.4,-0.3,-0.2,-0.1,0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1]));
Error, (in dsolve/numeric/bvp) uanble to achieve continuous solution with requested accuracy of 0.1e-5 with maximum 128 point mesh (was able to get 0.47e-5), consider increasing `maxmesh` or using larger `abserr`
plots:-odeplot(sol,[x,F(x)],x=-1..1,color=red,axes=box)


Error, (in plots/odeplot) input is not a valid dsolve/numeric solution
plots:-odeplot(sol,  [x, diff(F(x), x)], x = -1 .. 1, color =  green, axes = box)
Error, (in plots/odeplot) input is not a valid dsolve/numeric solution
plots:-odeplot(sol,[[x,F(x)],[x,diff(F(x),x)],[x,G(x)]],x=-1..1,color=[red,green,blue],axes=box):
Error, (in plots/odeplot) input is not a valid dsolve/numeric solution
plots:-odeplot(sol, [x, G(x)], x = -1 .. 1, color = blue, axes = box);
Error, (in plots/odeplot) input is not a valid dsolve/numeric solution

 

solve( sum((1/(1+x+x^2))*y^n, n=1..infinity) = 1, parametric=true, real);

 

How to solve two variables summation equation with parametric true or real triangularize?

how to solve for x and y?

I just wonder how it is possible to store data between sessions. What I found out is that if a matrix is connected with a datatable, the matrix data is stored. If it is not connected with a datatable, it is not.

In the attached example there are 2 matrices. If you run the worksheet, both variables are defined as visible in the variable overview.

After reopening without running the worksheet, just the variable connected with a datatable is.

Any ideas how to also get the second variable stored between sessions (obviously not with the same method as used for a)?

storetable.mw

 

Download Analisa_Dinamik_Limb_v1_(30).mwAnalisa_Dinamik_Limb_v1_(30).mw

So I have an equation that basically takes the component of vectors to be used as an equation. The variables that I after are FB1z, FB2x, and FB3y For example here is my equation: 

EOM1:=(AFB1[1]+AFB2[1]+AFB3[1])=TEOM[1]

EOM2:=(AFB1[2]+AFB2[2]+AFB3[2])=TEOM[2]

EOM3:=(AFB1[3]+AFB2[3]+AFB3[3])-TEOM[3]:

FBBp1:=FBPP1=(EulP1[1]+EulP2[1]+EulP3[1]):
FBBp2:=FBPP2=(EulP1[2]+EulP2[2]+EulP3[2]):
FBBp3:=FBPP3=(EulP1[3]+EulP2[3]+EulP3[3]):

However there are unknown variable in AFB2[1] named FB2x and AFB3[1] named FB3y. Then AFB1[2] has unknown equation named FB1z and AFB3[2] has FB3y and so on. While in my FBBp1,FBBp2,and FBBp3 holds all of the variable of FB1z, FB2x, and FB3x
I have tried to use 'solve' command to find the variable but my computer won't stop processing it:
sls:=solve({EOM1,EOM2,EOM3,FBBp1,FBBp2,FBBp3},{FB1z,FB2x,FB3y}):

I tried to use the Gauss-Elimination by forming a matrix but it doesn't work as well since I am really confused how to take out the variables out of the vector component.

zzz:=Matrix([0,AFB2[1],AFB3[1],jjj[1]],[AFB1[2],0,AFB3[2],jjj[2]],[AFB1[3],AFB2[3],0,jjj[3]],[FBP1[1],FBP2[1],FBP3[1],EulP[1]],[FBP1[2],FBP2[2],FBP3[2],EulP[2]],[FBP1[3],FBP2[3],FBP3[3],EulP[3]]):
GaussElimination:=(zzz)

I would be very grateful If someone could help me. Thankyou

 

Edit: here are the .txt files and .mpl files that required to run the program 

Inverse_Kinematics_ADRIAN2.mw

RotInertiax0_ADRIAN.txt

Download DisplacementXYZ.txt

inersia_platfrom.txt

There is an .mpl file that I couldn't upload so I will upload it in the comments

 

I have to find the distance between a point and a plot. The point is (2,-3,4) and the plane is x+2y+2z=13. How do I plot this?

An attempt to find the equation of an ellipse inscribed in a given triangle. 
The program works on the basis of the ELS procedure.  After the procedure works, the  solutions are filtered.
ELS procedure solves the system of equations f1, f2, f3, f4, f5 for the coefficients of the second-order curve.
The equation f1 corresponds to the condition that the side of the triangle intersects t a curve of the second order at one point.
The equation f2 corresponds to the condition that the point x1,x2  belongs to a curve of the second order.
Equation f3 corresponds to the condition that the side of the triangle is tangent to the second order curve at the point x1,x2.
The equation f4 is similar to the equation f2, and the equation f5 is similar to the equation f3.
FOR_ELL_ТR_PROCE.mw
For example

 

i need to find a y(2) and than work with it in a loop

but i cant do it because i solved my equation with "dsolve" and "sol(2)" and its solution is list

really need a help

Hi!

I am a new user to maple and I have tried to solve a partial differential equation.

The solution is shown in the figure above but I don't know how to make a 3d plot or contour plot of the solution. The code of solving pde is down below:

restart;
pde := diff(T(x, y), x $ 2) + diff(T(x, y), y $ 2) = 0;
bc := T(0, y) = T1, T(a, y) = T2, T(x, 0) = T2, k*D[2](T)(x, b) = h*(-T(x, b) + T3);
sol1 := simplify((pdsolve([pde, bc], T(x, y)) assuming (0 < a, 0 < b)));

and the constant value are:  a = 250, b = 4, k = 2.091, T1 = -5, T2 = 0, h = 100, T3 = 1000

the plot range is 0<x<250, 0<y<4.

Thank you for helping me!

 

 

From another question I asked, I learned that parse("string") returns an unevaluated Maple expression. 

But in interactive mode (in worksheet), the result looks the same as normal evaluated expression. That is why I did not know this. For example

ode1:= :-parse("diff(y(x),x$2)=0");
ode2:= diff(y(x),x$2)=0;

it gives

There is no difference when looking at it.  That is why when I was in Maple debugger, I could not see why Maple was complaining about it. An eval  was needed.

I looked at the types to see if there is something like type(variable,`unevaluated`) or such, and could not find one.

If Maple can at least display unevaluated expression with different color, or different notations when in the worksheet interface,  I would have noticed that parse returns unevaluated expression.

In Mathematica, these things are done using wrappers, (called Hold or Inactive) but these are visible in the notebook and use different color shading or Hold is present and had to expliclity removed,  and so looking at them, one can see the differerence between the expressions. 

How can one in Maple distinguish between unevaluated expression such as ode1 above and evaluated one such as ode2 above?  This can be useful to use inside a proc for example.  Is there an option in the GUI itself to tell Maple may be to color each differently?

 

According to the help manual...

To perform an action when the data table is updated, click the data table, and then, from the Data Table context panel, select Edit Content Changed Code to open the Code Editor dialog for the data table.

I am unable to make this work, nothing happens when I click on that button.

Edit - Component code - shows everything greyed out.

Any hints?

I can't figure why dsolve and odeadvisor fail to process ode when it is parsed from string and only inside a proc, but works ok in global space.

This works OK:

restart;
ode  :=  :-parse("diff(y(x),x$2)=0"):
func := :-parse("y(x)"):

dsolve(ode);
DEtools:-odeadvisor(ode,func);

But the same code, when inside a proc, fail

restart;
foo:=proc()
  local ode,func;  
  local x,y; #adding this did not  help

  ode  :=  :-parse("diff(y(x),x$2)=0");
  func :=  :-parse("y(x)");

  dsolve(ode);
  try
     DEtools:-odeadvisor(ode,func);
  catch:
     error lastexception;
  end try;

end proc;

foo()

It seems to have with name scoping, but I do not see what is the problem. :-parse works fine.

How to resolve this? Since I must use :-parse as I am reading the ode as string from database with Maple as string from inside a proc inside a module and the above is just a simple example that shows the problem.

Maple 2020.1 with Physics 724

First 523 524 525 526 527 528 529 Last Page 525 of 2224