Maple Questions and Posts

These are Posts and Questions associated with the product, Maple

Greetings all,

 

I was wondering if any Maple users out there are using the lastest Microsoft tablet, the Surface Pro 4 with Maple?

I would be interested in any opinions and specifically if the pen is effective when used as an input device with Maple

 

Thanks

hello everyone

can any one tell me what is this anti reduction method. In the paper of serdal palmuk,the link is given bellow

http://www.hindawi.com/journals/mpe/2009/202307/

in this paper question #4 is first solved by anti reduction method for  exact solution.

but i dont understand this method,

if anybody know this then please also tell me how to solve this,

and in the next  (6 & 7 ) examples "in the pourus media equation" they first find its particular exact solution.i also dont understand this,so please tell me

actually i know how to solve ODE to find its exact solution but  i dont know how we find exact solutions of partial differtial equations,

so please help me to solve this problem

thanks

 

I wish to define a function with a finite number of inputs, but I do not know that number ahead of time (in other words the user will specify n and my function operates on vectors of size n). How can this be done?

How to find the integral
,

assuming k and n  integer?
It is known (McCrea W. H., Whipple F. J. W.Random paths in two and three dimensions, Proc. Roy. Soc. Edinburgh. 1940. V. 60. P. 281–298) that

G(n,n)=2/Pi*sum(1/(2*k-1),k=1..n).

The general case is reduced to the case k=n.
This is not a creature of pure reason: the one appears in electric circuits
(see M. Skopenkov, A. Paharev, A. Ustinov, Through resistor net, Mat. pros. Issue 18 (2014), 33-65, in Russian, http://www.mccme.ru/free-books/matpros/pdf/mp-18.pdf).
I found G(8,8) = 182144/(45045*Pi) in 657.797 s and G(9,9) = 3186538/(765765*Pi) in 4157.687 s on my comp by

restart; s := time():(1/2)*VectorCalculus:-int((1-cos(9*Pi*x)*cos(9*Pi*y))/(sin((1/2)*Pi*x)^2+sin((1/2)*Pi*y)^2), [x, y] = Rectangle(0 .. 1, 0 .. 1)); time()-s;
Mathematica 10.3.0 does G(9,9) in 250.391 s on my comp.

 

I have run into a "funny" feature of 2-D input: It seems to convert something like k/2 into this k*`^`(2,-1). While this would often not be an issue (it is correct after all), it becomes a problem when used in an argument list to a procedure. It becomes even more of a problem when, by chance, I have overloaded `^` to act on specific types that I have defined.

Let me try to explain briefly. I have a package called "Lattice" that does whatever it does (not of relevance here). I am writing a little manual for this package, for which I use 2-D input so I can write it in Maple and have the examples right in it and "live".

Here is what happens:

with(Lattice) # load the package

QFh:=Quad(0,kf/2) # Define an element for Lattice

Error, invalid input: Lattice:-`^` expects its 1st argument, element, to be of type Element, but received 2

Copy-pasting kf/2 into a 1-d worksheet, I get

QFh := Quad(0, kf*Lattice[`^`](2, -1));

So it uses Lattice[`^`] which actually appears to bypass the overload I have in the Lattice package. `^` is defined like this in Lattice:

`^`:=proc(element::Element,n::algebraic) option overload; # Element is a defined type in Lattice
...
end proc;

How can I possibly rewrite `^` to fall-back to Maple's ^ operator when called as Lattice[`^`] ?? I know there is a function overload() but have no experience with it. Would it even help?

Or am I missing something completely here? I do not use 2-D input for my usual work, but in this case I want and need to use it. The reason for its bizarre rewrite of "/2" is beyond me. Note that I can replace /2 by *0.5; but that causes problems later on for algebraic work as 1/2 is not 0.5 in Maple. I tried *1/2 but that has the same problem.

Has anyone a clean solution for this? I assume this effect is not limited to my own package but would affect others as well.

M.D.

PS: I ran into this using Maple 15 but I doubt it is specific to this particular version.

Hello,

My code records the values I need, however, I need to implement a modulo of 2*Pi on my result for theta. But this leads to a graph with no plots and I'm not sure how to fix it. Any help is greatly aprreciated! Thank you in advance!

Kind regards,

Gam

with(plots):

a := 1.501*10^9:

Th := sqrt(4*Pi^2*a^3/(G*(Mh+Msat))):

HyperionOrbit := proc (`θIC`, `ωIC`, n) local a, Mh, Msat, G, e, beta, M, Eqns, ICs, soln; option remember; global `ωH`, Th; a := 1.501*10^9; Mh := 5.5855*10^18; Msat := 5.6832*10^26; G := 6.67259/10^11; e := .232; beta := .89; M := Mh+Msat; Eqns := diff(theta(t), t) = omega(t), diff(omega(t), t) = -G*Msat*beta^2*(xH(t)*sin(theta(t))-yH(t)*cos(theta(t)))*(xH(t)*cos(theta(t))+yH(t)*sin(theta(t)))/(xH(t)^2+yH(t)^2)^2.5, diff(xH(t), t) = vxH(t), diff(vxH(t), t) = -G*M*xH(t)/(xH(t)^2+yH(t)^2)^(3/2), diff(yH(t), t) = vyH(t), diff(vyH(t), t) = -G*M*yH(t)/(xH(t)^2+yH(t)^2)^(3/2); ICs := xH(0) = a*(1+e), yH(0) = 0, vxH(0) = 0, vyH(0) = sqrt(G*M*(1-e)/(a*(1+e))), theta(0) = `θIC`, omega(0) = `ωIC`; soln := dsolve({Eqns, ICs}, numeric, maxfun = 0, output = array([seq(i, i = 0 .. n*Th, Th)])); plots:-odeplot(soln, [modp(theta(t), 2*Pi), omega(t)/`ωH`], 0 .. n*Th, labels = ["θ(t)","ω(t)/ωH"], axes = boxed, style = plottools:-point, size = [.25, .75]) end proc:

plots:-display(HyperionOrbit(.5, 1.8*`ωH`, 10));

Download Poincare_section_Boyd_plot_fixing_theta.mw

bia Man

i've got a list of 6 ODEs with 6 initial conditions:

MH,MS,M,a,G,e,afb are just constants

Eqns2 := diff(xH(t), t) = vxH(t),
            diff(vxH(t), t) = -G*M*xH(t)/(xH(t)^2+yH(t)^2)^(3/2),
            diff(yH(t), t) = vyH(t),
            diff(vyH(t), t) = -G*M*yH(t)/(xH(t)^2+yH(t)^2)^(3/2),

            diff(theta(t), t) = omega(t),

            diff(omega(t), t) = -G*MS*afb^2*(xH(t)*sin(theta(t))-yH(t)*cos(theta(t))*            (xH(t)*cos(theta(t))+yH(t)*sin(theta(t)))/(xH(t)^2+yH(t)^2)^(5/2):

ICs2 := xH(0) = a*(1+e), vxH(0) = 0, vyH(0) = sqrt(G*M*(1-e)/(a*(1+e))), yH(0) = 0, 0 < theta(0), theta(0) <= Pi,        omega(0) = 10*Pi/T_H:

soln2 := dsolve({Eqns2, ICs2}, {omega(t), theta(t), vxH(t), vyH(t), xH(t), yH(t)}, numeric)

But it doesn't solve it , but instead displays this error message:

Error, (in dsolve/numeric/process_input) system must be entered as a set/list of expressions/equations

Can someone find a syntax error or a typo that would explain this?

When assigning a color to a given wave length I initially used ColorTools WavelengthToColor. Acer commented that this wasn't the most accurate. I looked into this a little further and it seems there could be a better result. The attached document compares some different ways of assigning colors to wave lengths. 

Warning- The CIEDE2000 computation for deltaE is very slow. I think this is because of the hue angle calculations which use piecewise a lot. The CIE94 delta E method produces nearly the same result and takes minutes instead of hours.

 

Questions;

 I think I could speed up my calculation if I could find the position of the minimum element of an Array similar to FindMinimalElement of a list. 

I created my own atan2 function (similar to Excel). If there were a built in Maple equivalent perhaps it would be faster? I didn't see any such function.

6bit_Wavelength_Color_CIEDE2000.mw

Hello,

I have a procedure which plots a graph. I need the x-axes, which in this case is theta, to range between -3 and +3. However, I am not sure as to how I can create this restricted range. Any help is greatly appreciated! Thank you in advance!

Kind regards,

Gambia Man

with(plots):

a := 1.501*10^9:

Th := sqrt(4*Pi^2*a^3/(G*(Mh+Msat))):

HyperionOrbit := proc (`&theta;IC`, `&omega;IC`, n, nopoints) local a, Mh, Msat, G, e, beta, M, Eqns, ICs, soln; option remember; global `&omega;H`, Th; a := 1.501*10^9; Mh := 5.5855*10^18; Msat := 5.6832*10^26; G := 6.67259/10^11; e := .232; beta := .89; M := Mh+Msat; Eqns := diff(theta(t), t) = omega(t), diff(omega(t), t) = -G*Msat*beta^2*(xH(t)*sin(theta(t))-yH(t)*cos(theta(t)))*(xH(t)*cos(theta(t))+yH(t)*sin(theta(t)))/(xH(t)^2+yH(t)^2)^2.5, diff(xH(t), t) = vxH(t), diff(vxH(t), t) = -G*M*xH(t)/(xH(t)^2+yH(t)^2)^(3/2), diff(yH(t), t) = vyH(t), diff(vyH(t), t) = -G*M*yH(t)/(xH(t)^2+yH(t)^2)^(3/2); ICs := xH(0) = a*(1+e), yH(0) = 0, vxH(0) = 0, vyH(0) = sqrt(G*M*(1-e)/(a*(1+e))), theta(0) = `&theta;IC`, omega(0) = `&omega;IC`; soln := dsolve({Eqns, ICs}, numeric, maxfun = 0, output = array([seq(i, i = 0 .. n*Th, Th)])); plots:-odeplot(soln, [theta(t), omega(t)/`&omega;H`], 0 .. n*Th, numpoints = nopoints, labels = ["&theta;(t)","&omega;(t)/&omega;H"], axes = boxed, style = plottools:-point) end proc:

plots:-display(seq(HyperionOrbit(i, `&omega;H`*i, 1, 1), i = -3 .. 3))

 

NULL

NULL

 

Download Poincare_section_Boyd_plot.mw

with(plots):

a := 1.501*10^9:

Th := sqrt(4*Pi^2*a^3/(G*(Mh+Msat))):

HyperionOrbit := proc (`&theta;IC`, `&omega;IC`, n, nopoints) local a, Mh, Msat, G, e, beta, M, Eqns, ICs, soln; option remember; global `&omega;H`, Th; a := 1.501*10^9; Mh := 5.5855*10^18; Msat := 5.6832*10^26; G := 6.67259/10^11; e := .232; beta := .89; M := Mh+Msat; Eqns := diff(theta(t), t) = omega(t), diff(omega(t), t) = -G*Msat*beta^2*(xH(t)*sin(theta(t))-yH(t)*cos(theta(t)))*(xH(t)*cos(theta(t))+yH(t)*sin(theta(t)))/(xH(t)^2+yH(t)^2)^2.5, diff(xH(t), t) = vxH(t), diff(vxH(t), t) = -G*M*xH(t)/(xH(t)^2+yH(t)^2)^(3/2), diff(yH(t), t) = vyH(t), diff(vyH(t), t) = -G*M*yH(t)/(xH(t)^2+yH(t)^2)^(3/2); ICs := xH(0) = a*(1+e), yH(0) = 0, vxH(0) = 0, vyH(0) = sqrt(G*M*(1-e)/(a*(1+e))), theta(0) = `&theta;IC`, omega(0) = `&omega;IC`; soln := dsolve({Eqns, ICs}, numeric, maxfun = 0, output = array([seq(i, i = 0 .. n*Th, Th)])); plots:-odeplot(soln, [theta(t), omega(t)/`&omega;H`], 0 .. n*Th, numpoints = nopoints, labels = ["&theta;(t)","&omega;(t)/&omega;H"], axes = boxed, style = plottools:-point) end proc:

plots:-display(seq(HyperionOrbit(i, `&omega;H`*i, 1, 1), i = -3 .. 3))

 

NULL

NULL

 

Download Poincare_section_Boyd_plot.mw

Hi,

Wondered if anyone could help with the query below.

Consider f(x,y) defined as:
f := proc (x, y) options operator, arrow; x*y/(x+y) end proc

 

Then f(A, B); becomes:
(A * B )/(A + B)

 

now consider the polynomial:(poly2)

poly2:=(A*B+A*X+B*X)*(Y+X)/((A+B)*X*(2*Y+X))

 

This polynomial is just the expansion of the polynomial below (lets call it poly1) which MAPLE does not recognize.

(A*B/(A+B)+X)/(X+Y*X/(Y+X))

Here you can see that A,B on top and X,Y on the bottom are clearly of the form f(x,y).

 

Is there a way you can get MAPLE to recognize certain algebraic forms such that the polynomial poly2 could be written either as poly1 (already shown above) or as poly3 below:

poly3:=(f(A, B)+X)/(X+f(Y, X))

 

I have tried using simplify in the following form but not much luck. It doesn't seem to recognize anything other than the obvious.

simplify(poly2, {A*B/(A+B) = F1}, tdeg(A, B))

 

(I am still a bit new to the MAPLE syntax and procedures so apologies if I have missed something obvious function that can do this.)

 

Thanks.

 

In Maple 2015, the DrawNetwork command option "horizontal" does not seem to work. Is this a bug? It doesn't even display horizontally on the online Maple Help webpage. Any help would be appreciated.

Hello,

I have a question about poincare sections. I have this piece of code i need to analyse and I want to use a poincare section in order to so. How could I do it? I am interested in theta and omega. Any help is greatly appreciated! Thank you in advance!

Kind regards,

Gambia Man

with(plots):

a := 1.501*10^9:

Th := sqrt(4*Pi^2*a^3/(G*(Mh+Msat)));

1876321.326

 

0.3348672330e-5

(1)

HyperionOrbit := proc (`&theta;IC`, `&omega;IC`) local a, Mh, Msat, G, e, beta, M, Eqns, ICs; global `&omega;H`, Th, soln; a := 1.501*10^9; Mh := 5.5855*10^18; Msat := 5.6832*10^26; G := 6.67259/10^11; e := .232; beta := .89; M := Mh+Msat; Eqns := diff(theta(t), t) = omega(t), diff(omega(t), t) = -G*Msat*beta^2*(xH(t)*sin(theta(t))-yH(t)*cos(theta(t)))*(xH(t)*cos(theta(t))+yH(t)*sin(theta(t)))/(xH(t)^2+yH(t)^2)^2.5, diff(xH(t), t) = vxH(t), diff(vxH(t), t) = -G*M*xH(t)/(xH(t)^2+yH(t)^2)^(3/2), diff(yH(t), t) = vyH(t), diff(vyH(t), t) = -G*M*yH(t)/(xH(t)^2+yH(t)^2)^(3/2); ICs := xH(0) = a*(1+e), yH(0) = 0, vxH(0) = 0, vyH(0) = sqrt(G*M*(1-e)/(a*(1+e))), theta(0) = `&theta;IC`, omega(0) = `&omega;IC`; soln := dsolve({Eqns, ICs}, numeric); odeplot(soln, [theta(t), omega(t)/`&omega;H`], 0 .. 5*Th, numpoints = 2000, labels = ["&theta;(t)","&omega;(t)/&omega;H"], axes = boxed, size = [.25, .75]) end proc

``

 

Download New_Poincare_section.mw

Since we’re almost at the end of the year, I thought it would be interesting to look back at our most popular webinars for academics in 2015. I found that they fell into one of two categories: live streaming webinars featuring Dr. Robert Lopez and Maple how-to tutorials.  (If you missed the live presentation, you can watch the recordings of all these webinars below.)

The first and second most popular webinar were, unsurprisingly, both of the live streaming webinars that featured Dr. Robert Lopez (Emeritus Professor at Rose Hulman Institute of Technology and Maple Fellow at Maplesoft). These webinars were streamed live to an audience and allowed many people to get their first glimpse of the man behind the Clickable Calculus series and Teaching Concepts with Maple:

1.       Eigenpairs Enlivened

In this webinar, Dr. Robert Lopez demonstrates how Maple can enhance the task of teaching the eigenpair concept, and shows how Maple bridges the gap between the concept and the algorithms by which students are expected to practice finding eigenpairs.

2.       Resequencing Concepts and Skills via Maple's Clickable

In this webinar, Dr. Lopez presents examples of what "resequencing" looks like when implemented with Maple's point-and-click syntax-free paradigm. Not only can Maple be used to elucidate the concept, but in addition, it can be used to illustrate and implement the manipulations that ultimately the student must master.

The next three were all brief webinars on how to complete specific tasks in Maple 2015. Just under a dozen of these were created in 2015 and they were all quite popular, but these three stood out above the rest:

3.       Working with Data Sets in Maple

This video walks through examples of working with several types of data in Maple, including visualizing stock and commodity data, forecasting future temperatures using weather data, and analyzing macroeconomic data, such as employment statistics, GDP and other economic indicators.

4.       Custom Color Schemes in Maple

This webinar provides an overview of the colorscheme option for coloring surfaces, curves and collections of points in Maple, including how to color with gradients, according to function value or point position. Examples of how the colorscheme option is used with various commands from the Maple library are also demonstrated.

 5.       Working with Units in Maple

Maple 2015 allows for more fluid and natural interaction with units. This webinar provides an overview of the new unit formatting controls and new Temperature object, and demonstrates how to compute with units and tolerances.

Are there any topics you’d like to see Robert cover in upcoming webinars? Or, any Maple how-to videos you think would be a helpful addition to our library? Let us know in the comments below!

Kim

http://www.maplesoft.com/support/help/Maple/view.aspx?path=Physics/.

i see bra and ket expression are so beautiful,

however,

how do real valued eigenvectors involve in calculation of bra and ket style computation?

assume a,b,c,d,B2,B3 are matrices and y is unknown

eq2 := a*b+c*d+a;
eq3 := a*c+c*d+c;
eq4 := a*b+c*a+b*c;
eq5 := a*b+a*d+b*c;
solve([eq2=B2,eq3=B3,eq4=B2,eq5=y],[a,b,c,d]);

which function can solve this kind of system of matrices?

how to solve a,b,c,d in terms of y?

First 1171 1172 1173 1174 1175 1176 1177 Last Page 1173 of 2224