MaplePrimes Questions

For plotting phase plot of two system of equations (autonomous), is there an option to increase of reduce number of arrows/line drawn?  I am not able to find such an option from help.

Below is an example. Google AI says stepsize should change the number of arrows, but it does not. It had no effect. Below is worksheet showing one example where I like to reduce number of arrows (not the size of the arrow, which is set to medium now).

I also tried numpoints option and it had no effect of how many arrows are drawn

interface(version);

`Standard Worksheet Interface, Maple 2024.2, Windows 10, October 29 2024 Build ID 1872373`

the_sys:=[diff(x(t),t) = -3*x(t)-4*y(t), diff(y(t),t) = 2*x(t)+y(t)]:
DEtools:-DEplot(the_sys,[x(t), y(t)],t =0 .. 10,x = -4 .. 4,y = -4 .. 4,'labels' = [x(t),y(t)],'axes' = 'boxed', 'arrows'='medium')

 

 

Download change_number_of_arrows_jan_4_2025.mw

For reference, I'd like to do something similar using another system as below where it has option to change number of arrows.

On a similar track,

If you have a worksheet that contains a calculation and results that took very long to complete and saved with all the results, is it possible to load the maple worksheet, and let maple load all the results  and not execute all the commands.

Thereby you can immediately work further and dont have to completely recalculate the worksheet. ?

Basically a resume function for the worksheet. Will save a huge amount of time and I cannot see a reason why the worksheet cannot load just using the previously calculated results in the document.

every structure is true but my plot not run where is issue?
plot.mw

I've been trying to explore or animate a bode plot without success.  I kept simplifying things until I'm back to a basic example (attached).  I'm assuming there is an issue with trying to explore or animate a function that uses a system object, and am wondering if there is an apoproach that works with such structures.  I'm not a Maple jock by any means.

simple_bode.mw

thanks,

Brian

Hello

I programmed a sequence a(n). Up to a(42) Maple had no problem to calculate the term, but when calculating a(43), after a while appears the message

`System error, `, "bad id"

What does that mean and what can I do?
Thank you.

Using edit -> Find/Replace (or crtl-f) it is possible to earch for text composed of alpha numeric-characters. Maple finds all occurences in input an output.

For greek letters this works only for 1D Math input. Is there a way to find/search for greek symbols displayed on the GUI in 2D Math input and output like lambda in the below

?

something I always wondered about. On Maple website it says

Notice the date above., December 26.

On my Maple, with latest update, same version is printed, but the date is way off.

It says December 2, not 26.

Why is that? Should not the date be the same sicne same version 1840 of Physics update?

interface(version);

`Standard Worksheet Interface, Maple 2024.2, Windows 10, October 29 2024 Build ID 1872373`

Physics:-Version();

`The "Physics Updates" version in the MapleCloud is 1840 and is the same as the version installed in this computer, created 2024, December 2, 10:11 hours Pacific Time.`

 

 

Download physics_version.mw

I like the scrollable vectors up to a point. They seem to be unnecessarly width restricted. Is there any way to increase this? Could anything be added to the .ini file as the is an entry in there to disable them?

Also, if the command is entered again it is ok

Where is the backup directory of auto saves stored - windows?

When creating my account I was asked what type of user I am. Academic,Commercial, Government or Student.  None of those applies to me but I had to pick one.  Might I suggest a "catch all" category?  Something like "Ordinary, average guy" who just happens to like your software.

Happy New Year.👍

The goal is to eliminate x, y and z from [a^2=(4*y*z)/((x+y)*(x+z)),b^2=(4*z*x)/((y+z)*(y+x)),c^2=(4*x*y)/((z+x)*(z+y))]. However, eliminate only outputs a null expression (I added a  to emphasize it): 

restart;
expr := 4*[y*z/((x + y)*(x + z)), z*x/((y + z)*(y + x)), x*y/((z + x)*(z + y))]:
{eliminate}([a, b, c]**~2 =~ expr, [x, y, z]);
 = 
                               {}

Why is the result empty? 
In my view, the result should be (a*b*c)**2 = ((a**2 + b**2 + c**2) - 2**2)**2 (or its equivalent). One may verify this by: 

seq(seq(seq(
    is(eval((a^2 + b^2 + c^2 - 4)^2 = (a*b*c)^2, 
      elementwise([a, b, c] = [k1, k2, k3]*sqrt(expr)))), 
    `in`(k3, [-1, +1])), `in`(k2, [-1, +1])), `in`(k1, [-1, +1]));
 = 
         true, true, true, true, true, true, true, true

I’ve spent considerable effort trying to understand how the solution was derived, particularly the approach involving the factoring of G′/G. Despite my attempts, the methodology remains elusive. It seems there’s an innovative idea at play here—something beyond the techniques we’ve applied in similar problems before. While I suspect it involves a novel perspective, I can’t quite pinpoint what it might be.

If anyone has insights into how this factoring is achieved or can shed light on the underlying idea, I’d greatly appreciate your help.


 

restart

with(PDEtools)

with(LinearAlgebra)

with(Physics)

with(SolveTools)

undeclare(prime)

`There is no more prime differentiation variable; all derivatives will be displayed as indexed functions`

(1)

_local(gamma)

Warning, A new binding for the name `gamma` has been created. The global instance of this name is still accessible using the :- prefix, :-`gamma`.  See ?protect for details.

 

declare(Omega(x, t)); declare(U(xi)); declare(u(x, y, z, t)); declare(Q(xi)); declare(V(xi))

Omega(x, t)*`will now be displayed as`*Omega

 

U(xi)*`will now be displayed as`*U

 

u(x, y, z, t)*`will now be displayed as`*u

 

Q(xi)*`will now be displayed as`*Q

 

V(xi)*`will now be displayed as`*V

(2)

``

ode := (-V*a[2]+a[1])*(diff(diff(U(xi), xi), xi))+U(xi)*(((-gamma+sigma)*k+b)*U(xi)^2-a[1]*k^2+(w*a[2]-alpha)*k-w) = 0

(-V*a[2]+a[1])*(diff(diff(U(xi), xi), xi))+U(xi)*(((-gamma+sigma)*k+b)*U(xi)^2-a[1]*k^2+(w*a[2]-alpha)*k-w) = 0

(3)

F := sum(c[i]*(m+(diff(G(xi), xi))/G(xi))^i, i = -1 .. 1)

c[-1]/(m+(diff(G(xi), xi))/G(xi))+c[0]+c[1]*(m+(diff(G(xi), xi))/G(xi))

(4)

D1 := diff(F, xi)

-c[-1]*((diff(diff(G(xi), xi), xi))/G(xi)-(diff(G(xi), xi))^2/G(xi)^2)/(m+(diff(G(xi), xi))/G(xi))^2+c[1]*((diff(diff(G(xi), xi), xi))/G(xi)-(diff(G(xi), xi))^2/G(xi)^2)

(5)

S := diff(G(xi), `$`(xi, 2)) = -(2*m*mu+lambda)*(diff(G(xi), xi))-mu

diff(diff(G(xi), xi), xi) = -(2*m*mu+lambda)*(diff(G(xi), xi))-mu

(6)

E1 := subs(S, D1)

-c[-1]*((-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)/G(xi)-(diff(G(xi), xi))^2/G(xi)^2)/(m+(diff(G(xi), xi))/G(xi))^2+c[1]*((-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)/G(xi)-(diff(G(xi), xi))^2/G(xi)^2)

(7)

D2 := diff(E1, xi)

2*c[-1]*((-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)/G(xi)-(diff(G(xi), xi))^2/G(xi)^2)*((diff(diff(G(xi), xi), xi))/G(xi)-(diff(G(xi), xi))^2/G(xi)^2)/(m+(diff(G(xi), xi))/G(xi))^3-c[-1]*(-(2*m*mu+lambda)*(diff(diff(G(xi), xi), xi))/G(xi)-(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)*(diff(G(xi), xi))/G(xi)^2-2*(diff(G(xi), xi))*(diff(diff(G(xi), xi), xi))/G(xi)^2+2*(diff(G(xi), xi))^3/G(xi)^3)/(m+(diff(G(xi), xi))/G(xi))^2+c[1]*(-(2*m*mu+lambda)*(diff(diff(G(xi), xi), xi))/G(xi)-(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)*(diff(G(xi), xi))/G(xi)^2-2*(diff(G(xi), xi))*(diff(diff(G(xi), xi), xi))/G(xi)^2+2*(diff(G(xi), xi))^3/G(xi)^3)

(8)

E2 := subs(S, D2)

2*c[-1]*((-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)/G(xi)-(diff(G(xi), xi))^2/G(xi)^2)^2/(m+(diff(G(xi), xi))/G(xi))^3-c[-1]*(-(2*m*mu+lambda)*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)/G(xi)-3*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)*(diff(G(xi), xi))/G(xi)^2+2*(diff(G(xi), xi))^3/G(xi)^3)/(m+(diff(G(xi), xi))/G(xi))^2+c[1]*(-(2*m*mu+lambda)*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)/G(xi)-3*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)*(diff(G(xi), xi))/G(xi)^2+2*(diff(G(xi), xi))^3/G(xi)^3)

(9)

D3 := diff(E2, xi)

-6*c[-1]*((-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)/G(xi)-(diff(G(xi), xi))^2/G(xi)^2)^2*((diff(diff(G(xi), xi), xi))/G(xi)-(diff(G(xi), xi))^2/G(xi)^2)/(m+(diff(G(xi), xi))/G(xi))^4+4*c[-1]*((-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)/G(xi)-(diff(G(xi), xi))^2/G(xi)^2)*(-(2*m*mu+lambda)*(diff(diff(G(xi), xi), xi))/G(xi)-(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)*(diff(G(xi), xi))/G(xi)^2-2*(diff(G(xi), xi))*(diff(diff(G(xi), xi), xi))/G(xi)^2+2*(diff(G(xi), xi))^3/G(xi)^3)/(m+(diff(G(xi), xi))/G(xi))^3+2*c[-1]*(-(2*m*mu+lambda)*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)/G(xi)-3*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)*(diff(G(xi), xi))/G(xi)^2+2*(diff(G(xi), xi))^3/G(xi)^3)*((diff(diff(G(xi), xi), xi))/G(xi)-(diff(G(xi), xi))^2/G(xi)^2)/(m+(diff(G(xi), xi))/G(xi))^3-c[-1]*((2*m*mu+lambda)^2*(diff(diff(G(xi), xi), xi))/G(xi)+(2*m*mu+lambda)*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)*(diff(G(xi), xi))/G(xi)^2+3*(2*m*mu+lambda)*(diff(diff(G(xi), xi), xi))*(diff(G(xi), xi))/G(xi)^2+6*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)*(diff(G(xi), xi))^2/G(xi)^3-3*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)*(diff(diff(G(xi), xi), xi))/G(xi)^2+6*(diff(G(xi), xi))^2*(diff(diff(G(xi), xi), xi))/G(xi)^3-6*(diff(G(xi), xi))^4/G(xi)^4)/(m+(diff(G(xi), xi))/G(xi))^2+c[1]*((2*m*mu+lambda)^2*(diff(diff(G(xi), xi), xi))/G(xi)+(2*m*mu+lambda)*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)*(diff(G(xi), xi))/G(xi)^2+3*(2*m*mu+lambda)*(diff(diff(G(xi), xi), xi))*(diff(G(xi), xi))/G(xi)^2+6*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)*(diff(G(xi), xi))^2/G(xi)^3-3*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)*(diff(diff(G(xi), xi), xi))/G(xi)^2+6*(diff(G(xi), xi))^2*(diff(diff(G(xi), xi), xi))/G(xi)^3-6*(diff(G(xi), xi))^4/G(xi)^4)

(10)

E3 := subs(S, D3)

-6*c[-1]*((-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)/G(xi)-(diff(G(xi), xi))^2/G(xi)^2)^3/(m+(diff(G(xi), xi))/G(xi))^4+6*c[-1]*((-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)/G(xi)-(diff(G(xi), xi))^2/G(xi)^2)*(-(2*m*mu+lambda)*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)/G(xi)-3*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)*(diff(G(xi), xi))/G(xi)^2+2*(diff(G(xi), xi))^3/G(xi)^3)/(m+(diff(G(xi), xi))/G(xi))^3-c[-1]*((2*m*mu+lambda)^2*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)/G(xi)+4*(2*m*mu+lambda)*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)*(diff(G(xi), xi))/G(xi)^2+12*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)*(diff(G(xi), xi))^2/G(xi)^3-3*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)^2/G(xi)^2-6*(diff(G(xi), xi))^4/G(xi)^4)/(m+(diff(G(xi), xi))/G(xi))^2+c[1]*((2*m*mu+lambda)^2*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)/G(xi)+4*(2*m*mu+lambda)*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)*(diff(G(xi), xi))/G(xi)^2+12*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)*(diff(G(xi), xi))^2/G(xi)^3-3*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)^2/G(xi)^2-6*(diff(G(xi), xi))^4/G(xi)^4)

(11)

``

NULL

K := U(xi) = F

K1 := diff(U(xi), xi) = E1

K2 := diff(U(xi), `$`(xi, 2)) = E2

K3 := diff(U(xi), `$`(xi, 3)) = E3

``

L := eval(ode, {K, K1, K2, K3})

(-V*a[2]+a[1])*(2*c[-1]*((-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)/G(xi)-(diff(G(xi), xi))^2/G(xi)^2)^2/(m+(diff(G(xi), xi))/G(xi))^3-c[-1]*(-(2*m*mu+lambda)*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)/G(xi)-3*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)*(diff(G(xi), xi))/G(xi)^2+2*(diff(G(xi), xi))^3/G(xi)^3)/(m+(diff(G(xi), xi))/G(xi))^2+c[1]*(-(2*m*mu+lambda)*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)/G(xi)-3*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)*(diff(G(xi), xi))/G(xi)^2+2*(diff(G(xi), xi))^3/G(xi)^3))+(c[-1]/(m+(diff(G(xi), xi))/G(xi))+c[0]+c[1]*(m+(diff(G(xi), xi))/G(xi)))*(((-gamma+sigma)*k+b)*(c[-1]/(m+(diff(G(xi), xi))/G(xi))+c[0]+c[1]*(m+(diff(G(xi), xi))/G(xi)))^2-a[1]*k^2+(w*a[2]-alpha)*k-w) = 0

(12)

NULL

# rewritting rule

RR := isolate(m+diff(G(xi), xi)/(G(xi))=Phi, diff(G(xi), xi)/G(xi));

(diff(G(xi), xi))/G(xi) = Phi-m

(13)

# Apply RR and collect wrt Phi

subs(RR, L):
normal(%):
PhiN := collect(numer(lhs(%)), phi):
PhiD := denom(lhs(%%));

Phi^3*G(xi)^4

(14)



with(LargeExpressions):

LLE := collect(PhiN, Phi, Veil[phi] ):
LLE / PhiD = 0;

(Phi^6*phi[1]+3*Phi^5*phi[2]-Phi^4*phi[3]-Phi^3*phi[4]-Phi^2*phi[5]+Phi*phi[6]-phi[7])/(Phi^3*G(xi)^4) = 0

(15)

# phi[i] coefficients


phis := [ seq( phi[i] = simplify(Unveil[phi](phi[i]), size), i=1..LastUsed[phi] ) ]:

print~( phis ):

phi[1] = c[1]^3*G(xi)^4*((-gamma+sigma)*k+b)

 

phi[2] = c[0]*G(xi)^4*c[1]^2*((-gamma+sigma)*k+b)

 

phi[3] = -3*G(xi)^4*c[1]*(-(1/3)*a[1]*k^2+(-c[-1]*(gamma-sigma)*c[1]+(-gamma+sigma)*c[0]^2+(1/3)*w*a[2]-(1/3)*alpha)*k+b*c[-1]*c[1]+b*c[0]^2-(1/3)*w)

 

phi[4] = G(xi)*(2*c[1]*(V*a[2]-a[1])*(diff(G(xi), xi))^3+3*c[1]*G(xi)*(2*m*mu+lambda)*(V*a[2]-a[1])*(diff(G(xi), xi))^2+((2*m*mu+lambda)^2*G(xi)+3*mu)*(V*a[2]-a[1])*G(xi)*c[1]*(diff(G(xi), xi))+G(xi)^2*(-c[0]*(6*c[-1]*((-gamma+sigma)*k+b)*c[1]-a[1]*k^2+k*w*a[2]+((-gamma+sigma)*k+b)*c[0]^2-k*alpha-w)*G(xi)+c[1]*mu*(2*m*mu+lambda)*(V*a[2]-a[1])))

 

phi[5] = -3*G(xi)^4*(-(1/3)*a[1]*k^2+(-c[-1]*(gamma-sigma)*c[1]+(-gamma+sigma)*c[0]^2+(1/3)*w*a[2]-(1/3)*alpha)*k+b*c[-1]*c[1]+b*c[0]^2-(1/3)*w)*c[-1]

 

phi[6] = 4*c[-1]*((1/2)*(V*a[2]-a[1])*(diff(G(xi), xi))^3+(3/2)*(m*mu+(1/2)*lambda)*(V*a[2]-a[1])*G(xi)*(diff(G(xi), xi))^2+(V*a[2]-a[1])*((m*mu+(1/2)*lambda)^2*G(xi)+(3/4)*mu)*G(xi)*(diff(G(xi), xi))+(1/2)*G(xi)^2*((3/2)*c[-1]*((-gamma+sigma)*k+b)*c[0]*G(xi)+(m*mu+(1/2)*lambda)*(V*a[2]-a[1])*mu))*G(xi)

 

phi[7] = 8*((1/4)*(V*a[2]-a[1])*(diff(G(xi), xi))^4+(V*a[2]-a[1])*G(xi)*(m*mu+(1/2)*lambda)*(diff(G(xi), xi))^3+(V*a[2]-a[1])*G(xi)*((m*mu+(1/2)*lambda)^2*G(xi)+(1/2)*mu)*(diff(G(xi), xi))^2+(V*a[2]-a[1])*G(xi)^2*(m*mu+(1/2)*lambda)*mu*(diff(G(xi), xi))+(1/4)*G(xi)^2*(-(1/2)*((-gamma+sigma)*k+b)*c[-1]^2*G(xi)^2+mu^2*(V*a[2]-a[1])))*c[-1]

(16)

# WATCHOUT: you have 9 coefficients and so its desirable to have the same number of unknowns

unknowns := indets(rhs~(phis), name);

COEFFS := solve(rhs~(phis), unknowns)

{V, alpha, b, gamma, k, lambda, m, mu, sigma, w, xi, a[1], a[2], c[-1], c[0], c[1]}

 

Error, (in solve) cannot solve expressions with diff(G(xi),xi) for xi

 

NULL

case1 := COEFFS[4]

{alpha = alpha, beta = gamma, delta = delta, gamma = gamma, k = k, lambda = 0, m = 2*n, mu = mu, n = n, sigma = 32*alpha*mu^2*n^4/a[-1]^2, w = -2*alpha*k^2*n-4*alpha*mu^2*n+delta^2, a[-1] = a[-1], a[0] = 0, a[1] = 0}

(17)

NULL

F1 := subs(case1, F)

a[-1]/(2*n+1/(diff(G(xi), xi)))

(18)

F2 := subs(case1, ode)

128*V(xi)^4*n^6*alpha*mu^2/a[-1]^2+(16*alpha*k^2*n^4-8*delta^2*n^3+8*n^3*(-2*alpha*k^2*n-4*alpha*mu^2*n+delta^2))*V(xi)^2-4*V(xi)*(diff(diff(V(xi), xi), xi))*alpha*n^2 = 0

(19)

W := V(xi) = F1

V(xi) = a[-1]/(2*n+1/(diff(G(xi), xi)))

(20)

NULL

E := diff(G(xi), xi) = -(-2*m*mu-lambda)*exp(-(2*m*mu+lambda)*xi)*c__1/(2*m*mu+lambda)-mu/(2*m*mu+lambda)

diff(G(xi), xi) = -(-2*m*mu-lambda)*exp(-(2*m*mu+lambda)*xi)*c__1/(2*m*mu+lambda)-mu/(2*m*mu+lambda)

(21)

W1 := subs(E, W)

V(xi) = a[-1]/(2*n+1/(-(-2*m*mu-lambda)*exp(-(2*m*mu+lambda)*xi)*c__1/(2*m*mu+lambda)-mu/(2*m*mu+lambda)))

(22)

W2 := subs(case1, W1)

V(xi) = a[-1]/(2*n+1/(exp(-4*mu*n*xi)*c__1-(1/4)/n))

(23)

W3 := rhs(V(xi) = a[-1]/(2*n+1/(exp(-4*mu*n*xi)*c__1-(1/4)/n)))

a[-1]/(2*n+1/(exp(-4*mu*n*xi)*c__1-(1/4)/n))

(24)

W4 := convert(W3, trig)

a[-1]/(2*n+1/((cosh(4*mu*n*xi)-sinh(4*mu*n*xi))*c__1-(1/4)/n))

(25)

W5 := W4

a[-1]/(2*n+1/((cosh(4*mu*n*xi)-sinh(4*mu*n*xi))*c__1-(1/4)/n))

(26)

odetest(W2, F2)

0

(27)
 

``

Download problem99.mw

This is probaby more of a software request and I think it would be useful. 

You can obviously open two worksheets of maple and tile them vertically to give the effect of a split screen but then all the icons of each worksheet reduce the visible on screen real estate in which you can work.

It should work similar to how Excel does it when you split cells.  It would work nicely in situations where you have a diagram or picture you are referring to during the creation of your worksheet. 

Anyways just a request, I'm sure some people would find that functionality welcome. 

I have a global matrix with a default value set in a module. I also need the inverse of the matrix. Can the module do this?  I don't really want to have to get routines to calculate the inverse every time they are called.

restart

``

TM := module () local invMetric; export foo, bar; global Metric;  Metric := Matrix(3, shape = symmetric, [[1, 0, 0], [0, 1, 0], [0, 0, 1]]); invMetric := LinearAlgebra:-MatrixInverse(rtable_eval(Metric, 'inplace')); foo := proc () print('Metric' = Metric) end proc; bar := proc () print('invMetric' = invMetric) end proc end module

_m2278573910560

(1)

TM:-foo()

Metric = Matrix(%id = 36893490426002737860)

(2)

TM:-bar()

invMetric = Matrix(%id = 36893490426002738460)

(3)

Metric := Matrix(3, 3, {(1, 1) = 1, (1, 2) = 0, (1, 3) = 0, (2, 1) = 0, (2, 2) = 1, (2, 3) = 0, (3, 1) = 0, (3, 2) = 0, (3, 3) = -2})

Matrix(%id = 36893490426002715820)

(4)

TM:-foo()

Metric = Matrix(%id = 36893490426002715820)

(5)

TM:-bar()

invMetric = Matrix(%id = 36893490426002738460)

(6)

NULL

Download 2024-12-30_Q_Module_Global_and_Local.mw

Hello 

I have a 3D vector plot with 3 vectors. It would be nice to have a legend for this, but so far, I have struggled to find a solution.

At the moment, I use a caption for this, but I am not fully happy with this.legend_question.mw 

Is there a simple solution?

Thanks in advance 

First 41 42 43 44 45 46 47 Last Page 43 of 2425