MaplePrimes Questions

Hi,

 

I'm new to the physics package - wondering if i can tweak it a bit to look like things i'm used to:

 

is there a way to make Christoffel symbols print as upper case gamma, instead of  'G'?

KroneckerDelta print as lower case delta, instead of 'd'?

 

can i make the Schwarzschild metric look like it does in Hartle, Carroll, and others:

 

-(1 - 2M/r)dt^2 + (1-2M/r)^-1 + r^2(dtheta^2 + sin(theta)^2 dphi^2)

 

i know about setting the signature in Setup.

i have tried the 'Coordinates' command, but when i give it X=[t,r,theta,phi] i always seem to get back

[t,r,q,f]

 

i am running maple 2016

 

many thanks,

larry

 

Hello everyone,
I would like to get a symbolic result of each variable x,y and z for the following 3 nonlinear equations. Maple does not respond to the following code at all. (Not even an error report.)

restart;

eq1 := x^2+y^2+z^2-134*x+800*y-360*z+31489, 2;
eq2 := x^2+y^2+z^2-934*x+900*y-370*z+321789, 2;
eq3 := x^2+y^2+z^2-614*x+1350*y-1110*z+70048, 97;
solve({eq1, eq2, eq3}, {x, y, z});

Thanks in advance.

P.S: Afterwards my intention is to solve these equaitons numerically for different variable values, and transfer to MatLab in order to plot animations and graphs. 

     It is known that ODE boundary value problem is similar to the problem of solving systems of nonlinear equations. Equations are the boundary conditions, and the variables are the values of the initial data.
For example:

y '' = f (x, y, y '), 0 <= x <= 1,

y (0) = Y0, y (1) = Y1;

Where y (1) = Y1 is the equation, and Z0 is variable, (y '(0) = Z0).

     solve () and fsolve () are not directly suitable for such tasks. Directly should work the package of optimization in relation to a system of nonlinear equations. (Perhaps it has already been implemented in Maple.)
Personally, I am very small and unprofessional know Maple and cannot do it. Maybe there is someone who would be interested, and it will try to implement this approach to solving ODE boundary value problems?  

I am trying to find a download for the ONEOptimal package for Maple (http://iopscience.iop.org/article/10.1088/0253-6102/61/2/03). I read the article but there is no download link to the file. Does anyone know where I can download the package?

I have a system of equations e.g.

A^2+B*A+C=0

where A,B,C are Matrices and I want to solve for A.

Sure I can write every equations in brakets [..=0], but isn'T it possible to just use the matrix notation?

I've been trying to numerically solve (and plot) this equation. Maple tells me that some matrix is singular - I have no idea, what I can do.

eq := diff(y(x), `$`(x, 3))-(diff(y(x), x))*(diff(y(x), x))+1 = 0;

cond := (D(y))(0) = 0, (D(y))(1) = 1, ((D@@2)(y))(0) = 0

de := dsolve({cond, eq}, y(x), numeric);

Error, (in dsolve/numeric/bvp) matrix is singular

How I can found stabilty of system by Routh, Jury, Liapunov, Nequist on maple?

The array is:

N := vector (20, x -> y[x]);

The maple creat the array

The other is:

N := vector (20, x -> y[x]);

Where y[x] are a list 

I do plot 

plot( M,N);

But the plot is many lines with the value of the array, i want the fist coordenates of the N with fist coordenate for the M in points or line.

Thanks 

Hi Maple community

I'm running an algorithm where a non-linear equation system must be solved, in this case is a 26x26 system.

After 16116 succesful previous computations, fsolve stops giving me results.
I checked why and I was first expecting that, for some reason, the 26x26 system had an error and I ended with something like 25x26 or vice versa. But that was not the case.

So I tried the command solve and it not only worked fine but also gave me two results, but I only need one. I guess I could check for the wrong solution and discard it, but I still wondering why fsolve is failing and if there is anything to help fsolve not to fail.

These are the set of equations if somebody wants to check them:

EQ[16117][1] := W[1, 16117]*(-0.3860115660e-1*HRa[1, 16117]-0.1876793978e-1*ga[1, 16117]+0.7836678184e-1) = 2.040147478*10^6*SR[1, 16118], W[1, 16117]*(-0.3915554290e-1*HRa[1, 16117]-0.1903748329e-1*ga[1, 16117]+0.8260795999e-1) = 3.876387504, W[1, 16117]*(-0.1876794098e-1*HRa[1, 16117]-0.9892449327e-2*ga[1, 16117]+0.3810204607e-1) = 2.040147478*10^6*v[1, 16118], HLa[1, 16117] = .9724029753*ga[1, 16117]+HRa[1, 16117], NRa[1, 16117] = 0.7006679273e-1*HRa[1, 16117]-.1803623678*ga[1, 16117]+1.002451672, NLa[1, 16117] = 0.7006679273e-1*HRa[1, 16117]+.2484955248*ga[1, 16117]+1.002451672, SL[2, 16118] = SR[1, 16118], fra[1, 16117] = HRa[1, 16117]-HLa[2, 16117], fra[1, 16117] = .25*NRa[1, 16117]+.25*NLa[2, 16117], ga[1, 16117] = 0.;

EQ[16117][2] := W[2, 16117]*(-0.3860115660e-1*HRa[2, 16117]-0.1876793978e-1*ga[2, 16117]+0.7836678184e-1) = -2.040147478*10^6*SL[2, 16118]+7.152482840, W[2, 16117]*(-0.3915554290e-1*HRa[2, 16117]-0.1903748329e-1*ga[2, 16117]+0.8260795999e-1) = 3.876387504, W[2, 16117]*(-0.1876794098e-1*HRa[2, 16117]-0.9892449327e-2*ga[2, 16117]+0.3810204607e-1) = -1.983845478*10^6*SL[2, 16118]+5.221405977, HLa[2, 16117] = .9724029753*ga[2, 16117]+HRa[2, 16117], NRa[2, 16117] = 0.7006679273e-1*HRa[2, 16117]-.1803623678*ga[2, 16117]+1.002451672, NLa[2, 16117] = 0.7006679273e-1*HRa[2, 16117]+.2484955248*ga[2, 16117]+1.002451672, SL[3, 16118] = 0.3505865589e-5, fra[2, 16117] = HRa[2, 16117]-HLa[3, 16117];

EQ[16117][3] := W[3, 16117]*(-0.3860115660e-1*HRa[3, 16117]-0.1876793978e-1*ga[3, 16117]+0.7836678184e-1) = -2.040147478*10^6*SL[3, 16118]+10.82168541, W[3, 16117]*(-0.3915554290e-1*HRa[3, 16117]-0.1903748329e-1*ga[3, 16117]+0.8260795999e-1) = 3.876387504, W[3, 16117]*(-0.1876794098e-1*HRa[3, 16117]-0.9892449327e-2*ga[3, 16117]+0.3810204607e-1) = -1.983845478*10^6*SL[3, 16118]+8.751240594, HLa[3, 16117] = .9724029753*ga[3, 16117]+HRa[3, 16117], NRa[3, 16117] = 0.7006679273e-1*HRa[3, 16117]-.1803623678*ga[3, 16117]+1.002451672, NLa[3, 16117] = 0.7006679273e-1*HRa[3, 16117]+.2484955248*ga[3, 16117]+1.002451672, SL[4, 16118] = 0.5304364281e-5, fra[3, 16117] = HRa[3, 16117];

And after these the solving command that I used was:

SOL[j]:=fsolve({seq(EQ[j][n],n=1..N)},indets({entries(EQ[j],nolist)},assignable(name)));

Which returns

SOL[j]:=

As I said, then I tried the solve command:

SOL[j]:=solve({seq(EQ[j][n],n=1..N)},indets({entries(EQ[j],nolist)},assignable(name)));

which returns:

SOL[16117] :=

{HLa[1, 16117] = 1.011251860, HLa[2, 16117] = .5007913055, HLa[3, 16117] = -0.4240068535e-1, HRa[1, 16117] = 1.011251860, HRa[2, 16117] = .8728245835, HRa[3, 16117] = .2686716410, NLa[1, 16117] = 1.073306847, NLa[2, 16117] = .9685353734, NLa[3, 16117] = .9417827567, NRa[1, 16117] = 1.073306847, NRa[2, 16117] = 1.132612831, NRa[3, 16117] = 1.078974668, SL[2, 16118] = 0.1737463747e-5, SL[3, 16118] = 0.3505865589e-5, SL[4, 16118] = 0.5304364281e-5, SR[1, 16118] = 0.1737463747e-5, W[1, 16117] = 90.12372195, W[2, 16117] = 69.57451714, W[3, 16117] = 49.58407210, fra[1, 16117] = .5104605550, fra[2, 16117] = .9152252689, fra[3, 16117] = .2686716410, ga[1, 16117] = 0., ga[2, 16117] = -.3825916698, ga[3, 16117] = -.3199006320, v[1, 16118] = 8.447574110*10^(-7)},

{HLa[1, 16117] = 3.043461992, HLa[2, 16117] = 2.386862361, HLa[3, 16117] = -0.4240068535e-1, HRa[1, 16117] = 3.043461992, HRa[2, 16117] = 1.087485894, HRa[3, 16117] = .2686716410, NLa[1, 16117] = 1.215697293, NLa[2, 16117] = 1.410701230, NLa[3, 16117] = .9417827567, NRa[1, 16117] = 1.215697293, NRa[2, 16117] = .8376385519, NRa[3, 16117] = 1.078974668, SL[2, 16118] = 0.2032780481e-5, SL[3, 16118] = 0.3505865589e-5, SL[4, 16118] = 0.5304364281e-5, SR[1, 16118] = 0.2032780481e-5, W[1, 16117] = -106.0268094, W[2, 16117] = 265.7250566, W[3, 16117] = 49.58407210, fra[1, 16117] = .6565996307, fra[2, 16117] = 1.129886580, fra[3, 16117] = .2686716410, ga[1, 16117] = 0., ga[2, 16117] = 1.336253076, ga[3, 16117] = -.3199006320, v[1, 16118] = 9.883410782*10^(-7)}

Thanks in advance for any recommendations and suggestions.
 

Hi,

I did some hypothesis testing exercises and I cross checked the result with Maple. I just used following vectors for an unpaired test

a := [88, 89, 92, 90, 90];
b := [92, 90, 91, 89, 91];

I ended up with the following solution:

HFloat(1.5225682336585966)
HFloat(-3.122568233658591)
for a 0.95 confidence interval.

 

Using

TwoSampleTTest(a, b, 0, confidence = .95, summarize = embed)

and

TwoSampleTTest(a, b, 0, confidence = .975, summarize = embed)

I get following results:

-2.75177 .. 1.15177

-3.13633 .. 1.53633

respectively. I can not explain the discrepancy.

 

Best regards,

Oliver

 

PS:

Maple Code in case files won´t be attached.

 

 

Unpaired t Test
restart;
Unpaired test-test dataset
a := [88, 89, 92, 90, 90];
b := [92, 90, 91, 89, 91];
The se² estimate is given by:
se²=var(a)+var(b)+2*cov(a*b)=var(a)+var(b)
se²=
sigma[a]^2/Na+sigma[b]^2/Nb;
with Na, Nb being the length of vector a and b respectively.
                             2                              2
  sigma[[88, 89, 92, 90, 90]]    sigma[[92, 90, 91, 89, 91]]
  ---------------------------- + ----------------------------
               Na                             Nb             
sigma[a]^2;
 and
sigma[b]^2;
 are approximated by
S[a]^2;
 and
S[b]^2;
                                             2
                  sigma[[88, 89, 92, 90, 90]]
                                             2
                  sigma[[92, 90, 91, 89, 91]]
                                           2
                    S[[88, 89, 92, 90, 90]]
                                           2
                    S[[92, 90, 91, 89, 91]]
with
S[X]^2;
 defined as
S[X]*`²` = (sum(X[i]-(sum(X[j], j = 1 .. N))/N, i = 1 .. N))^2/N;
                                 2
                             S[X]
                                                 2
                      /      /         N       \\
                      |      |       -----     ||
                      |  N   |        \        ||
                      |----- |         )       ||
                      | \    |        /    X[j]||
                      |  )   |       -----     ||
                      | /    |       j = 1     ||
                      |----- |X[i] - ----------||
                      \i = 1 \           N     //
             S[X] ᅡᄇ = ----------------------------
                                   N              
with(Statistics);
Sa := Variance(a);
                   HFloat(2.1999999999999993)
Sb := Variance(b);
                   HFloat(1.3000000000000003)
Now we are ready to do hypothesis testing (0.95).
We have (with k=min(Na,Nb)=5):
C = mean(a)-mean(b); Deviation := t_(alpha/a, k-1)*se(Sa/k-Sb/k);
c := Mean(a)-Mean(b); deviation := 2.776*sqrt((1/5)*Variance(a)+(1/5)*Variance(b));
                  HFloat(-0.7999999999999972)
                   HFloat(2.3225682336585938)
upperlimit := c+deviation; lowerlimit := c-deviation;
                   HFloat(1.5225682336585966)
                   HFloat(-3.122568233658591)

Execution of built in student test
TwoSampleTTest(a, b, 0, confidence = .95, summarize = embed);

 

 

How can I modify the appearance of the arrowheads on the vectors displayed in phaseportrai? In particular, how can I "fill in" the arrowheads so that the arrowhead is not just an outline?

My code is:

phaseportrait([D(x)(t)=-0.4*x(t)+(0.5+4*x(t))*y(t),D(y)(t)=0.4*x(t)-(4.5+4*x(t))*y(t)],[x(t),y(t)],t=0..100,[[x(0)=1,y(0)=0.0]],x=0..1,y=0..0.1,stepsize=0.01,scaling=UNCONSTRAINED,linecolour=BLACK,dirgrid=[17,17],linestyle=1,arrows=SLIM,axes=BOXED);

Thank you

Hi evrey ones in pdsolve we have these commande to use U(x,t) 

> U:= subs(pds:-value(output=listprocedure), u(x,t));

  id like to get du(x,t)/dt

i tried these  

U:= subs(pds:-value(output=listprocedure), du(x,t)/dt);  but is not work 

thank you 

 

Hi

I want to draw  plot y(x) against x but I can't. a, b , _C1 are parameter.

where i can found oscilloscope icon for cisuit simulation?thanks

I am unable to solve the attached optimal control problem,please any one who many help  me in guideing .tnx

restart:
unprotect('gamma');

L:=b[1]*c(t)+b[2]*i(t)+w[1]*(u[1])^2/2+w[2]*(u[2])^2/2+w[3]*(u[3])^2/2;
1 2 1 2 1 2
b[1] c(t) + b[2] i(t) + - w[1] u[1] + - w[2] u[2] + - w[3] u[3]
2 2 2
H:=L+lambda[1](t)*((1-p*Psi)*tau+phi* v + delta *r-lambda*(1-u[3])*s-u[1]*varphi*s -mu*s ) +lambda[2](t)*(p*Psi*tau + u[1]*vartheta*s -gamma*lambda* (1-u[3])*v-(mu+phi)*v ) +lambda[3](t)*( (1-u[3])*rho*lambda* (s +gamma*v)+(1-q)* u[2]*eta*i -(mu +beta +chi)*c ) +lambda[4](t)* ((1-rho)*(1-u[3])*lambda*( s +gamma*v) +chi*c - u[2]*eta*i - (mu +alpha )*i) +lambda[5](t)*( beta*c + u[2]*q*eta*i -(mu +delta)*r);
1 2 1 2 1 2
b[1] c(t) + b[2] i(t) + - w[1] u[1] + - w[2] u[2] + - w[3] u[3] + lambda[1](t
2 2 2

) ((1 - p Psi) tau + phi v + delta r - lambda (1 - u[3]) s - u[1] varphi s

- mu s) + lambda[2](t) (p Psi tau + u[1] vartheta s

- gamma lambda (1 - u[3]) v - (mu + phi) v) + lambda[3](t) ((1 - u[3]) rho

lambda (s + gamma v) + (1 - q) u[2] eta i - (mu + beta + chi) c) + lambda[4](t

) ((1 - rho) (1 - u[3]) lambda (s + gamma v) + chi c - u[2] eta i

- (mu + alpha) i) + lambda[5](t) (beta c + u[2] q eta i - (mu + delta) r)
du1:=diff(H,u[1]);

w[1] u[1] - lambda[1](t) varphi s + lambda[2](t) vartheta s
du2:=diff(H,u[2]);du3:=diff(H,u[3]);
w[2] u[2] + lambda[3](t) (1 - q) eta i - lambda[4](t) eta i

+ lambda[5](t) q eta i
w[3] u[3] + lambda[1](t) lambda s + lambda[2](t) gamma lambda v

- lambda[3](t) rho lambda (s + gamma v)

- lambda[4](t) (1 - rho) lambda (s + gamma v)

ddu1 := -A[1] u[1] + psi[1](t) beta x[1] x[3] - psi[2](t) beta x[1] x[3]

ddu2 := -A[2] u[2] - psi[3](t) k x[2]
sol_u1 := solve(du1, u[1]);
s(t) (lambda[1](t) varphi - lambda[2](t) vartheta)
--------------------------------------------------
w[1]
sol_u2 := solve(du2, u[2]);sol_u3 := solve(du3, u[3]);
eta i (-lambda[3](t) + lambda[3](t) q + lambda[4](t) - lambda[5](t) q)
----------------------------------------------------------------------
w[2]
1
---- (lambda (-lambda[1](t) s - lambda[2](t) gamma v + lambda[3](t) rho s
w[3]

+ lambda[3](t) rho gamma v + lambda[4](t) s + lambda[4](t) gamma v

- lambda[4](t) rho s - lambda[4](t) rho gamma v))
Dx2:=subs(u[1]= s*(lambda[1](t)*varphi-lambda[2](t)*vartheta)/w[1] ,u[2]= eta*i*(-lambda[3](t)+lambda[3](t)*q+lambda[4](t)-lambda[5](t)*q)/w[2], u[3]=-lambda*(lambda[1](t)*s+lambda[2](t)*gamma*v-lambda[3](t)*rho*s-lambda[3](t)*rho*gamma*v-lambda[4](t)*s-lambda[4](t)*gamma*v+lambda[4](t)*rho*s+lambda[4](t)*rho*gamma*v)/w[3] ,H );
2 2
s (lambda[1](t) varphi - lambda[2](t) vartheta)
b[1] c(t) + b[2] i(t) + -------------------------------------------------
2 w[1]

2 2 2
eta i (-lambda[3](t) + lambda[3](t) q + lambda[4](t) - lambda[5](t) q)
+ ------------------------------------------------------------------------- +
2 w[2]

1 / 2
------ \lambda (lambda[1](t) s + lambda[2](t) gamma v - lambda[3](t) rho s
2 w[3]

- lambda[3](t) rho gamma v - lambda[4](t) s - lambda[4](t) gamma v

/
\ |
+ lambda[4](t) rho s + lambda[4](t) rho gamma v)^2/ + lambda[1](t) |(1
\

/ 1
- p Psi) tau + phi v + delta r - lambda |1 + ---- (lambda (lambda[1](t) s
\ w[3]

+ lambda[2](t) gamma v - lambda[3](t) rho s - lambda[3](t) rho gamma v

- lambda[4](t) s - lambda[4](t) gamma v + lambda[4](t) rho s

\
+ lambda[4](t) rho gamma v))| s
/

2 \
s (lambda[1](t) varphi - lambda[2](t) vartheta) varphi |
- ------------------------------------------------------- - mu s| +
w[1] /

/
|
lambda[2](t) |p Psi tau
\

2
s (lambda[1](t) varphi - lambda[2](t) vartheta) vartheta /
+ --------------------------------------------------------- - gamma lambda |1 +
w[1] \

1
---- (lambda (lambda[1](t) s + lambda[2](t) gamma v - lambda[3](t) rho s
w[3]

- lambda[3](t) rho gamma v - lambda[4](t) s - lambda[4](t) gamma v

\
\ |
+ lambda[4](t) rho s + lambda[4](t) rho gamma v))| v - (mu + phi) v| +
/ /

// 1
lambda[3](t) ||1 + ---- (lambda (lambda[1](t) s + lambda[2](t) gamma v
\\ w[3]

- lambda[3](t) rho s - lambda[3](t) rho gamma v - lambda[4](t) s

\
- lambda[4](t) gamma v + lambda[4](t) rho s + lambda[4](t) rho gamma v))|
/

1 / 2 2
rho lambda (s + gamma v) + ---- \(1 - q) eta i (-lambda[3](t)
w[2]

\ \
+ lambda[3](t) q + lambda[4](t) - lambda[5](t) q)/ - (mu + beta + chi) c| +
/

/
| / 1
lambda[4](t) |(1 - rho) |1 + ---- (lambda (lambda[1](t) s
\ \ w[3]

+ lambda[2](t) gamma v - lambda[3](t) rho s - lambda[3](t) rho gamma v

- lambda[4](t) s - lambda[4](t) gamma v + lambda[4](t) rho s

\
+ lambda[4](t) rho gamma v))| lambda (s + gamma v) + chi c
/

2 2
eta i (-lambda[3](t) + lambda[3](t) q + lambda[4](t) - lambda[5](t) q)
- ------------------------------------------------------------------------
w[2]

\ /
| |
- (mu + alpha) i| + lambda[5](t) |beta c
/ \

+

2 2
eta i (-lambda[3](t) + lambda[3](t) q + lambda[4](t) - lambda[5](t) q) q
--------------------------------------------------------------------------
w[2]

\
|
- (mu + delta) r|
/
ode1:=diff(lambda[1](t),t)=-diff(H,s);ode2:=diff(lambda[2](t),t)=-diff(H,v);ode3:=diff(psi[3](t),t)=-diff(H,c);ode4:=diff(lambda[4](t),t)=-diff(H,i);ode5:=diff(lambda[5](t),t)=-diff(H,r);
d
--- lambda[1](t) = -lambda[1](t) (-lambda (1 - u[3]) - u[1] varphi - mu)
dt

- lambda[2](t) u[1] vartheta - lambda[3](t) (1 - u[3]) rho lambda

- lambda[4](t) (1 - rho) (1 - u[3]) lambda
d
--- lambda[2](t) = -lambda[1](t) phi
dt

- lambda[2](t) (-gamma lambda (1 - u[3]) - mu - phi)

- lambda[3](t) (1 - u[3]) rho lambda gamma

- lambda[4](t) (1 - rho) (1 - u[3]) lambda gamma
d
--- psi[3](t) = -lambda[3](t) (-mu - beta - chi) - lambda[4](t) chi
dt

- lambda[5](t) beta
d
--- lambda[4](t) = -lambda[3](t) (1 - q) u[2] eta
dt

- lambda[4](t) (-u[2] eta - mu - alpha) - lambda[5](t) u[2] q eta
d
--- lambda[5](t) = -lambda[1](t) delta - lambda[5](t) (-mu - delta)
dt
restart:
#Digits:=10:


unprotect('gamma');
lambda:=0.51:
mu:=0.002:
beta:=0.0115:
delta:=0.003:
alpha:=0.33:
chi:=0.00274:
k:=6.24:
gamma:=0.4:
rho:=0.338:;tau=1000:;Psi:=0.1:;p:=0.6:;phi:=0.001:;eta:=0.001124:q:=0.6:varphi:=0.9:;vatheta:=0.9:
b[1]:=2:;b[2]:=3:;w[1]:=4:;w[2]:=5:;w[3]:=6:
#u[1]:=s(t)*(lambda[1](t)*varphi-lambda[2](t)*vartheta)/w[1]:
#u[2]:=eta*i*(-lambda[3](t)+lambda[3](t)*q+lambda[4](t)-lambda[5](t)*q)/w[2]:;u[3]:=lambda*(-lambda[1](t)*s-lambda[2](t)*gamma*v+lambda[3](t)*rho*s+lambda[3](t)*rho*gamma*v+lambda[4](t)*s+lambda[4](t)*gamma*v-lambda[4](t)*rho*s-lambda[4](t)*rho*gamma*v)/w[3]:
ics := s(0)=8200, v(0)=2800,c(0)=1100,i(0)=1500,r(0)=200,lambda[1](20)=0,lambda[2](20)=0,lambda[3](20)=0,lambda[4](20)=0,lambda[5](20)=0:
ode1:=diff(s(t),t)=(1-p*Psi)*tau+phi* v(t) + delta *r(t)-lambda*(1-u[3])*s(t)-u[1]*varphi*s(t) -mu*s(t),
diff(v(t), t) =p*Psi*tau + u[1]*vartheta*s(t) -gamma*lambda* (1-u[3])*v(t)-(mu+phi)*v(t) ,
diff(c(t), t) =(1-u[3])*rho*lambda* (s(t) +gamma*v(t))+(1-q)* u[2]*eta*i(t) -(mu +beta +chi)*c(t),
diff(i(t), t) =(1-rho)*(1-u[3])*lambda*( s(t) +gamma*v(t)) +chi*c(t) - u[2]*eta*i(t) - (mu +alpha )*i(t),
diff(r(t), t) = beta*c(t) + u[2]*q*eta*i(t) -(mu +delta)*r(t),
diff(lambda[1](t), t) = -lambda[1](t)*(-lambda*(1-u[3])-u[1]*varphi-mu)-lambda[2](t)*u[1]*vartheta-lambda[3](t)*(1-u[3])*rho*lambda-lambda[4](t)*(1-rho)*(1-u[3])*lambda,diff(lambda[2](t),t)=-lambda[1](t)*phi-lambda[2](t)*(-gamma*lambda*(1-u[3])-mu-phi)-lambda[3](t)*(1-u[3])*rho*lambda*gamma-lambda[4](t)*(1-rho)*(1-u[3])*lambda*gamma,diff(lambda[3](t),t)=-lambda[3](t)*(-mu-beta-chi)-lambda[4](t)*chi-lambda[5](t)*beta,diff(lambda[4](t),t)=-lambda[3](t)*(1-q)*u[2]*eta-lambda[4](t)*(-u[2]*eta-mu-alpha)-lambda[5](t)*u[2]*q*eta,diff(lambda[5](t),t)=-lambda[1](t)*delta-lambda[5](t)*(-mu-delta);
d
--- s(t) = (1 - p Psi) tau + phi v(t) + delta r(t) - lambda (1 - u[3]) s(t)
dt

d
- u[1] varphi s(t) - mu s(t), --- v(t) = p Psi tau + u[1] vartheta s(t)
dt

d
- gamma lambda (1 - u[3]) v(t) - (mu + phi) v(t), --- c(t) = (1 - u[3]) rho lambda
dt

(s(t) + gamma v(t)) + (1 - q) u[2] eta - (mu + beta + chi) c(t), 0 = (1

- rho) (1 - u[3]) lambda (s(t) + gamma v(t)) + chi c(t) - u[2] eta - mu

d d
- alpha, --- r(t) = beta c(t) + u[2] q eta - (mu + delta) r(t), ---
dt dt

lambda[1](t) = -lambda[1](t) (-lambda (1 - u[3]) - u[1] varphi - mu)

- lambda[2](t) u[1] vartheta - lambda[3](t) (1 - u[3]) rho lambda

d
- lambda[4](t) (1 - rho) (1 - u[3]) lambda, --- lambda[2](t) =
dt
-lambda[1](t) phi - lambda[2](t) (-gamma lambda (1 - u[3]) - mu - phi)

- lambda[3](t) (1 - u[3]) rho lambda gamma

d
- lambda[4](t) (1 - rho) (1 - u[3]) lambda gamma, --- lambda[3](t) =
dt
d
-lambda[3](t) (-mu - beta - chi) - lambda[4](t) chi - lambda[5](t) beta, ---
dt

lambda[4](t) = -lambda[3](t) (1 - q) u[2] eta

- lambda[4](t) (-u[2] eta - mu - alpha) - lambda[5](t) u[2] q eta,

d
--- lambda[5](t) = -lambda[1](t) delta - lambda[5](t) (-mu - delta)
dt

sol := dsolve({c(0) = 0, i(0) = 0, r(0) = .1, s(0) = 0, v(0) = 0, diff(c(t), t) = (1-u[3])*rho*lambda*(s(t)+gamma*v(t))+(1-q)*u[2]*eta*i(t)-(mu+beta+chi)*c(t), diff(i(t), t) = (1-rho)*(1-u[3])*lambda*(s(t)+gamma*v(t))+chi*c(t)-u[2]*eta*i(t)-(mu+alpha)*i(t), diff(r(t), t) = beta*c(t)+u[2]*q*eta*i(t)-(mu+delta)*r(t), diff(s(t), t) = (1-p*Psi)*tau+phi*v(t)+delta*r(t)-lambda*(1-u[3])*s(t)-u[1]*varphi*s(t)-mu*s(t), diff(v(t), t) = p*Psi*tau+u[1]*vartheta*s(t)-gamma*lambda*(1-u[3])*v(t)-(mu+phi)*v(t), diff(lambda[1](t), t) = -lambda[1](t)*(-lambda*(1-u[3])-u[1]*varphi-mu)-lambda[2](t)*u[1]*vartheta-lambda[3](t)*(1-u[3])*rho*lambda-lambda[4](t)*(1-rho)*(1-u[3])*lambda, diff(lambda[2](t), t) = -lambda[1](t)*phi-lambda[2](t)*(-gamma*lambda*(1-u[3])-mu-phi)-lambda[3](t)*(1-u[3])*rho*lambda*gamma-lambda[4](t)*(1-rho)*(1-u[3])*lambda*gamma, diff(lambda[3](t), t) = -lambda[3](t)*(-mu-beta-chi)-lambda[4](t)*chi-lambda[5](t)*beta, diff(lambda[4](t), t) = -lambda[3](t)*(1-q)*u[2]*eta-lambda[4](t)*(-u[2]*eta-mu-alpha)-lambda[5](t)*u[2]*q*eta, diff(lambda[5](t), t) = -lambda[1](t)*delta-lambda[5](t)*(-mu-delta), lambda[1](20) = 0, lambda[2](20) = 0, lambda[3](20) = 0, lambda[4](20) = 0, lambda[5](20) = 0}, type = numeric);
Error, (in dsolve/numeric/process_input) invalid specification of initial conditions, got 1 = 0

sol:=dsolve([ode1,ics],numeric, method = bvp[midrich],maxmesh=500);

Error, (in dsolve/numeric/process_input) system must be entered as a set/list of expressions/equations

dsolve[':-interactive']({});
Error, `:=` unexpected
sol:=dsolve([ode1,ics],numeric, method = bvp[midrich],maxmesh=500);
Error, (in dsolve/numeric/process_input) system must be entered as a set/list of expressions/equations

eq1:=diff(s(t), t)=(1-p*Psi)*tau+phi* v(t) + delta *r(t)-lambda*(1-u[3])*s(t)-u[1]*varphi*s(t) -mu*s(t);
eq2:diff(v(t), t) =p*Psi*tau + u[1]*vartheta*s(t) -gamma*lambda* (1-u[3])*v(t)-(mu+phi)*v(t);
eq3:=diff(c(t), t) =(1-u[3])*rho*lambda* (s(t) +gamma*v(t))+(1-q)* u[2]*eta*i(t) -(mu +beta +chi)*c(t);
eq4:=diff(i(t), t) =(1-rho)*(1-u[3])*lambda*( s(t) +gamma*v(t)) +chi*c(t) - u[2]*eta*i(t) - (mu +alpha )*i(t);
eq5:=diff(r(t), t) = beta*c(t) + u[2]*q*eta*i(t) -(mu +delta)*r(t);

d
--- s(t) = (1 - p Psi) tau + phi v(t) + delta r(t) - lambda (1 - u[3]) s(t)
dt

- u[1] varphi s(t) - mu s(t)
d
--- v(t) = p Psi tau + u[1] vartheta s(t) - gamma lambda (1 - u[3]) v(t)
dt

- (mu + phi) v(t)
d
--- c(t) = (1 - u[3]) rho lambda (s(t) + gamma v(t)) + (1 - q) u[2] eta i(t)
dt

- (mu + beta + chi) c(t)
d
--- i(t) = (1 - rho) (1 - u[3]) lambda (s(t) + gamma v(t)) + chi c(t)
dt

- u[2] eta i(t) - (mu + alpha) i(t)
d
--- r(t) = beta c(t) + u[2] q eta i(t) - (mu + delta) r(t)
dt
eq6:=diff(Q(t),t)=b[1]*c(t)+b[2]*i(t)+w[1]*(u[1])^2/2+w[2]*(u[2])^2/2+w[3]*(u[3])^2/2;
d 1 2 1 2 1 2
--- Q(t) = b[1] c(t) + b[2] i(t) + - w[1] u[1] + - w[2] u[2] + - w[3] u[3]
dt 2 2 2
ics:=s(0)=8200, v(0)=2800,c(0)=1100,i(0)=1500,r(0)=200,Q(0)=6700;
s(0) = 8200, v(0) = 2800, c(0) = 1100, i(0) = 1500, r(0) = 200, Q(0) = 6700
sol0:=dsolve({eq1,eq2,eq3,eq4,eq5,eq6,ics},type=numeric,stiff=true,'parameters'=[u[1],u[2],u[3]],abserr=1e-15,relerr=1e-12,maxfun=0,range=0..50):
Error, (in dsolve/numeric/process_input) system must be entered as a set/list of expressions/equations
with(plots):
Q0:=6700;
6700
obj:=proc(u)
global sol0,Q0;
local ob1;
try
sol0('parameters'=[u[1],u[2],u[3]]):
ob1:=subs(sol0(20.),Q(t)):
catch :
ob1:=0;
end try;
#ob1:=subs(sol0(20.),Q(t));
if ob1>Q0 then Q0:=ob1;print(Q0,u);end;
ob1;
end proc;
proc(u) ... end;
obj([1,1,1]);
0
obj([3,2.5],4);
0
u0:=Vector(3,[0.,0.,0.],datatype=float[8]);
Vector[column](%id = 85973880)

Q0:=0;
Q0 := 0
with(Optimization);
[ImportMPS, Interactive, LPSolve, LSSolve, Maximize, Minimize, NLPSolve,

QPSolve]
sol2:=NLPSolve(3,obj,initialpoint=u0,method=nonlinearsimplex,maximize,evaluationlimit=100):
sol0('parameters'=[3.18125786060723, 2.36800986932868]);
sol0(parameters = [3.18125786060723, 2.36800986932868])
for i from 1 to 3 do odeplot(sol0,[t,x[i](t)],0..20,thickness=3,axes=boxed);od;
Error, (in plots/odeplot) input is not a valid dsolve/numeric solution

 

First 1109 1110 1111 1112 1113 1114 1115 Last Page 1111 of 2428