Maple Questions and Posts

These are Posts and Questions associated with the product, Maple

I'm displaying a series of point plots as an animation, and would like to update a displayed parameter as well.  I have a nested list L[t] where there's a set of points for each t, and for each t there's also a numerical value M that I'd like to display.  (In my real problem, L[t] is the number of particles in each of several states, and M is the rms deviation from am algebraic probability distribution.)  

The closest I've gotten (for a simple L and M) is the following, but it displays all of the M values in the legend at once:

with(plots); with(Statistics);

L := [[1, 2, 3, 4, 5, 6], [2, 4, 6, 8, 10, 12]];

M := [1, 2];

display([seq(PointPlot(L[t], legend = M[t]), t = 1 .. 2)], insequence = true)

 

I don't need this to be in the legend.  Is there a way to display only the current value of M for each t?  Thanks very much.

How to prove or disprove the flatness of the surface x = (u-v)^2, y =  u^2-3*v^2, z = (1/2)*v*(u-2*v), where u and v are real-valued parameters? Here is my try:

 

plot3d([(u-v)^2, u^2-3*v^2, (1/2)*v*(u-2*v)], u = -1 .. 1, v = -1 .. 1, axes = frame);plot3d([(u-v)^2, u^2-3*v^2, (1/2)*v*(u-2*v)], u = -1 .. 1, v = -1 .. 1, axes = frame)

 

eliminate([x = (u-v)^2, y = u^2-3*v^2, z = (1/2)*v*(u-2*v)], [u, v])

[{u = -2*(-x+2*z+(x^2-8*x*z)^(1/2))/(-2*(x^2-8*x*z)^(1/2)+2*x-8*z)^(1/2), v = (1/2)*(-2*(x^2-8*x*z)^(1/2)+2*x-8*z)^(1/2)}, {-(x^2-8*x*z)^(1/2)*x+y*(x^2-8*x*z)^(1/2)-4*(x^2-8*x*z)^(1/2)*z+x^2-y*x+4*y*z-16*z^2}], [{u = 2*(-x+2*z+(x^2-8*x*z)^(1/2))/(-2*(x^2-8*x*z)^(1/2)+2*x-8*z)^(1/2), v = -(1/2)*(-2*(x^2-8*x*z)^(1/2)+2*x-8*z)^(1/2)}, {-(x^2-8*x*z)^(1/2)*x+y*(x^2-8*x*z)^(1/2)-4*(x^2-8*x*z)^(1/2)*z+x^2-y*x+4*y*z-16*z^2}], [{u = -2*(x-2*z+(x^2-8*x*z)^(1/2))/(2*(x^2-8*x*z)^(1/2)+2*x-8*z)^(1/2), v = -(1/2)*(2*(x^2-8*x*z)^(1/2)+2*x-8*z)^(1/2)}, {(x^2-8*x*z)^(1/2)*x-y*(x^2-8*x*z)^(1/2)+4*(x^2-8*x*z)^(1/2)*z+x^2-y*x+4*y*z-16*z^2}], [{u = 2*(x-2*z+(x^2-8*x*z)^(1/2))/(2*(x^2-8*x*z)^(1/2)+2*x-8*z)^(1/2), v = (1/2)*(2*(x^2-8*x*z)^(1/2)+2*x-8*z)^(1/2)}, {(x^2-8*x*z)^(1/2)*x-y*(x^2-8*x*z)^(1/2)+4*(x^2-8*x*z)^(1/2)*z+x^2-y*x+4*y*z-16*z^2}]

(1)

NULL

I think Gaussian curvature should be used to this end. Dr. Robert J. Lopez is my hope.

Download flat.mw

I've been trying to make a smooth plot of some ODEs. It should show C rapidly increasing at the innitiation, until they get into a quassi steady state,  and then all three variables increase much slower. This should look like a roughly straight line that elbows sharply into a smooth curve.

Any attempt to DEplot3d it i've made either just shows the time before the quassi steady state is reached, so shows the straight line; or smooths that time together with the next period, making the straight line look like a part of the smooth curve.


Model := [diff(B[1](t), t) = k[a1]*C(t)*(R-B[1](t)-B[2](t))-k[d1]*B[1](t), diff(B[2](t), t) = k[a2]*C(t)*(R-B[1](t)-B[2](t))-k[d2]*B[2](t), diff(C(t), t) = (-(k[a1]+k[a2])*C(t)*(R-B[1](t)-B[2](t))+k[d1]*B[1]+k[d2]*B[2](t)+k[m]*((I)(t)-C(t)))/h];
DissMod := subs((I)(t) = 0, Model);
AssMod := subs((I)(t) = C[T], Model);


Pars := [k[a1] = 6*10^(-4), k[d1] = 7*10^(-3), k[a2] = 5*10^(-4), k[d2] = 10^(-2), R = .5, k[m] = 10^(-4), C[T] = 100, h = 10^(-6)]

StateSol := DEplot3d(subs(Pars, AssMod), [B[1](t), B[2](t), C(t)], t = 0 .. 1000, number = 3, B[1] = 0 .. .5, B[2] = 0 .. .5, [[B[1](0) = 0, B[2](0) = 0, C(0) = 0]], scene = [B[1](t), B[2](t), C(t)], maxstep = .1, maxfun = 0, method = l)

Is there a way to display the list of coordinates for implicitplot and plot, rather than the displaying image itself?

In Maple Classic this happens automatically when the assignment operator is used  ( := ) together with a semi-colon, eg.   A:=implicitplot(F, x=-1..1, y=-1..1);

But is there a way to do this in the non-classic version?  Thanks very much.

 

- Graham

Bruce Jenkins is President of Ora Research, an engineering research and advisory service. Maplesoft commissioned him to examine how systems-driven engineering practices are being integrated into the early stages of product development, the results of which are available in a free whitepaper entitled System-Level Physical Modeling and Simulation. In this series of blog posts, Mr. Jenkins discusses the results of his research.

This is the third entry in the series.

My last post, System-level physical modeling and simulation: Adoption drivers vs. adoption constraints, described my firm’s research project to investigate the contemporary state of adoption and application of systems modeling software technologies, and their attendant methods and work processes, in the engineering design of off-highway equipment and mining machinery.

In this project, I interviewed some half-dozen expert practitioners at leading manufacturers, including both engineering management and senior discipline leads, to identify key technological factors as well as business and competitive issues driving adoption and use of systems modeling at current levels.

After identifying present-day adoption drivers as well as current constraints on adoption, finally I sought to learn practitioners’ visions, strategies and best practices for accelerating and institutionalizing the implementation and usage of systems modeling tools and practices in their organizations.

I was strongly encouraged to find a wealth of avenues and opportunities for exploiting enterprise business drivers, current industry disruptions, and related internal realignments and change-management initiatives to help drive introduction—or proliferation—of these technologies and their associated new ways of working into engineering organizations:

  • Systems modeling essential to compete by creating differentiated products
  • Mechatronics revolution in off-highway equipment
  • Industry downturns and disruptions create opportunities for disruptive innovation
    • Opportunities to leverage change in underlying industry competitive dynamics
    • Mining industry down-cycle creates opportunity to innovate, find new ways of working
    • Some manufacturers are using current down-cycle in mining industry to change their product innovation strategy
  • Strategies of manufacturers pursuing disruptive innovation
    • Best odds are in companies with deep culture of continually inculcating new skills into their people, and rethinking methods and work processes
    • Some managements willing to take radical corporate measures to replace old-thinking engineering staff with “systems thinkers”
    • Downsizing in off-highway equipment manufacturers may push them to seek more systems-level value-add from their component suppliers
  • New technology opportunities inside manufacturers ready to move more deeply into systems modeling
    • Opportunities in new/emerging industries/companies without legacy investments in systems modeling tools and libraries
    • Best practice for introducing systems modeling: start with work process, then bring in software
    • Capitalizing on engineering’s leeway and autonomy in specifying systems modeling software compared with enterprise-standard CAD/PLM tools
  • Systems modeling technology advances anticipated by practitioner advocates
    • Improving software integration, interoperability, data interchange
    • Improving co-simulation across domain tools
    • Better, more complete FMI (Functional Mock-up Interface) implementation/compliance
    • Higher-fidelity versions of FMI or similar

The white paper detailing the findings of this research is intended to offer guidance and advice for implementing change, as well as documentation to help convince colleagues, management and partners that new ways of working exist, and that the software technologies to support and enable them are available, accessible, and delivering payback and business advantage to forward-thinking engineering organizations today.

My hope is that this research finds utility as a practical, actionable aid for engineers and engineering management in helping their organizations to adopt and implement—or to strengthen and deepen—a simulation-led, systems-driven approach to product development.

You can download the full white paper reporting our findings here.

Bruce Jenkins, Ora Research
oraresearch.com

Hello fellow maple struglers!

This is my first question, so hopefully I did it in the correct manner. My problem (I think) is of a simple nature, but I can't seem to get it to work. The equation I have is the following:

All is nice and well and as you all can see it depends on two variables. Now what I want to do is to express the function in a shape where it depends on the ratio t/d only. Simple calculus shows that for this equation it is rather easy, where the result is:

(62,8*t/d+0,0945)/pi

Now I would like to know whether it is possible to automate this in maple, such that I can plot Wr_over_p as a function of t/d. I know I can simply use the form above and make the plot, but further down in my maple file I have an equation which is much more complex, and I want to plot thatone as a function of t/d as well.

I hope I have made my problem clear to some of you guys, but if you require some further explaination than please let me know. Thanks in advance for your help, I hope there is someone who can help me with this!

I have two deformed planes, that i would like to draw with 3dplot, as well as drawing a curve marking their intersection.

the curves are given by the expressions:


C = -(k[d2]*B[2]+I*k[m]+k[d1]*B[1])/((B[1]+B[2]-R)*k[a1]+(B[1]+B[2]-R)*k[a2]-k[m]),

C = k[d1]*B[1]/(k[a1]*(R-B[1]-B[2]))

 

evaluated at

Pars := [k[a1] = 6*10^(-4), k[d1] = 7*10^(-3), k[a2] = 5*10^(-4), k[d2] = 10^(-2), R = .5, k[m] = 10^(-4), C[T] = 100, h = 10^(-6)]

with the variables B[1],B[2] and C within the bounds [0..0.5],[0..0.5],[0..100].

 

My method was to try and use solve to find a formula for the intersection curve- but i couldn't get 3dplot to plot it!

Consider the following code snippet:

with(DifferentialGeometry):
DGsetup([x],M);
RemoveFrame(M);

By itself it is, of course, pretty meaningless, but that is not the point. My problem is that after Maple has executed it, it will annoyingly continue using M> for each new execution group that is inserted. Having removed the frame with the command RemoveFrame, I would have expected that not to be the case. How can the frame be truly removed?

hi. i have a system of ODEs. is there any answer ? rho is constant !

restart:Physics:-Assume(rho=constant)

{(-constant+rho)::0, (constant-rho)::0}, {(-constant+rho)::0, (constant-rho)::0}

(1)

#rho=10:

sys:={8*g(t)^3*diff(g(t),t$2)+4*(g(t)*diff(g(t),t))^2+1=0,rho=-1/g(t)-2*(diff(g(t),t)+t*diff(g(t),t$2))-t/(2*g(t)^3),rho=(-t/g(t))*(diff(g(t),t))^2+t/(4*g(t)^3)}

{rho = -t*(diff(g(t), t))^2/g(t)+(1/4)*t/g(t)^3, rho = -1/g(t)-2*(diff(g(t), t))-2*t*(diff(diff(g(t), t), t))-(1/2)*t/g(t)^3, 8*g(t)^3*(diff(diff(g(t), t), t))+4*g(t)^2*(diff(g(t), t))^2+1 = 0}

(2)

dsolve(sys)

 

 

Download dsolve.mw

Hi, I have this procedure (from Maple 5) but I am using it in Maple 15. My problem is this program can not run. I think there is some commond incorrect, but not sure which ones. Please help me in this problem. Thanks a lot.

cocycle.mw

NULL

Cocycle := proc (L, n) local i, j, k, h, v, u, w, C, eqns, e, f, g; v := vector(n); eqns := {}; u := vector(n); w := vector(n); C := array(antisymmetric, 1 .. n, 1 .. n, []); for i to n do for j from i+1 to n do for k from j+1 to n do for h to n do v[h] := L[i, j, h]; u[h] := L[j, k, h]; w[h] := L[k, i, h] end do; e := array(sparse, 1 .. n, [k = 1]); f := array(sparse, 1 .. n, [i = 1]); g := array(sparse, 1 .. n, [j = 1]); eqns := `union`(eqns, multiply(transpose(e), multiply(C, v)))+multiply(transpose(f), multiply(C, u))+multiply(transpose(g), multiply(C, w)) end do end do end do; print('The*cocycles*are', eqns) end proc

proc (L, n) local i, j, k, h, v, u, w, C, eqns, e, f, g; v := vector(n); eqns := {}; u := vector(n); w := vector(n); C := array(antisymmetric, 1 .. n, 1 .. n, []); for i to n do for j from i+1 to n do for k from j+1 to n do for h to n do v[h] := L[i, j, h]; u[h] := L[j, k, h]; w[h] := L[k, i, h] end do; e := array(sparse, 1 .. n, [k = 1]); f := array(sparse, 1 .. n, [i = 1]); g := array(sparse, 1 .. n, [j = 1]); eqns := `union`(eqns, multiply(transpose(e), multiply(C, v)))+multiply(transpose(f), multiply(C, u))+multiply(transpose(g), multiply(C, w)) end do end do end do; print('The*cocycles*are', eqns) end proc

(1)

NULL

NULL


Download cocycle.m

in Mathematica, there is the option called BoxRatios

"is an option for Graphics3D that gives the ratios of side lengths for the bounding box of the threedimensional picture."

It is sort-of like aspect ratio, but for 3D. It is set by default so make 3D plot looks "nice". I can't seem to find equivalent Maple option. The closest is the option "s=" for plot3d, but this just turns of/on "constrained scaling" and does not allow one to modify the "BoxRatios"

Let me give an example. Here is 3D plot in Mathematica and the same in Maple. I'd like to get the Maple 3D to look similar to Mathematica 3D in terms of the "aspect ratio". Maple on the z-axis is using the same size as in the x and y axis, and even though this is realistic, it does not make the plot as nice. I want to change this ratio.

T0[x_, y_, m_] :=20/Pi Sum[ (-1)^(n + 1)/n Exp[- (n Pi/10) y] Sin[ (n Pi/10) x], {n,1, m}]
Plot3D[T0[x, y, 70], {x, 0, 10}, {y, 0, 10}, PlotRange -> All,  AxesLabel -> {x, y, z}]

In Maple:

T0:= (x,y,m)-> 20/Pi*sum( (-1)^(n+1)/n*exp(- n*Pi/10*y)*sin(n*Pi/10*x),n=1..m);
plot3d(T0(x,y,50),x=0..10,y=0..10,scaling=unconstrained);

So Maple is using 1:1:1 box ratio. Mathematica default is 1:1:0.4, and I wanted to see if I can change Maple to be the same.

I get same plot in Maple using scaling=unconstrained or scaling=constrained. So this option is not very useful for what I want.

Is there a way to change the "BoxRatios" as defined above in Maple? There must be, right? Do I need to use different package?

 

Dear All

In following I tried to find symmetries of certain partial differential equation taken from paper "Group classification and exact solutions of generalized modified Boussinesq equation". But the determining equations are not matching with equations obtained in paper.


with(PDEtools)

DepVars := [f(u(x, t)), u(x, t)]; declare(f(u(x, t)), u(x, t))

[f(u(x, t)), u(x, t)]

 

f(u(x, t))*`will now be displayed as`*f

 

u(x, t)*`will now be displayed as`*u

(1)

PDE1 := diff(u(x, t), t, t)-delta*(diff(u(x, t), x, x, t, t))-(diff(f(u(x, t)), x, x))

diff(diff(u(x, t), t), t)-delta*(diff(diff(diff(diff(u(x, t), t), t), x), x))-((D@@2)(f))(u(x, t))*(diff(u(x, t), x))^2-(D(f))(u(x, t))*(diff(diff(u(x, t), x), x))

(2)

G := [seq(xi[j](x, t, u), j = [x, t]), seq(eta[j](x, t, u), j = [u])]

[xi[x](x, t, u), xi[t](x, t, u), eta[u](x, t, u)]

(3)

declare(G)

eta(x, t, u)*`will now be displayed as`*eta

 

xi(x, t, u)*`will now be displayed as`*xi

(4)

DetSys := DeterminingPDE(PDE1, G, integrabilityconditions = false)

{diff(diff(xi[t](x, t, u), u), u)-(diff(diff(diff(diff(xi[t](x, t, u), u), u), x), x))*delta, (diff(diff(eta[u](x, t, u), x), x))*(diff(f(u), u))+(diff(diff(diff(diff(eta[u](x, t, u), t), t), x), x))*delta-(diff(diff(eta[u](x, t, u), t), t)), -(diff(diff(xi[x](x, t, u), u), u))*(diff(f(u), u))-(diff(diff(diff(diff(xi[x](x, t, u), t), t), u), u))*delta+(diff(diff(f(u), u), u))*(diff(xi[x](x, t, u), u)), 2*(diff(diff(diff(diff(xi[x](x, t, u), u), u), u), x))+2*(diff(diff(diff(diff(xi[t](x, t, u), t), u), u), u))-(diff(diff(diff(diff(eta[u](x, t, u), u), u), u), u)), 2*(diff(diff(diff(xi[x](x, t, u), u), u), x))+2*(diff(diff(diff(xi[t](x, t, u), t), u), u))-(diff(diff(diff(eta[u](x, t, u), u), u), u)), 4*(diff(diff(xi[x](x, t, u), t), x))-2*(diff(diff(eta[u](x, t, u), t), u))+diff(diff(xi[t](x, t, u), t), t), 2*(diff(diff(xi[x](x, t, u), u), x))+2*(diff(diff(xi[t](x, t, u), t), u))-(diff(diff(eta[u](x, t, u), u), u)), diff(diff(xi[x](x, t, u), x), x)-2*(diff(diff(eta[u](x, t, u), u), x))+4*(diff(diff(xi[t](x, t, u), t), x)), -2*(diff(xi[x](x, t, u), x))+(diff(diff(diff(eta[u](x, t, u), u), x), x))*delta-2*(diff(diff(diff(xi[t](x, t, u), t), x), x))*delta, -(diff(diff(diff(xi[x](x, t, u), u), x), x))*delta-4*(diff(diff(diff(xi[t](x, t, u), t), u), x))*delta+2*(diff(diff(diff(eta[u](x, t, u), u), u), x))*delta-2*(diff(xi[x](x, t, u), u)), (diff(diff(f(u), u), u))*eta[u](x, t, u)+(diff(diff(diff(eta[u](x, t, u), t), t), u))*delta-2*(diff(diff(diff(xi[x](x, t, u), t), t), x))*delta+2*(diff(xi[t](x, t, u), t))*(diff(f(u), u)), -2*(diff(xi[t](x, t, u), u))*(diff(f(u), u))+4*delta*(diff(diff(diff(eta[u](x, t, u), t), u), u))-2*(diff(diff(diff(xi[t](x, t, u), t), t), u))*delta-8*(diff(diff(diff(xi[x](x, t, u), t), u), x))*delta, 2*(diff(xi[t](x, t, u), u))*(diff(f(u), u))+2*delta*(diff(diff(diff(eta[u](x, t, u), t), u), u))-(diff(diff(diff(xi[t](x, t, u), t), t), u))*delta-4*(diff(diff(diff(xi[x](x, t, u), t), u), x))*delta, 2*(diff(diff(xi[t](x, t, u), t), u))-(diff(diff(eta[u](x, t, u), u), u))+(diff(diff(diff(diff(eta[u](x, t, u), u), u), x), x))*delta-2*(diff(diff(diff(diff(xi[t](x, t, u), t), u), x), x))*delta, diff(diff(xi[x](x, t, u), u), u)-4*(diff(diff(diff(diff(xi[t](x, t, u), t), u), u), x))*delta+2*(diff(diff(diff(diff(eta[u](x, t, u), u), u), u), x))*delta-(diff(diff(diff(diff(xi[x](x, t, u), u), u), x), x))*delta, 2*(diff(xi[x](x, t, u), u))-8*(diff(diff(diff(xi[t](x, t, u), t), u), x))*delta+4*(diff(diff(diff(eta[u](x, t, u), u), u), x))*delta-2*(diff(diff(diff(xi[x](x, t, u), u), x), x))*delta, -(diff(diff(xi[t](x, t, u), u), u))*(diff(f(u), u))-4*(diff(diff(diff(diff(xi[x](x, t, u), t), u), u), x))*delta-(diff(diff(diff(diff(xi[t](x, t, u), t), t), u), u))*delta+(diff(diff(f(u), u), u))*(diff(xi[t](x, t, u), u))+2*(diff(diff(diff(diff(eta[u](x, t, u), t), u), u), u))*delta, -(diff(diff(xi[t](x, t, u), x), x))*(diff(f(u), u))+diff(diff(xi[t](x, t, u), t), t)-2*(diff(diff(eta[u](x, t, u), t), u))+2*(diff(diff(diff(diff(eta[u](x, t, u), t), u), x), x))*delta-(diff(diff(diff(diff(xi[t](x, t, u), t), t), x), x))*delta, -2*(diff(xi[t](x, t, u), x))*(diff(f(u), u))+2*(diff(xi[x](x, t, u), t))-2*(diff(diff(diff(xi[x](x, t, u), t), x), x))*delta+4*(diff(diff(diff(eta[u](x, t, u), t), u), x))*delta-2*(diff(diff(diff(xi[t](x, t, u), t), t), x))*delta, (diff(diff(diff(diff(eta[u](x, t, u), t), t), u), u))*delta-2*(diff(diff(diff(diff(xi[x](x, t, u), t), t), u), x))*delta+(diff(diff(diff(f(u), u), u), u))*eta[u](x, t, u)+(diff(diff(eta[u](x, t, u), u), u))*(diff(f(u), u))-2*(diff(diff(xi[x](x, t, u), u), x))*(diff(f(u), u))+2*(diff(diff(f(u), u), u))*(diff(xi[t](x, t, u), t)+(1/2)*(diff(eta[u](x, t, u), u))), -(diff(diff(xi[x](x, t, u), x), x))*(diff(f(u), u))+2*(diff(diff(eta[u](x, t, u), u), x))*(diff(f(u), u))+2*(diff(diff(f(u), u), u))*(diff(eta[u](x, t, u), x))+diff(diff(xi[x](x, t, u), t), t)-delta*(diff(diff(diff(diff(xi[x](x, t, u), t), t), x), x))+2*delta*(diff(diff(diff(diff(eta[u](x, t, u), t), t), u), x)), 2*(diff(diff(xi[x](x, t, u), t), u))-2*(diff(diff(xi[t](x, t, u), u), x))*(diff(f(u), u))-2*(diff(xi[t](x, t, u), x))*(diff(diff(f(u), u), u))+4*(diff(diff(diff(diff(eta[u](x, t, u), t), u), u), x))*delta-2*(diff(diff(diff(diff(xi[t](x, t, u), t), t), u), x))*delta-2*(diff(diff(diff(diff(xi[x](x, t, u), t), u), x), x))*delta, diff(diff(diff(diff(xi[t](x, t, u), u), u), u), u), diff(diff(diff(diff(xi[t](x, t, u), u), u), u), x), diff(diff(diff(diff(xi[x](x, t, u), t), u), u), u), diff(diff(diff(diff(xi[x](x, t, u), u), u), u), u), diff(diff(diff(xi[t](x, t, u), u), u), u), diff(diff(diff(xi[t](x, t, u), u), u), x), diff(diff(diff(xi[t](x, t, u), u), x), x), diff(diff(diff(xi[x](x, t, u), t), t), u), diff(diff(diff(xi[x](x, t, u), t), u), u), diff(diff(diff(xi[x](x, t, u), u), u), u), diff(diff(xi[t](x, t, u), u), u), diff(diff(xi[t](x, t, u), u), x), diff(diff(xi[t](x, t, u), x), x), diff(diff(xi[x](x, t, u), t), t), diff(diff(xi[x](x, t, u), t), u), diff(diff(xi[x](x, t, u), u), u), diff(xi[t](x, t, u), u), diff(xi[t](x, t, u), x), diff(xi[x](x, t, u), t), diff(xi[x](x, t, u), u)}

(5)

for EQ in sort([op(DetSys)], length) do EQ = 0 end do

diff(xi[t](x, t, u), u) = 0

 

diff(xi[t](x, t, u), x) = 0

 

diff(xi[x](x, t, u), t) = 0

 

diff(xi[x](x, t, u), u) = 0

 

diff(diff(xi[t](x, t, u), u), u) = 0

 

diff(diff(xi[t](x, t, u), u), x) = 0

 

diff(diff(xi[t](x, t, u), x), x) = 0

 

diff(diff(xi[x](x, t, u), t), t) = 0

 

diff(diff(xi[x](x, t, u), t), u) = 0

 

diff(diff(xi[x](x, t, u), u), u) = 0

 

diff(diff(diff(xi[t](x, t, u), u), u), u) = 0

 

diff(diff(diff(xi[t](x, t, u), u), u), x) = 0

 

diff(diff(diff(xi[t](x, t, u), u), x), x) = 0

 

diff(diff(diff(xi[x](x, t, u), t), t), u) = 0

 

diff(diff(diff(xi[x](x, t, u), t), u), u) = 0

 

diff(diff(diff(xi[x](x, t, u), u), u), u) = 0

 

diff(diff(diff(diff(xi[t](x, t, u), u), u), u), u) = 0

 

diff(diff(diff(diff(xi[t](x, t, u), u), u), u), x) = 0

 

diff(diff(diff(diff(xi[x](x, t, u), t), u), u), u) = 0

 

diff(diff(diff(diff(xi[x](x, t, u), u), u), u), u) = 0

 

diff(diff(xi[t](x, t, u), u), u)-(diff(diff(diff(diff(xi[t](x, t, u), u), u), x), x))*delta = 0

 

4*(diff(diff(xi[x](x, t, u), t), x))-2*(diff(diff(eta[u](x, t, u), t), u))+diff(diff(xi[t](x, t, u), t), t) = 0

 

2*(diff(diff(xi[x](x, t, u), u), x))+2*(diff(diff(xi[t](x, t, u), t), u))-(diff(diff(eta[u](x, t, u), u), u)) = 0

 

diff(diff(xi[x](x, t, u), x), x)-2*(diff(diff(eta[u](x, t, u), u), x))+4*(diff(diff(xi[t](x, t, u), t), x)) = 0

 

2*(diff(diff(diff(xi[x](x, t, u), u), u), x))+2*(diff(diff(diff(xi[t](x, t, u), t), u), u))-(diff(diff(diff(eta[u](x, t, u), u), u), u)) = 0

 

-2*(diff(xi[x](x, t, u), x))+(diff(diff(diff(eta[u](x, t, u), u), x), x))*delta-2*(diff(diff(diff(xi[t](x, t, u), t), x), x))*delta = 0

 

(diff(diff(eta[u](x, t, u), x), x))*(diff(f(u), u))+(diff(diff(diff(diff(eta[u](x, t, u), t), t), x), x))*delta-(diff(diff(eta[u](x, t, u), t), t)) = 0

 

2*(diff(diff(diff(diff(xi[x](x, t, u), u), u), u), x))+2*(diff(diff(diff(diff(xi[t](x, t, u), t), u), u), u))-(diff(diff(diff(diff(eta[u](x, t, u), u), u), u), u)) = 0

 

-(diff(diff(xi[x](x, t, u), u), u))*(diff(f(u), u))-(diff(diff(diff(diff(xi[x](x, t, u), t), t), u), u))*delta+(diff(diff(f(u), u), u))*(diff(xi[x](x, t, u), u)) = 0

 

-(diff(diff(diff(xi[x](x, t, u), u), x), x))*delta-4*(diff(diff(diff(xi[t](x, t, u), t), u), x))*delta+2*(diff(diff(diff(eta[u](x, t, u), u), u), x))*delta-2*(diff(xi[x](x, t, u), u)) = 0

 

2*(diff(xi[x](x, t, u), u))-8*(diff(diff(diff(xi[t](x, t, u), t), u), x))*delta+4*(diff(diff(diff(eta[u](x, t, u), u), u), x))*delta-2*(diff(diff(diff(xi[x](x, t, u), u), x), x))*delta = 0

 

2*(diff(diff(xi[t](x, t, u), t), u))-(diff(diff(eta[u](x, t, u), u), u))+(diff(diff(diff(diff(eta[u](x, t, u), u), u), x), x))*delta-2*(diff(diff(diff(diff(xi[t](x, t, u), t), u), x), x))*delta = 0

 

(diff(diff(f(u), u), u))*eta[u](x, t, u)+(diff(diff(diff(eta[u](x, t, u), t), t), u))*delta-2*(diff(diff(diff(xi[x](x, t, u), t), t), x))*delta+2*(diff(xi[t](x, t, u), t))*(diff(f(u), u)) = 0

 

-2*(diff(xi[t](x, t, u), u))*(diff(f(u), u))+4*delta*(diff(diff(diff(eta[u](x, t, u), t), u), u))-2*(diff(diff(diff(xi[t](x, t, u), t), t), u))*delta-8*(diff(diff(diff(xi[x](x, t, u), t), u), x))*delta = 0

 

2*(diff(xi[t](x, t, u), u))*(diff(f(u), u))+2*delta*(diff(diff(diff(eta[u](x, t, u), t), u), u))-(diff(diff(diff(xi[t](x, t, u), t), t), u))*delta-4*(diff(diff(diff(xi[x](x, t, u), t), u), x))*delta = 0

 

diff(diff(xi[x](x, t, u), u), u)-4*(diff(diff(diff(diff(xi[t](x, t, u), t), u), u), x))*delta+2*(diff(diff(diff(diff(eta[u](x, t, u), u), u), u), x))*delta-(diff(diff(diff(diff(xi[x](x, t, u), u), u), x), x))*delta = 0

 

-2*(diff(xi[t](x, t, u), x))*(diff(f(u), u))+2*(diff(xi[x](x, t, u), t))-2*(diff(diff(diff(xi[x](x, t, u), t), x), x))*delta+4*(diff(diff(diff(eta[u](x, t, u), t), u), x))*delta-2*(diff(diff(diff(xi[t](x, t, u), t), t), x))*delta = 0

 

-(diff(diff(xi[t](x, t, u), x), x))*(diff(f(u), u))+diff(diff(xi[t](x, t, u), t), t)-2*(diff(diff(eta[u](x, t, u), t), u))+2*(diff(diff(diff(diff(eta[u](x, t, u), t), u), x), x))*delta-(diff(diff(diff(diff(xi[t](x, t, u), t), t), x), x))*delta = 0

 

-(diff(diff(xi[t](x, t, u), u), u))*(diff(f(u), u))-4*(diff(diff(diff(diff(xi[x](x, t, u), t), u), u), x))*delta-(diff(diff(diff(diff(xi[t](x, t, u), t), t), u), u))*delta+(diff(diff(f(u), u), u))*(diff(xi[t](x, t, u), u))+2*(diff(diff(diff(diff(eta[u](x, t, u), t), u), u), u))*delta = 0

 

-(diff(diff(xi[x](x, t, u), x), x))*(diff(f(u), u))+2*(diff(diff(eta[u](x, t, u), u), x))*(diff(f(u), u))+2*(diff(diff(f(u), u), u))*(diff(eta[u](x, t, u), x))+diff(diff(xi[x](x, t, u), t), t)-delta*(diff(diff(diff(diff(xi[x](x, t, u), t), t), x), x))+2*delta*(diff(diff(diff(diff(eta[u](x, t, u), t), t), u), x)) = 0

 

2*(diff(diff(xi[x](x, t, u), t), u))-2*(diff(diff(xi[t](x, t, u), u), x))*(diff(f(u), u))-2*(diff(xi[t](x, t, u), x))*(diff(diff(f(u), u), u))+4*(diff(diff(diff(diff(eta[u](x, t, u), t), u), u), x))*delta-2*(diff(diff(diff(diff(xi[t](x, t, u), t), t), u), x))*delta-2*(diff(diff(diff(diff(xi[x](x, t, u), t), u), x), x))*delta = 0

 

(diff(diff(diff(diff(eta[u](x, t, u), t), t), u), u))*delta-2*(diff(diff(diff(diff(xi[x](x, t, u), t), t), u), x))*delta+(diff(diff(diff(f(u), u), u), u))*eta[u](x, t, u)+(diff(diff(eta[u](x, t, u), u), u))*(diff(f(u), u))-2*(diff(diff(xi[x](x, t, u), u), x))*(diff(f(u), u))+2*(diff(diff(f(u), u), u))*(diff(xi[t](x, t, u), t)+(1/2)*(diff(eta[u](x, t, u), u))) = 0

(6)

DetSys1 := dsubs(diff(xi[t](x, t, u), u) = 0, diff(xi[t](x, t, u), x) = 0, diff(xi[x](x, t, u), t) = 0, diff(xi[x](x, t, u), u) = 0, diff(eta[u](x, t, u), u, u) = 0, diff(eta[u](x, t, u), x, u, t) = 0, DetSys)

{0, diff(diff(xi[t](x, t, u), t), t)-2*(diff(diff(eta[u](x, t, u), t), u)), diff(diff(xi[x](x, t, u), x), x)-2*(diff(diff(eta[u](x, t, u), u), x)), -2*(diff(xi[x](x, t, u), x))+(diff(diff(diff(eta[u](x, t, u), u), x), x))*delta, (diff(diff(diff(f(u), u), u), u))*eta[u](x, t, u)+2*(diff(diff(f(u), u), u))*(diff(xi[t](x, t, u), t))+(diff(diff(f(u), u), u))*(diff(eta[u](x, t, u), u)), (diff(diff(f(u), u), u))*eta[u](x, t, u)+(diff(diff(diff(eta[u](x, t, u), t), t), u))*delta+2*(diff(xi[t](x, t, u), t))*(diff(f(u), u)), (diff(diff(eta[u](x, t, u), x), x))*(diff(f(u), u))+(diff(diff(diff(diff(eta[u](x, t, u), t), t), x), x))*delta-(diff(diff(eta[u](x, t, u), t), t)), -(diff(diff(xi[x](x, t, u), x), x))*(diff(f(u), u))+2*(diff(diff(eta[u](x, t, u), u), x))*(diff(f(u), u))+2*(diff(diff(f(u), u), u))*(diff(eta[u](x, t, u), x))}

(7)

for EQ in sort([op(DetSys1)], length) do EQ = 0 end do

0 = 0

 

diff(diff(xi[t](x, t, u), t), t)-2*(diff(diff(eta[u](x, t, u), t), u)) = 0

 

diff(diff(xi[x](x, t, u), x), x)-2*(diff(diff(eta[u](x, t, u), u), x)) = 0

 

-2*(diff(xi[x](x, t, u), x))+(diff(diff(diff(eta[u](x, t, u), u), x), x))*delta = 0

 

(diff(diff(f(u), u), u))*eta[u](x, t, u)+(diff(diff(diff(eta[u](x, t, u), t), t), u))*delta+2*(diff(xi[t](x, t, u), t))*(diff(f(u), u)) = 0

 

(diff(diff(eta[u](x, t, u), x), x))*(diff(f(u), u))+(diff(diff(diff(diff(eta[u](x, t, u), t), t), x), x))*delta-(diff(diff(eta[u](x, t, u), t), t)) = 0

 

(diff(diff(diff(f(u), u), u), u))*eta[u](x, t, u)+2*(diff(diff(f(u), u), u))*(diff(xi[t](x, t, u), t))+(diff(diff(f(u), u), u))*(diff(eta[u](x, t, u), u)) = 0

 

-(diff(diff(xi[x](x, t, u), x), x))*(diff(f(u), u))+2*(diff(diff(eta[u](x, t, u), u), x))*(diff(f(u), u))+2*(diff(diff(f(u), u), u))*(diff(eta[u](x, t, u), x)) = 0

(8)

The third equation in (8) can simplify last equation. This will give us eta[u][x] = 0as f[u, u] is non zero.

NULL


Download [1116]_Symmetries_Determination.mw[1116]_Group_classification_and_exact_solutions_of_generalized_modified_Boussinesq_equation.pdf

Regards

Still a little unclear what this error means tho

-f(X)/(X*(ln(X)-Psi(1-f(X))-Psi(f(X)))*GAMMA(1-m))+X*(ln(X)-Psi(1-f(X))-Psi(f(X)))/(f(X)*GAMMA(1-m)) = 0

 

Download dispatchTOshillCORE.mw

yep the errors recieved using some packages are very very specific for maple, for example, the one i got today using the ODE package was profoundly helpful:

 

Error, (in ODEtools/info) unable to handle derivatives as {diff(1/(ln(X)-Psi(1-f(X))-Psi(f(X))), [`$`(X, n-k[1]-k[2])]), diff(1/f(X), [`$`(X, n-k[1]-k[2])]), diff(Psi(1-f(X)), [`$`(X, k[2])]), diff(Psi(f(X)), [`$`(X, k[2])]), diff(f(X), [`$`(X, k[1])])} while solving w.r.t f(X)

First 1059 1060 1061 1062 1063 1064 1065 Last Page 1061 of 2224