Maple Questions and Posts

These are Posts and Questions associated with the product, Maple

Hi,

When I type sin(pi/2) the result is sin(pi/2) (not "1.0)

What should I do to get "1.0" instead of replicating the sin(pi/2) ?!

I mean why the expression contating "pi" can not being simplified?

Is there any solution to this problem?

 

Thanks

Hi! I'm trying to find the way to plot the solution with series representation. I need some help to find the easiest way.

Note: I realized some typing errors, which do not change the question a lot ,and I corrected them.

plot.mw

If an expression is of the form x^3 + x^2 + x + z + y^3 + y^2 + y + xy=0 ,

How to represent it in the following form,

           x^3 + y^3 + x^2 + y^2 + xy + x + y + z=0 ?

I have exported a maple document to latex, but it only shows the output of the commands used. Rather than the commands, and the procedures.

How do I get both to export together? and show up together?

 

Is there a way to automatically convert and paste my clipboard contents as 2D math?

Using a mouse's back/forward buttons or alt+ left arrow/ alt+right arrow did not work in Maple 2015 and they still don't work in Maple 2016. 

Also, if you select anywhere in the search bar, it automatically selects all the words.  I sometimes (most the time) want to change only one word.  

Im using x64 Windows 10 and it also did it when running Windows 8/8.1 .   Does anybody else have this problem?

Can it be fixed please if not?

any assistence here will be much appreciated the website gave me a zip containing the template tex and other files, but for what ever reason its not working when i copy in output using the maple to latex conversion feature from inside the interface. literally im sick of having to work outside of the maple interface but yes believe it or not this is the one thing i use to procrastinate writting a formal publication yep i really need the first one of those to get this done and dusted.

hi..when i use rule [for] in maple code i encounter error'''''

Error, (in dsolve/numeric/process_input) input system must be an ODE system, found {f1(x), f2(x), f3(x), ApproximateInt(-4*cos(theta)^2, theta = 0. .. 1, method = simpson), ApproximateInt(4*cos(theta)^2, theta = 0. .. 1, method = simpson), ApproximateInt(8*cos(theta)^2, theta = 0. .. 1, method = simpson)}''''''''

please help me for remove it

99999999999999.mw

i want for different beta for example beta=0, 40 and 80 this lines will computed three times  

 ''with(Student[Calculus1]); a1 := ApproximateInt(g1*g1, theta = a .. 1, method = simpson); a2 := ApproximateInt(2*(g1*g1)+3*g1*(diff(g1, theta, theta)), theta = a .. 1, method = simpson).......................''          

 by {for i from 1 by 1 to 3 do } and final gain ''ITRA_1_W[m] := eval(fy33*g3, fixedparameter)'' that have 3 amount.

when i use  rule {for i from 1 by 1 to 3 do ...  }   integral not computed and showed for example:::

a1=ApproximateInt(4*cos(theta)^2, theta = 0. .. 1, method = simpson)!!!!!!!!

thanks..

another problem with itegral, again intergal is getting unevaluated answers or folated ( infinity )
what should i do ?

``

``

restart

with(LinearAlgebra):

Digits := 30;

30

(1)

``

N := 8;

8

 

proc (x, s) options operator, arrow; exp(x*s) end proc

 

proc (x) options operator, arrow; exp(2*x)+(exp(x*(x+2))-exp(-x-2))/(x+2) end proc

(2)

alpha := -1/2;

-1/2

 

-1/2

(3)

for n from 0 to N+1 do J[n] := unapply(simplify((-1)^n*(1-x)^(-alpha)*(1+x)^(-beta)*(diff((1-x)^(n+alpha)*(1+x)^(n+beta), [`$`(x, n)]))/(2^n*factorial(n))), x) end do;

proc (x) options operator, arrow; 1 end proc

 

proc (x) options operator, arrow; (1/2)*x end proc

 

proc (x) options operator, arrow; (3/4)*x^2-3/8 end proc

 

proc (x) options operator, arrow; (5/4)*x^3-(15/16)*x end proc

 

proc (x) options operator, arrow; (35/16)*x^4-(35/16)*x^2+35/128 end proc

 

proc (x) options operator, arrow; (315/256)*x+(63/16)*x^5-(315/64)*x^3 end proc

 

proc (x) options operator, arrow; (231/32)*x^6-231/1024-(693/64)*x^4+(2079/512)*x^2 end proc

 

proc (x) options operator, arrow; -(3003/2048)*x+(429/32)*x^7-(3003/128)*x^5+(3003/256)*x^3 end proc

 

proc (x) options operator, arrow; (6435/256)*x^8+6435/32768-(6435/128)*x^6+(32175/1024)*x^4-(6435/1024)*x^2 end proc

 

proc (x) options operator, arrow; (109395/65536)*x+(12155/256)*x^9-(109395/1024)*x^7+(328185/4096)*x^5-(182325/8192)*x^3 end proc

(4)

u := unapply(exp(2*x), x);

proc (x) options operator, arrow; exp(2*x) end proc

(5)

for i from 0 to N do phi[i] := J[i](x) end do

1

 

(1/2)*x

 

(3/4)*x^2-3/8

 

(5/4)*x^3-(15/16)*x

 

(35/16)*x^4-(35/16)*x^2+35/128

 

(315/256)*x+(63/16)*x^5-(315/64)*x^3

 

(231/32)*x^6-231/1024-(693/64)*x^4+(2079/512)*x^2

 

-(3003/2048)*x+(429/32)*x^7-(3003/128)*x^5+(3003/256)*x^3

 

(6435/256)*x^8+6435/32768-(6435/128)*x^6+(32175/1024)*x^4-(6435/1024)*x^2

(6)

w1 := (1-x)^alpha*(1+x)^beta;

1/((1-x)^(1/2)*(1+x)^(1/2))

(7)

for j from 0 to N do S[j] := simplify(evalf(int(k(x, s)*subs(x = s, phi[j]), s = -1 .. x))) end do;

(-1.*exp(-1.*x)+1.*exp(x^2))/x

 

.5*(exp(x^2)*x^2+exp(-1.*x)*x+exp(-1.*x)-exp(x^2))/x^2

 

((.75*x^4-1.875*x^2+1.5)*exp(x^2)-.375*(x+2.)^2*exp(-1.*x))/x^3

 

((1.25*x^6-4.6875*x^4+8.4375*x^2-7.5)*exp(x^2)+(.3125*x^3+2.8125*x^2+7.5*x+7.5)*exp(-1.*x))/x^4

 

((2.1875*x^8-10.9375*x^6+30.8984375*x^4-56.875*x^2+52.5)*exp(x^2)+(-.2734375*x^4-4.375*x^3-21.875*x^2-52.5*x-52.5)*exp(-1.*x))/x^5

 

((3.9375*x^10-24.609375*x^8+94.74609375*x^6-267.01171875*x^4+502.03125*x^2-472.5)*exp(x^2)+(.24609375*x^5+6.15234375*x^4+49.21875*x^3+206.71875*x^2+472.5*x+472.5)*exp(-1.*x))/x^6

 

((7.21875*x^12-54.140625*x^10+263.935546875*x^8-1004.5341796875*x^6+2866.74609375*x^4-5457.375*x^2+5197.5)*exp(x^2)+(-.2255859375*x^6-8.12109375*x^5-94.74609375*x^4-606.375*x^3-2338.875*x^2-5197.5*x-5197.5)*exp(-1.*x))/x^7

 

((13.40625*x^14-117.3046875*x^12+692.09765625*x^10-3321.18896484375*x^8+12740.75537109375*x^6-36669.4453125*x^4+70382.8125*x^2-67567.5)*exp(x^2)+(.20947265625*x^7+10.26416015625*x^6+164.2265625*x^5+1478.0390625*x^4+8445.9375*x^3+30968.4375*x^2+67567.5*x+67567.5)*exp(-1.*x))/x^8

 

((25.13671875*x^16-251.3671875*x^14+1740.7177734375*x^12-10086.1083984375*x^10+48652.315521240234375*x^8-187783.857421875*x^6+543707.2265625*x^4-1049709.375*x^2+1013512.5)*exp(x^2)+(-.196380615234375*x^8-12.568359375*x^7-263.935546875*x^6-3167.2265625*x^5-24885.3515625*x^4-132721.875*x^3-470559.375*x^2-1013512.5*x-1013512.5)*exp(-1.*x))/x^9

(8)

A := Matrix(N+1, N+1):

for i from 0 to N do for j from 0 to N do A[i+1, j+1] := evalf(Int(phi[i]*phi[j]*w1, x = -1 .. 1, epsilon = 0.1e-24)) end do end do;

A

Matrix([[3.14159265358979323846264338328, 0., 0.111111111111111111111111111111e-32, 0., -0.333333333333333333333333333333e-32, 0., -0.173333333333333333333333333333e-31, 0., -0.291851851851851851851851851852e-30], [0., .392699081698724154807830422910, 0., 0.370370370370370370370370370370e-33, 0., -0.370370370370370370370370370370e-33, 0., -0.718518518518518518518518518519e-32, 0.], [0.111111111111111111111111111111e-32, 0., .220893233455532337079404612887, 0., 0.407407407407407407407407407407e-33, 0., 0.666666666666666666666666666667e-32, 0., 0.966666666666666666666666666667e-31], [0., 0.370370370370370370370370370370e-33, 0., .153398078788564122971808758949, 0., 0.740740740740740740740740740741e-33, 0., 0.128888888888888888888888888889e-31, 0.], [-0.333333333333333333333333333333e-32, 0., 0.407407407407407407407407407407e-33, 0., .117445404072494406650291081070, 0., -0.429629629629629629629629629630e-32, 0., -0.459259259259259259259259259259e-31], [0., -0.370370370370370370370370370370e-33, 0., 0.740740740740740740740740740741e-33, 0., 0.951307772987204693867357756671e-1, 0., -0.135555555555555555555555555556e-31, 0.], [-0.173333333333333333333333333333e-31, 0., 0.666666666666666666666666666667e-32, 0., -0.429629629629629629629629629630e-32, 0., 0.799362781468415055263543670536e-1, 0., 0.157777777777777777777777777778e-31], [0., -0.718518518518518518518518518519e-32, 0., 0.128888888888888888888888888889e-31, 0., -0.135555555555555555555555555556e-31, 0., 0.689246479939602777242545307758e-1, 0.], [-0.291851851851851851851851851852e-30, 0., 0.966666666666666666666666666667e-31, 0., -0.459259259259259259259259259259e-31, 0., 0.157777777777777777777777777778e-31, 0., 0.605783039009416503435830836897e-1]])

(9)

B := Matrix(N+1, N+1):

for j from 0 to N do for i from 0 to N do B[i+1, j+1] := evalf(Int(simplify(phi[i]*S[j]*w1), x = -1 .. 1, epsilon = 0.1e-5), 15) end do end do;

B := Matrix(B)

B := Matrix(9, 9, {(1, 1) = 3.41340669637960, (1, 2) = -.219853801558141, (1, 3) = -.371445167328337, (1, 4) = -0.940736800940411e-2, (1, 5) = -0.845889943042008e-1, (1, 6) = 0.334727115780295e-1, (1, 7) = -0.257221402047336e84, (1, 8) = Float(infinity), (1, 9) = Float(undefined), (2, 1) = .765483256689808, (2, 2) = .141014141031686, (2, 3) = -.165532642864785, (2, 4) = -0.499428359428865e-1, (2, 5) = -0.73434901130578e-2, (2, 6) = -0.111757807839544e-1, (2, 7) = 0.123803381671991e68, (2, 8) = Float(undefined), (2, 9) = Float(-infinity), (3, 1) = 0.515972557667626e-1, (3, 2) = .125811948358948, (3, 3) = 0.408759073542022e-2, (3, 4) = -0.716662760034337e-1, (3, 5) = -0.51685004360437e-2, (3, 6) = 0.716801959003042e67, (3, 7) = Int((43.3125*(2.*x^2-1.)*(0.625e-1*x^12-.46875*x^10+2.28515625*x^8-8.697265625*x^6+24.8203125*x^4-47.25*x^2+45.)*exp(x^2)+43.3125*(2.*x^2-1.)*(-0.1953125e-2*x^6-0.703125e-1*x^5-.8203125*x^4-5.25*x^3-20.25*x^2-45.*x-45.)*exp(-1.*x))/((1.+x)^(1/2)*(1.-1.*x)^(1/2)*x^7), x = -1. .. 1.), (3, 8) = Float(-infinity), (3, 9) = Float(infinity), (4, 1) = 0.899030920810901e-1, (4, 2) = 0.21384118669396e-2, (4, 3) = 0.393313755295959e-1, (4, 4) = -0.17596837269261e-3, (4, 5) = -0.341293873201944e-1, (4, 6) = -0.107499338429209e52, (4, 7) = 0.188236331912532e46, (4, 8) = Float(-infinity), (4, 9) = Int(0.625000000000000e-1*((-15202687.5+502.73437500*x^18-5404.39453125*x^16+38584.8632812500*x^14-227832.934570312*x^12+1124337.93640137*x^10-4485461.88125610*x^8+13690902.3925781*x^6-29149795.8984375*x^4+36015890.625*x^2)*exp(x^2)+5.*(4.*x^2-3.)*(-.196380615234375*x^8-12.568359375*x^7-263.935546875*x^6-3167.2265625*x^5-24885.3515625*x^4-132721.875*x^3-470559.375*x^2-1013512.5*x-1013512.5)*exp(-1.*x))/((1.+x)^(1/2)*(1.-1.*x)^(1/2)*x^8), x = -1. .. 1.), (5, 1) = 0.463651486782722e-3, (5, 2) = 0.157757505144122e-1, (5, 3) = 0.7529674755144e-4, (5, 4) = 0.205695133452456e-1, (5, 5) = 0.323627840089429e50, (5, 6) = -0.194229780735106e-1, (5, 7) = Int((31.58203125*(8.*x^4-8.*x^2+1.)*(0.625e-1*x^12-.46875*x^10+2.28515625*x^8-8.697265625*x^6+24.8203125*x^4-47.25*x^2+45.)*exp(x^2)+31.58203125*(8.*x^4-8.*x^2+1.)*(-0.1953125e-2*x^6-0.703125e-1*x^5-.8203125*x^4-5.25*x^3-20.25*x^2-45.*x-45.)*exp(-1.*x))/((1.+x)^(1/2)*(1.-1.*x)^(1/2)*x^7), x = -1. .. 1.), (5, 8) = Float(infinity), (5, 9) = Float(-infinity), (6, 1) = 0.63086454697723e-2, (6, 2) = 0.148539925067e-4, (6, 3) = 0.678853225186884e-2, (6, 4) = 0.10778334378e-5, (6, 5) = 0.131282639565718e-1, (6, 6) = -0.271179086613e-5, (6, 7) = -0.124971422339580e-1, (6, 8) = -0.810764520616245e86, (6, 9) = 0.973719186742316e103, (7, 1) = 0.225892591375e-5, (7, 2) = 0.119535935984917e-2, (7, 3) = 0.47254024736e-6, (7, 4) = 0.406635846209016e-2, (7, 5) = -0.353102865787386e29, (7, 6) = 0.914224761911803e-2, (7, 7) = Int(0.976562500000000e-3*(231.*(32.*x^6-48.*x^4+18.*x^2-1.)*(7.21875*x^12-54.140625*x^10+263.935546875*x^8-1004.5341796875*x^6+2866.74609375*x^4-5457.375*x^2+5197.5)*exp(x^2)+231.*(32.*x^6-48.*x^4+18.*x^2-1.)*(-.2255859375*x^6-8.12109375*x^5-94.74609375*x^4-606.375*x^3-2338.875*x^2-5197.5*x-5197.5)*exp(-1.*x))/((1.+x)^(1/2)*(1.-1.*x)^(1/2)*x^7), x = -1. .. 1.), (7, 8) = Int(0.976562500000000e-3*(231.*(32.*x^6-48.*x^4+18.*x^2-1.)*(13.40625*x^14-117.3046875*x^12+692.09765625*x^10-3321.18896484375*x^8+12740.7553710938*x^6-36669.4453125*x^4+70382.8125*x^2-67567.5)*exp(x^2)+231.*(32.*x^6-48.*x^4+18.*x^2-1.)*(.20947265625*x^7+10.26416015625*x^6+164.2265625*x^5+1478.0390625*x^4+8445.9375*x^3+30968.4375*x^2+67567.5*x+67567.5)*exp(-1.*x))/((1.+x)^(1/2)*(1.-1.*x)^(1/2)*x^8), x = -1. .. 1.), (7, 9) = Int(0.976562500000000e-3*(231.*(32.*x^6-48.*x^4+18.*x^2-1.)*(25.13671875*x^16-251.3671875*x^14+1740.7177734375*x^12-10086.1083984375*x^10+48652.3155212402*x^8-187783.857421875*x^6+543707.2265625*x^4-1049709.375*x^2+1013512.5)*exp(x^2)+231.*(32.*x^6-48.*x^4+18.*x^2-1.)*(-.196380615234375*x^8-12.568359375*x^7-263.935546875*x^6-3167.2265625*x^5-24885.3515625*x^4-132721.875*x^3-470559.375*x^2-1013512.5*x-1013512.5)*exp(-1.*x))/((1.+x)^(1/2)*(1.-1.*x)^(1/2)*x^9), x = -1. .. 1.), (8, 1) = 0.340365610524644e-3, (8, 2) = 0.5813755404e-7, (8, 3) = 0.59941816605747e-3, (8, 4) = 0.1233441019e-7, (8, 5) = 0.275221040025479e-2, (8, 6) = -0.804784322e-8, (8, 7) = -0.187505962866890e33, (8, 8) = Int(0.488281250000000e-3*(429.*(64.*x^6-112.*x^4+56.*x^2-7.)*(13.40625*x^14-117.3046875*x^12+692.09765625*x^10-3321.18896484375*x^8+12740.7553710938*x^6-36669.4453125*x^4+70382.8125*x^2-67567.5)*exp(x^2)+429.*(64.*x^6-112.*x^4+56.*x^2-7.)*(.20947265625*x^7+10.26416015625*x^6+164.2265625*x^5+1478.0390625*x^4+8445.9375*x^3+30968.4375*x^2+67567.5*x+67567.5)*exp(-1.*x))/((1.+x)^(1/2)*(1.-1.*x)^(1/2)*x^7), x = -1. .. 1.), (8, 9) = Int(0.488281250000000e-3*(429.*(64.*x^6-112.*x^4+56.*x^2-7.)*(25.13671875*x^16-251.3671875*x^14+1740.7177734375*x^12-10086.1083984375*x^10+48652.3155212402*x^8-187783.857421875*x^6+543707.2265625*x^4-1049709.375*x^2+1013512.5)*exp(x^2)+429.*(64.*x^6-112.*x^4+56.*x^2-7.)*(-.196380615234375*x^8-12.568359375*x^7-263.935546875*x^6-3167.2265625*x^5-24885.3515625*x^4-132721.875*x^3-470559.375*x^2-1013512.5*x-1013512.5)*exp(-1.*x))/((1.+x)^(1/2)*(1.-1.*x)^(1/2)*x^8), x = -1. .. 1.), (9, 1) = 0.6793714722e-8, (9, 2) = 0.68406690337078e-4, (9, 3) = 0.1624492831e-8, (9, 4) = 0.386156856246160e-3, (9, 5) = 0.815546544069708e28, (9, 6) = -0.277132564813689e67, (9, 7) = Int(0.305175781250000e-4*(6435.*(128.*x^8-256.*x^6+160.*x^4-32.*x^2+1.)*(7.21875*x^12-54.140625*x^10+263.935546875*x^8-1004.5341796875*x^6+2866.74609375*x^4-5457.375*x^2+5197.5)*exp(x^2)+6435.*(128.*x^8-256.*x^6+160.*x^4-32.*x^2+1.)*(-.2255859375*x^6-8.12109375*x^5-94.74609375*x^4-606.375*x^3-2338.875*x^2-5197.5*x-5197.5)*exp(-1.*x))/((1.+x)^(1/2)*(1.-1.*x)^(1/2)*x^7), x = -1. .. 1.), (9, 8) = Int(0.305175781250000e-4*(6435.*(128.*x^8-256.*x^6+160.*x^4-32.*x^2+1.)*(13.40625*x^14-117.3046875*x^12+692.09765625*x^10-3321.18896484375*x^8+12740.7553710938*x^6-36669.4453125*x^4+70382.8125*x^2-67567.5)*exp(x^2)+6435.*(128.*x^8-256.*x^6+160.*x^4-32.*x^2+1.)*(.20947265625*x^7+10.26416015625*x^6+164.2265625*x^5+1478.0390625*x^4+8445.9375*x^3+30968.4375*x^2+67567.5*x+67567.5)*exp(-1.*x))/((1.+x)^(1/2)*(1.-1.*x)^(1/2)*x^8), x = -1. .. 1.), (9, 9) = Int(0.305175781250000e-4*(6435.*(128.*x^8-256.*x^6+160.*x^4-32.*x^2+1.)*(25.13671875*x^16-251.3671875*x^14+1740.7177734375*x^12-10086.1083984375*x^10+48652.3155212402*x^8-187783.857421875*x^6+543707.2265625*x^4-1049709.375*x^2+1013512.5)*exp(x^2)+6435.*(128.*x^8-256.*x^6+160.*x^4-32.*x^2+1.)*(-.196380615234375*x^8-12.568359375*x^7-263.935546875*x^6-3167.2265625*x^5-24885.3515625*x^4-132721.875*x^3-470559.375*x^2-1013512.5*x-1013512.5)*exp(-1.*x))/((1.+x)^(1/2)*(1.-1.*x)^(1/2)*x^9), x = -1. .. 1.)})

(10)

G := Vector(N+1):

for i from 0 to N do G[i+1] := evalf(Int(phi[i]*g(x)*w1, x = -1 .. 1, epsilon = 0.1e-24)) end do;

12.1371438004283064513879002531

 

4.46097069166807099930513349705

 

1.64462130209908212771492915391

 

.558865818865511551008391285165

 

.171719662671619385727054996451

 

0.517117975778639694922219536331e-1

 

0.149941760016965250201187504967e-1

 

0.424140250877931274184205530350e-2

 

0.114813711532765772695860143813e-2

(11)

G[1]

12.1371438004283064513879002531

(12)

C := simplify(Matrix(A+B))

C := Matrix(9, 9, {(1, 1) = 6.55499934996939323846264338328, (1, 2) = -.219853801558141, (1, 3) = -.371445167328337, (1, 4) = -0.940736800940411e-2, (1, 5) = -0.845889943042008000000000000000e-1, (1, 6) = 0.334727115780295e-1, (1, 7) = -0.257221402047336e84, (1, 8) = Float(infinity), (1, 9) = Float(undefined), (2, 1) = .765483256689808, (2, 2) = .533713222730410154807830422910, (2, 3) = -.165532642864785, (2, 4) = -0.499428359428865e-1, (2, 5) = -0.73434901130578e-2, (2, 6) = -0.111757807839544e-1, (2, 7) = 0.123803381671991e68, (2, 8) = Float(undefined), (2, 9) = Float(-infinity), (3, 1) = 0.515972557667626000000000000000e-1, (3, 2) = .125811948358948, (3, 3) = .224980824190952557079404612887, (3, 4) = -0.716662760034337e-1, (3, 5) = -0.516850043604370000000000000000e-2, (3, 6) = 0.716801959003042e67, (3, 7) = 0.666666666666666666666666666667e-32+43.3125*(Int(((-45.+.1250*x^14-1.00000*x^12+5.03906250*x^10-19.679687500*x^8+58.337890625*x^6-119.3203125*x^4+137.25*x^2)*exp(x^2)+(2.*x^2-1.)*(-0.1953125e-2*x^6-0.703125e-1*x^5-.8203125*x^4-5.25*x^3-20.25*x^2-45.*x-45.)*exp(-1.*x))/((1.+x)^(1/2)*(1.-x)^(1/2)*x^7), x = -1. .. 1.)), (3, 8) = Float(-infinity), (3, 9) = Float(infinity), (4, 1) = 0.899030920810901e-1, (4, 2) = 0.213841186693960000000000000000e-2, (4, 3) = 0.393313755295959e-1, (4, 4) = .153222110415871512971808758949, (4, 5) = -0.341293873201944e-1, (4, 6) = -0.107499338429209e52, (4, 7) = 0.188236331912532e46, (4, 8) = Float(-infinity), (4, 9) = 0.3125e-1*(Int(((-30405375.+1005.46875*x^18-10808.7890625*x^16+77169.7265625*x^14-455665.869140624*x^12+2248675.87280274*x^10-8970923.7625122*x^8+27381804.7851562*x^6-58299591.796875*x^4+72031781.25*x^2)*exp(x^2)+(-7.855224609375*x^10-502.734375*x^9-10551.53045654296875*x^8-126312.01171875*x^7-987495.99609375*x^6-5213858.203125*x^5-18075814.453125*x^4-36558843.75*x^3-26423718.75*x^2+30405375.*x+30405375.)*exp(-1.*x))/((1.+x)^(1/2)*(1.-x)^(1/2)*x^8), x = -1. .. 1.)), (5, 1) = 0.463651486782721999999999999997e-3, (5, 2) = 0.157757505144122e-1, (5, 3) = 0.752967475514400000000000000004e-4, (5, 4) = 0.205695133452456e-1, (5, 5) = 0.323627840089429e50, (5, 6) = -0.194229780735106e-1, (5, 7) = -0.429629629629629629629629629630e-32+31.58203125*(Int(((8.*x^4-8.*x^2+1.)*(0.625e-1*x^12-.46875*x^10+2.28515625*x^8-8.697265625*x^6+24.8203125*x^4-47.25*x^2+45.)*exp(x^2)+(8.*x^4-8.*x^2+1.)*(-0.1953125e-2*x^6-0.703125e-1*x^5-.8203125*x^4-5.25*x^3-20.25*x^2-45.*x-45.)*exp(-1.*x))/((1.+x)^(1/2)*(1.-x)^(1/2)*x^7), x = -1. .. 1.)), (5, 8) = Float(infinity), (5, 9) = Float(-infinity), (6, 1) = 0.63086454697723e-2, (6, 2) = 0.148539925066999999999999999996e-4, (6, 3) = 0.678853225186884e-2, (6, 4) = 0.107783343780000000000000000074e-5, (6, 5) = 0.131282639565718e-1, (6, 6) = 0.951280655078543393867357756671e-1, (6, 7) = -0.124971422339580e-1, (6, 8) = -0.810764520616245e86, (6, 9) = 0.973719186742316e103, (7, 1) = 0.225892591374999999999999998267e-5, (7, 2) = 0.119535935984917e-2, (7, 3) = 0.472540247360000000000000006667e-6, (7, 4) = 0.406635846209016e-2, (7, 5) = -0.353102865787386e29, (7, 6) = 0.914224761911803e-2, (7, 7) = 0.799362781468415055263543670536e-1+26.05517578125*(Int(((32.*x^6-48.*x^4+18.*x^2-1.)*(0.625e-1*x^12-.46875*x^10+2.28515625*x^8-8.697265625*x^6+24.8203125*x^4-47.25*x^2+45.)*exp(x^2)+(32.*x^6-48.*x^4+18.*x^2-1.)*(-0.1953125e-2*x^6-0.703125e-1*x^5-.8203125*x^4-5.25*x^3-20.25*x^2-45.*x-45.)*exp(-1.*x))/((1.+x)^(1/2)*(1.-x)^(1/2)*x^7), x = -1. .. 1.)), (7, 8) = .11279296875*(Int(((32.*x^6-48.*x^4+18.*x^2-1.)*(26.8125*x^14-234.609375*x^12+1384.1953125*x^10-6642.3779296875*x^8+25481.5107421876*x^6-73338.890625*x^4+140765.625*x^2-135135.)*exp(x^2)+(32.*x^6-48.*x^4+18.*x^2-1.)*(.4189453125*x^7+20.5283203125*x^6+328.453125*x^5+2956.078125*x^4+16891.875*x^3+61936.875*x^2+135135.*x+135135.)*exp(-1.*x))/((1.+x)^(1/2)*(1.-x)^(1/2)*x^8), x = -1. .. 1.)), (7, 9) = 0.157777777777777777777777777778e-31+1.24072265625*(Int(((32.*x^6-48.*x^4+18.*x^2-1.)*(4.5703125*x^16-45.703125*x^14+316.494140625*x^12-1833.837890625*x^10+8845.8755493164*x^8-34142.51953125*x^6+98855.859375*x^4-190856.25*x^2+184275.)*exp(x^2)+(32.*x^6-48.*x^4+18.*x^2-1.)*(-0.3570556640625e-1*x^8-2.28515625*x^7-47.98828125*x^6-575.859375*x^5-4524.609375*x^4-24131.25*x^3-85556.25*x^2-184275.*x-184275.)*exp(-1.*x))/((1.+x)^(1/2)*(1.-x)^(1/2)*x^9), x = -1. .. 1.)), (8, 1) = 0.340365610524644e-3, (8, 2) = 0.581375540399999999999999928148e-7, (8, 3) = 0.59941816605747e-3, (8, 4) = 0.123344101900000000000000128889e-7, (8, 5) = 0.275221040025479e-2, (8, 6) = -0.804784322000000000000001355556e-8, (8, 7) = -0.187505962866890e33, (8, 8) = 0.689246479939602777242545307758e-1+.104736328125*(Int(((64.*x^6-112.*x^4+56.*x^2-7.)*(26.8125*x^14-234.609375*x^12+1384.1953125*x^10-6642.3779296875*x^8+25481.5107421876*x^6-73338.890625*x^4+140765.625*x^2-135135.)*exp(x^2)+(64.*x^6-112.*x^4+56.*x^2-7.)*(.4189453125*x^7+20.5283203125*x^6+328.453125*x^5+2956.078125*x^4+16891.875*x^3+61936.875*x^2+135135.*x+135135.)*exp(-1.*x))/((1.+x)^(1/2)*(1.-x)^(1/2)*x^7), x = -1. .. 1.)), (8, 9) = 1.152099609375*(Int(((64.*x^6-112.*x^4+56.*x^2-7.)*(4.5703125*x^16-45.703125*x^14+316.494140625*x^12-1833.837890625*x^10+8845.8755493164*x^8-34142.51953125*x^6+98855.859375*x^4-190856.25*x^2+184275.)*exp(x^2)+(64.*x^6-112.*x^4+56.*x^2-7.)*(-0.3570556640625e-1*x^8-2.28515625*x^7-47.98828125*x^6-575.859375*x^5-4524.609375*x^4-24131.25*x^3-85556.25*x^2-184275.*x-184275.)*exp(-1.*x))/((1.+x)^(1/2)*(1.-x)^(1/2)*x^8), x = -1. .. 1.)), (9, 1) = 0.679371472199999999999970814815e-8, (9, 2) = 0.68406690337078e-4, (9, 3) = 0.162449283100000000000009666667e-8, (9, 4) = 0.386156856246160e-3, (9, 5) = 0.815546544069708e28, (9, 6) = -0.277132564813689e67, (9, 7) = 0.157777777777777777777777777778e-31+22.6819610595703125*(Int(((128.*x^8-256.*x^6+160.*x^4-32.*x^2+1.)*(0.625e-1*x^12-.46875*x^10+2.28515625*x^8-8.697265625*x^6+24.8203125*x^4-47.25*x^2+45.)*exp(x^2)+(128.*x^8-256.*x^6+160.*x^4-32.*x^2+1.)*(-0.1953125e-2*x^6-0.703125e-1*x^5-.8203125*x^4-5.25*x^3-20.25*x^2-45.*x-45.)*exp(-1.*x))/((1.+x)^(1/2)*(1.-x)^(1/2)*x^7), x = -1. .. 1.)), (9, 8) = 0.196380615234375e-1*(Int(((128.*x^8-256.*x^6+160.*x^4-32.*x^2+1.)*(134.0625*x^14-1173.046875*x^12+6920.9765625*x^10-33211.8896484375*x^8+127407.553710938*x^6-366694.453125*x^4+703828.125*x^2-675675.)*exp(x^2)+(128.*x^8-256.*x^6+160.*x^4-32.*x^2+1.)*(2.0947265625*x^7+102.6416015625*x^6+1642.265625*x^5+14780.390625*x^4+84459.375*x^3+309684.375*x^2+675675.*x+675675.)*exp(-1.*x))/((1.+x)^(1/2)*(1.-x)^(1/2)*x^8), x = -1. .. 1.)), (9, 9) = 0.605783039009416503435830836897e-1+.2160186767578125*(Int(((128.*x^8-256.*x^6+160.*x^4-32.*x^2+1.)*(22.8515625*x^16-228.515625*x^14+1582.470703125*x^12-9169.189453125*x^10+44229.377746582*x^8-170712.59765625*x^6+494279.296875*x^4-954281.25*x^2+921375.)*exp(x^2)+(128.*x^8-256.*x^6+160.*x^4-32.*x^2+1.)*(-.17852783203125*x^8-11.42578125*x^7-239.94140625*x^6-2879.296875*x^5-22623.046875*x^4-120656.25*x^3-427781.25*x^2-921375.*x-921375.)*exp(-1.*x))/((1.+x)^(1/2)*(1.-x)^(1/2)*x^9), x = -1. .. 1.))})

(13)

C1 := MatrixInverse(C)

Warning,  computation interrupted

 

``

t := C1.G

s[u] := add(subs(theta = sols[l+1], ((x+1)*(1/2))*k(x, ss(x, theta)))*u(ss(x, sols[l+1])), l = 0 .. N)

U := unapply(add(t[j+1].phi[j], j = 0 .. N), x)

``

with(numapprox)

E := infnorm(abs(u(x)-U(x)), x = -1 .. 1)

``

E[1] := (int((u(x)-U(x))^2, x = -1 .. .1))^(1/2)

``

plot([U(x), u(x)], x = -1 .. 1)

 

``

NULL

 

Download chebichef_cont.mw

 Hi all,

 Is there anyone who could help me with this error? I am sure there is at least one solution for the equation.

 Thanks

Maple Worksheet - Error

Failed to load the worksheet /maplenet/convert/EQ.mw .

Download EQ.mw

Typically sets are created like:

A:={a,b,c};

B:={c,q,w,e};

and then you can carryout A union B or B\A

 

what if  you wanted to create the set as

A:={values in some three dimensional space};

B:={volume, based on values taken from A};

Can these relationships be set up in Maple? If so, how? If there are commands that specifically handle these types of sets, what does maple call them?  I've seen the term 'set function' but what might Maple call them?

Note: I am not even sure i 'tagged' this correctly because it I am not sure the proper terms for these functions/sets.

Thanks in advance for any help.

I read a posting by Mr. Stephen Forrest on Thingiverse about using the exportplot command to export a 3D plot as a .stl file. I have a 3D printer and need the convert the plot from the Maple file into an .stl file.

Here is the posting I am referencing:

Thingiverse/3dmodelimportexport.pdf

I was able to follow the commands successfully in the referenced paper for a hyperboloid or revolution that I plotted in Maple - it was very helpful. However, I could not figure out how to access the temporary .stl file that was created so that I could open it using my 3D printer's software.

My question is: Once I execute the "exportplot(stl, hyprev)" command that I inputted, how can I find the file in the Temporary Directory in order to open it from the software I use for my 3D printer?

I would appreciate any further details you can provide for accessing the temporary .stl file I created in order to be able to print the object.

Thank you!

I wote a command that creates a plot with a single point:

plots[pointplot](a*[1, 1])

Before hitting Enter I called the context menu and chose Explore. As I change the parameter a the point remains fixed in the picture but the scales change. I wanted the opposite: the scales should stay fixed and the point should move. How can I do this using Explore or in some other way? I would like to see the point move as I drag a slider control.

Thanks for the help.

 

hi every one , i have a problem with integration,which one is correct !? also when i remove epsilon option, it returns unevaluated integral . can i have crorrect and reliable answer?

restart

with(LinearAlgebra):

Digits := 30;

30

(1)

``

N := 4;

4

 

proc (x, s) options operator, arrow; exp(x*s) end proc

 

proc (x) options operator, arrow; exp(2*x)+(exp(x*(x+2))-exp(-x-2))/(x+2) end proc

(2)

alpha := -1/2;

-1/2

 

-1/2

(3)

for n from 0 to N+1 do J[n] := unapply(simplify((-1)^n*(1-x)^(-alpha)*(1+x)^(-beta)*(diff((1-x)^(n+alpha)*(1+x)^(n+beta), [`$`(x, n)]))/(2^n*factorial(n))), x) end do;

proc (x) options operator, arrow; 1 end proc

 

proc (x) options operator, arrow; (1/2)*x end proc

 

proc (x) options operator, arrow; (3/4)*x^2-3/8 end proc

 

proc (x) options operator, arrow; (5/4)*x^3-(15/16)*x end proc

 

proc (x) options operator, arrow; (35/16)*x^4-(35/16)*x^2+35/128 end proc

 

proc (x) options operator, arrow; (315/256)*x+(63/16)*x^5-(315/64)*x^3 end proc

(4)

u := unapply(exp(2*x), x);

proc (x) options operator, arrow; exp(2*x) end proc

(5)

for i from 0 to N do phi[i] := J[i](x) end do

1

 

(1/2)*x

 

(3/4)*x^2-3/8

 

(5/4)*x^3-(15/16)*x

 

(35/16)*x^4-(35/16)*x^2+35/128

(6)

w1 := (1-x)^alpha*(1+x)^beta;

1/((1-x)^(1/2)*(1+x)^(1/2))

(7)

for j from 0 to N do S[j] := simplify(evalf(int(k(x, s)*subs(x = s, phi[j]), s = -1 .. x))) end do;

(-1.*exp(-1.*x)+1.*exp(x^2))/x

 

.5*(exp(x^2)*x^2+exp(-1.*x)*x+exp(-1.*x)-exp(x^2))/x^2

 

((.75*x^4-1.875*x^2+1.5)*exp(x^2)-.375*(x+2.)^2*exp(-1.*x))/x^3

 

((1.25*x^6-4.6875*x^4+8.4375*x^2-7.5)*exp(x^2)+(.3125*x^3+2.8125*x^2+7.5*x+7.5)*exp(-1.*x))/x^4

 

((2.1875*x^8-10.9375*x^6+30.8984375*x^4-56.875*x^2+52.5)*exp(x^2)+(-.2734375*x^4-4.375*x^3-21.875*x^2-52.5*x-52.5)*exp(-1.*x))/x^5

(8)

for i from 0 to N do evalf(Int(phi[i]*S[3]*w1, x = -1 .. 1, epsilon = 0.1e-24)) end do

-0.940736801761282474970573535984e-2

 

-0.499428361530268194608821964968e-1

 

-0.716662760275484038621082776589e-1

 

-0.175968374179810236471161325565e-3

 

0.205695155661022012897834537769e-1

(9)

for i from 0 to N do evalf(Student:-Calculus1:-ApproximateInt(phi[i]*S[3]*w1, x = -1 .. 1)) end do

0.112342629325121433520368350257e-1

 

-0.372785154811933200270010346236e-1

 

-0.625152339329758587804224387138e-1

 

0.880883783666879589242935631796e-2

 

0.300672960958837351790545896762e-1

(10)

 

NULL

 

Download kk.mw

First 1068 1069 1070 1071 1072 1073 1074 Last Page 1070 of 2224