MaplePrimes Questions

Hi I am trying to get Maple to find for which value k two parametric lines intersect using geom3d package. Is that possible?

my code is as follows. 

restart; with(geom3d);

#First I define the the point and vector to construct the line l.

point(P, 1, 0, -2);
 
v := [1, 1, 2];
                    
line(l, {P, v});

Equation(l) = [1 + t, t, -2 + 2 t]
 

#Next I try to define the line m. 
line(m, [k*s+4, 2*s, 3*s], s)

but how (if possible to I get the line to take in the second paramter k? 

and if its possible? which syntax do I use in the intersection-command to get Maple to print out the value k? so it still uses the parameter s for the intersection? 

best regards 

Fred

I want to include the result of an evaluation in a document block that is included in a workbook. It is easy to write sin(Pi) and obtatin sin(Pi)=0 in your document block. Howwever in the case below I want to preserve only y=x/3  removing the isolate(...) expression. Does anyone know if this can be done and if so how to do it?
 

x = 3*y

x = 3*y

(1)

``

Here  is an inline evaluation of a previous formula isolate(x = 3*y, y) = y = (1/3)*xwhere we have an uneeded '=' sign which can be edited out easily. But is it possible to hide the formula that is evaluated leaving only the output inline and to do this only for the current document block?


Thanks for any help.

Download maple_query_document_blocks.mw

please help me out with maple code/script for "SPIN TOY PENDULUM" using its differential equation..

please help me out with maple code/script for vander pol limit cycle using its differential equation..

Hi!

 

Is it possible to get step by step solution for:

- Laplace

- taylor

- fourie

Thanks for answers!

cone_rail_track_Maple.mws

The attached program is of a point moving along a conical path of a cone, then doing a descent back to the start.   For values R=60, r=20, h=10 the animation seems to work reasonably well.  However when r=19 - only a small change - the development plot of the cone is only partially shown?   Also, I have some variables nameP1, nameP2 which I would like to alter the color of.  Howdo I do this?

  Any comments or help most appreciated. 

restart;

PDEtools[declare]((f, g)(x), prime = x);

de1 := diff(f(x), x, x, x, x)-(H*H)*(diff(f(x), x, x))-R*(diff(f(x), x, x))*(diff(f(x), x))+R*(diff(f(x), x, x, x))*f(x);

de2 := diff(g(x), x, x)-(H*H)*g(x)-R*(diff(f(x), x))*g(x)+R*(diff(g(x), x))*f(x); R := 1; H := 1;

dd1 := {de1 = 0, de2 = 0, f(0) = 0, f(1) = 1, g(0) = 1, g(1) = 1, (D(f))(0) = 0, (D(f))(1) = 0};

r1 := dsolve(dd1, numeric, output = Array([0., 0.5e-1, .10, .15, .20, .25, .30, .35, .40, .45, .50, .55, .60, .65, .70, .75, .80, .85, .90, .95, 1.00]));

restart;

PDEtools[declare]((f, g)(x), prime = x);

de1 := diff(f(x), x, x, x, x)-(H*H)*(diff(f(x), x, x))-R*(diff(f(x), x, x))*(diff(f(x), x))+R*(diff(f(x), x, x, x))*f(x);

de2 := diff(g(x), x, x)-(H*H)*g(x)-R*(diff(f(x), x))*g(x)+R*(diff(g(x), x))*f(x); R := 5; H := 5;

dd1 := {de1 = 0, de2 = 0, f(0) = 0, f(1) = 1, g(0) = 1, g(1) = 1, (D(f))(0) = 0, (D(f))(1) = 0};

r2 := dsolve(dd1, numeric, output = Array([0., 0.5e-1, .10, .15, .20, .25, .30, .35, .40, .45, .50, .55, .60, .65, .70, .75, .80, .85, .90, .95, 1.00]));

odeplot({r1, r2}, [x, f(x)]);
print(`output redirected...`); # input placeholder
                f(x) will now be displayed as f
 

I tried to open Maple but it just won't launch it just stays in the loading screen but it doesn't load. I tried everything Uninstalled it and installed it again, uninstalled Java and installed it again, updated all my drivers but it just seems like it doesn't work. Please help if you can.

Hi!

I have been using Maple for the last three years with almost no complaints. Great product. 
However recently I have acquired a new laptop and upon installing Maple I noticed the GUI appeared different from my past experience. Some "buttons" are now tiny and severely impractical to click:

 

As you can see the X-icon use to close individual sheets is tiny and so are the "click and drag" squares in the corners of the plot. The problem extends to other objects/buttons not shown in the picture.

The toolbar icons are NOT a problem.

My screen resolution is 3840x2160 and the high resolution must be the problem but when i lower my display resolution nothing changes. 

Any help will be greatly appreciated!

Hello,

     I'm attempting to solve a rather trivial trigonometric equation, but solve seems to be behaving rather inconsistently. If I attempt this equation

eq := G*cos(x+C1) = A*sin(x):
vars :=  {G, C1, x}:

solve(eq, vars);

it returns the correct, expected result

{C1 = -1/2*Pi, G = A, x = x}, {C1 = 1/2*Pi, G = -A, x = x}, {C1 = C1, G = G, x = arctan(cos(C1)*G/(G*sin(C1)+A))}

However, if I remove x from the list vars of variables for which to solve, I expect it to return the first two elements, {C1 = -1/2*Pi, G = A}, {C1 = 1/2*Pi, G = -A}. However, this isn't what happens. Instead, solve returns {C1 = C1, G = A*sin(x)/cos(x+C1)}; it's true that this is a valid solution, but it seems to be missing the two I want. Is there a way to recover the desired solutions?

And a related question: even without removing x from vars, solve appears to have trouble with the equation. Simply changing sin to cos, as so

eq := G*cos(x+C1) = A*cos(x):
vars :=  {G, C1, x}:

solve(eq, vars);

Now only returns

{C1 = C1, G = G, x = arctan((G*cos(C1)-A)/sin(C1)/G)}, {C1 = C1, G = G, x = arctan((-G*cos(C1)-A)/sin(C1)/G)}

That is, it is missing the expected solutions {C1 = 0, G = A}, {C1 = Pi, G = -A}. Is there a reason for this difference?

Thank you very much!

Hi,

I would like to do some computations with Maple using elliptic functions. The implementation in Maple wants me to provide the g2 and g3 invariants. However, what I have is the half-periods. Does Maple have a function, that calculates the invariants from the half-periods? I know I can do that myself, but I'd like to write something concise and probably the output of a built-in function will be precisely, what the other functions are looking for.

Thanks in advance

Hi, I'm a new user of Maple 2016.  I'm plotting a surface using plot3d and I'd like to add a line on the surface. You can see my unsatisfying attempt to do this below.  The line that shows in the third figure is basically what I want to show but I don't want the rest of the second surface at all, just the line visible on the first surface.  

thanks

Tom 
 

 

NULL

p1 := plot3d((1/2)*(-100+(1/2)*(200*Ab__T+200*Ag__T+20000)/sqrt(Ab__T^2-2*Ab__T*Ag__T+Ag__T^2+200*Ab__T+200*Ag__T+10000))/Ab__T, Ab__T = 1 .. 1000, Ag__T = 10 .. 1000, axis[1, 2] = [mode = log])

 

NULL

I next want to add a line along the "ridge" in the figure. I'll try using a proc

 

 

p2 := proc (Ab__T, Ag__T) if abs(Ab__T-Ag__T+100) < 10 then (1/2)*(-100+(1/2)*(200*Ab__T+200*Ag__T+20000)/sqrt(Ab__T^2-2*Ab__T*Ag__T+Ag__T^2+200*Ab__T+200*Ag__T+10000))/Ab__T else 0 end if end proc:

p3 := plot3d(p2, 1 .. 1000, 10 .. 1000, grid = [200, 200])

 

plots:-display(p1, p3)

 

``


 

Download surface_plot_question.mw
 

{{(1/2)*(-100+(1/2)*(200*Ab__T+200*Ag__T+20000)/(Ab__T^2-2*Ab__T*Ag__T+Ag__T^2+200*Ab__T+200*Ag__T+10000)^(1/2))/Ab__T}}

(1)

NULL

p1 := plot3d((1/2)*(-100+(1/2)*(200*Ab__T+200*Ag__T+20000)/sqrt(Ab__T^2-2*Ab__T*Ag__T+Ag__T^2+200*Ab__T+200*Ag__T+10000))/Ab__T, Ab__T = 1 .. 1000, Ag__T = 10 .. 1000, axis[1, 2] = [mode = log])

 

NULL

I next want to add a line along the "ridge" in the figure. I'll try using a proc

 

 

p2 := proc (Ab__T, Ag__T) if abs(Ab__T-Ag__T+100) < 10 then (1/2)*(-100+(1/2)*(200*Ab__T+200*Ag__T+20000)/sqrt(Ab__T^2-2*Ab__T*Ag__T+Ag__T^2+200*Ab__T+200*Ag__T+10000))/Ab__T else 0 end if end proc:

p3 := plot3d(p2, 1 .. 1000, 10 .. 1000, grid = [200, 200])

 

plots:-display(p1, p3)

 

``


 

Download surface_plot_question.mw

 

Hello, I have a simple system that I'm attempting to solve:

eq:={r*cos(c) = a, r*sin(c) = 0}:

If I pass this system to solve(eq, {r,c}), it correctly returns the results {c = 0, r = a}, {c = Pi, r = -a}. However, PDEtools:-Solve(eq, {r,c}) does not find a solution. Even adding the option 'solver'='solve' doesn't help.

According to its help page, PDEtools/Solve is a unified command for solving algebraic or differential equations, so I would expect it to easily handle this system. Is there an additional option I should be passing PDEtools/Solve to make it work like solve in this case?

Thanks!

The only difference between the code that works and the code that doesnt, is that in one Identity is rearranged to as such that the rhs is 0, i am really really curious to work out why this occurs, the only difference is that one evaluates to 1/2=1/2, and the other evaluates to 0=0, but i dont see why maple would return one of those evaluations as false
 

``

 

 

delta(x, y) = piecewise(x = y, 1, x <> y, 0)

 

{x}*is*the*fractional*part*of*x

 

``

 

 

`&Mscr;`(p, q) = {`mod`(p, q)+(1/4)*q*(q-1)}

"`&Dscr;`(q)="
1-(delta({(1/4)*q}, 0)+delta({(1/4)*q}, 0))+delta({(1/4)*q}, 0)*delta({(q-1)*(1/4)}, 0)+1/2*(delta({(q-2)*(1/4)}, 0)+delta({(1/4)*q}, 0)-delta({(q-2)*(1/4)}, 0)*delta({(q-3)*(1/4)}, 0))

 

 

CONJECTURE: c`in`(p, q, nonnegint^2)", `&Mscr;`(p,q)=`&Dscr;`(q)"

 

CHALLENGE: FIND: `in`(p, q, integer^2*such*that*`&Mscr;`(p, q)) and integer^2*such*that*`&Mscr;`(p, q) <> `&Dscr;`(p, q)

 

 

2, 3, 6, 7, 10, 11, 14, 15, 18, 19

 

{`mod`(p[i], p[j])+(1/4)*p[j]*(p[j]-1)} = 1-delta({(1/4)*p[j]}, 0)-delta({(p[j]-1)*(1/4)}, 0)+delta({(1/4)*p[j]}, 0)*delta({(p[j]-1)*(1/4)}, 0)+1/2*(delta({(p[j]-2)*(1/4)}, 0)+delta({(p[j]-3)*(1/4)}, 0)-delta({(p[j]-2)*(1/4)}, 0)*delta({(p[j]-3)*(1/4)}, 0))

 

 

{`mod`(p[i], p[j])+(1/4)*p[j]*(p[j]-1)} = 1-delta({(1/4)*p[j]}, 0)-delta({(p[j]-1)*(1/4)}, 0)+delta({(1/4)*p[j]}, 0)*delta({(p[j]-1)*(1/4)}, 0)+1/2*(delta({(p[j]-2)*(1/4)}, 0)+delta({(p[j]-3)*(1/4)}, 0)-delta({(p[j]-2)*(1/4)}, 0)*delta({(p[j]-3)*(1/4)}, 0))

2, 3, 6, 7, 10, 11, 14, 15, 18, 19

Numbers congruent to 2 or 3 mod 4.

 

NULL

NULL

WHEN ALL TERMS ARE PLACED ON THE LHS AND 0 ON THE OTHER, THE OUTPUT PLACES ALL p,q IN THE SET T, AS I EXPECTED.

restart; S := {}; with(combinat); with(numtheory); T := {}; F := {}; C := {}; AlphaTotal := {}; BetaTotal := {}

delta := proc (x, y) options operator, arrow; piecewise(x = y, 1, x <> y, 0) end proc

Identity := proc (p, q) options operator, arrow; frac(`mod`(p, q)+(1/4)*q*(q-1))+delta(frac((1/4)*q), 0)+delta(frac((1/4)*q-1/4), 0)-delta(frac((1/4)*q), 0)*delta(frac((1/4)*q-1/4), 0)+(1/2)*delta(frac((1/4)*q-1/2), 0)+(1/2)*delta(frac((1/4)*q-3/4), 0)-(1/2)*delta(frac((1/4)*q-1/2), 0)*delta(frac((1/4)*q-3/4), 0)-1 = 0 end proc

NULL

GenerateOddPrimeNumberPairs := proc (N) options operator, arrow; choose([seq(ithprime(k), k = 1 .. N)], 2) end proc

AssignToTrueOrFalseSet := proc (x, y) global T, F; if is(Identity(x, y)) = true then T := `union`({[x, y]}, T) else F := `union`({[x, y]}, F) end if end proc

QueryIdentity := proc (N) local P, k; P := GenerateOddPrimeNumberPairs(N); for k to nops(P) do AssignToTrueOrFalseSet(P[k][1], P[k][2]) end do end proc

QueryIdentity(20); T; F

{[2, 3], [2, 5], [2, 7], [2, 11], [2, 13], [2, 17], [2, 19], [2, 23], [2, 29], [2, 31], [2, 37], [2, 41], [2, 43], [2, 47], [2, 53], [2, 59], [2, 61], [2, 67], [2, 71], [3, 5], [3, 7], [3, 11], [3, 13], [3, 17], [3, 19], [3, 23], [3, 29], [3, 31], [3, 37], [3, 41], [3, 43], [3, 47], [3, 53], [3, 59], [3, 61], [3, 67], [3, 71], [5, 7], [5, 11], [5, 13], [5, 17], [5, 19], [5, 23], [5, 29], [5, 31], [5, 37], [5, 41], [5, 43], [5, 47], [5, 53], [5, 59], [5, 61], [5, 67], [5, 71], [7, 11], [7, 13], [7, 17], [7, 19], [7, 23], [7, 29], [7, 31], [7, 37], [7, 41], [7, 43], [7, 47], [7, 53], [7, 59], [7, 61], [7, 67], [7, 71], [11, 13], [11, 17], [11, 19], [11, 23], [11, 29], [11, 31], [11, 37], [11, 41], [11, 43], [11, 47], [11, 53], [11, 59], [11, 61], [11, 67], [11, 71], [13, 17], [13, 19], [13, 23], [13, 29], [13, 31], [13, 37], [13, 41], [13, 43], [13, 47], [13, 53], [13, 59], [13, 61], [13, 67], [13, 71], [17, 19], [17, 23], [17, 29], [17, 31], [17, 37], [17, 41], [17, 43], [17, 47], [17, 53], [17, 59], [17, 61], [17, 67], [17, 71], [19, 23], [19, 29], [19, 31], [19, 37], [19, 41], [19, 43], [19, 47], [19, 53], [19, 59], [19, 61], [19, 67], [19, 71], [23, 29], [23, 31], [23, 37], [23, 41], [23, 43], [23, 47], [23, 53], [23, 59], [23, 61], [23, 67], [23, 71], [29, 31], [29, 37], [29, 41], [29, 43], [29, 47], [29, 53], [29, 59], [29, 61], [29, 67], [29, 71], [31, 37], [31, 41], [31, 43], [31, 47], [31, 53], [31, 59], [31, 61], [31, 67], [31, 71], [37, 41], [37, 43], [37, 47], [37, 53], [37, 59], [37, 61], [37, 67], [37, 71], [41, 43], [41, 47], [41, 53], [41, 59], [41, 61], [41, 67], [41, 71], [43, 47], [43, 53], [43, 59], [43, 61], [43, 67], [43, 71], [47, 53], [47, 59], [47, 61], [47, 67], [47, 71], [53, 59], [53, 61], [53, 67], [53, 71], [59, 61], [59, 67], [59, 71], [61, 67], [61, 71], [67, 71]}

 

{}

(1)

BUT WHEN THE EQUALITY IS DEFINED AS FOLLOWS, SOME RESULTS ARE PLACED IN THE F SET. (INDICATING THE EQUALITY FOR ALL [p,q] is FALSE)

restart; S := {}; with(combinat); with(numtheory); T := {}; F := {}; C := {}; AlphaTotal := {}; BetaTotal := {}

delta := proc (x, y) options operator, arrow; piecewise(x = y, 1, x <> y, 0) end proc

Identity := proc (p, q) options operator, arrow; frac(`mod`(p, q)+(1/4)*q*(q-1)) = 1-delta(frac((1/4)*q), 0)-delta(frac((1/4)*q-1/4), 0)+delta(frac((1/4)*q), 0)*delta(frac((1/4)*q-1/4), 0)+(1/2)*delta(frac((1/4)*q-1/2), 0)+(1/2)*delta(frac((1/4)*q-3/4), 0)-(1/2)*delta(frac((1/4)*q-1/2), 0)*delta(frac((1/4)*q-3/4), 0) end proc:

``

GenerateNumberPairs := proc (N) options operator, arrow; choose([seq(ithprime(k), k = 1 .. N)], 2) end proc:

AssignToTrueOrFalseSet := proc (x, y) global T, F; if is(Identity(x, y)) = true then T := `union`({[x, y]}, T) else F := `union`({[x, y]}, F) end if end proc:

QueryIdentity := proc (N) local P, k; P := GenerateNumberPairs(N); for k to nops(P) do AssignToTrueOrFalseSet(P[k][1], P[k][2]) end do end proc:

QueryIdentity(20):

{[2, 5], [2, 13], [2, 17], [2, 29], [2, 37], [2, 41], [2, 53], [2, 61], [3, 5], [3, 13], [3, 17], [3, 29], [3, 37], [3, 41], [3, 53], [3, 61], [5, 13], [5, 17], [5, 29], [5, 37], [5, 41], [5, 53], [5, 61], [7, 13], [7, 17], [7, 29], [7, 37], [7, 41], [7, 53], [7, 61], [11, 13], [11, 17], [11, 29], [11, 37], [11, 41], [11, 53], [11, 61], [13, 17], [13, 29], [13, 37], [13, 41], [13, 53], [13, 61], [17, 29], [17, 37], [17, 41], [17, 53], [17, 61], [19, 29], [19, 37], [19, 41], [19, 53], [19, 61], [23, 29], [23, 37], [23, 41], [23, 53], [23, 61], [29, 37], [29, 41], [29, 53], [29, 61], [31, 37], [31, 41], [31, 53], [31, 61], [37, 41], [37, 53], [37, 61], [41, 53], [41, 61], [43, 53], [43, 61], [47, 53], [47, 61], [53, 61], [59, 61]}

 

{[2, 3], [2, 7], [2, 11], [2, 19], [2, 23], [2, 31], [2, 43], [2, 47], [2, 59], [2, 67], [2, 71], [3, 7], [3, 11], [3, 19], [3, 23], [3, 31], [3, 43], [3, 47], [3, 59], [3, 67], [3, 71], [5, 7], [5, 11], [5, 19], [5, 23], [5, 31], [5, 43], [5, 47], [5, 59], [5, 67], [5, 71], [7, 11], [7, 19], [7, 23], [7, 31], [7, 43], [7, 47], [7, 59], [7, 67], [7, 71], [11, 19], [11, 23], [11, 31], [11, 43], [11, 47], [11, 59], [11, 67], [11, 71], [13, 19], [13, 23], [13, 31], [13, 43], [13, 47], [13, 59], [13, 67], [13, 71], [17, 19], [17, 23], [17, 31], [17, 43], [17, 47], [17, 59], [17, 67], [17, 71], [19, 23], [19, 31], [19, 43], [19, 47], [19, 59], [19, 67], [19, 71], [23, 31], [23, 43], [23, 47], [23, 59], [23, 67], [23, 71], [29, 31], [29, 43], [29, 47], [29, 59], [29, 67], [29, 71], [31, 43], [31, 47], [31, 59], [31, 67], [31, 71], [37, 43], [37, 47], [37, 59], [37, 67], [37, 71], [41, 43], [41, 47], [41, 59], [41, 67], [41, 71], [43, 47], [43, 59], [43, 67], [43, 71], [47, 59], [47, 67], [47, 71], [53, 59], [53, 67], [53, 71], [59, 67], [59, 71], [61, 67], [61, 71], [67, 71]}

(2)

BUT CHECKING THESE RESULTS 'MANUALLY' CONFIRMS THE EQUALITY IS INDEED TRUE FOR ALL ODD PRIME PAIRS  p,q.

{seq(F[k][2], k = 1 .. nops(F))}

{3, 7, 11, 19, 23, 31, 43, 47, 59, 67, 71}

(3)

seq(frac(`mod`(F[k][1], F[k][2])+(1/4)*F[k][2]*(F[k][2]-1)), k = 1 .. nops(F))

1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2

(4)

seq(frac(-delta(frac((1/4)*F[k][2]), 0)-delta(frac((F[k][2]-1)*(1/4)), 0)+delta(frac((1/4)*F[k][2]), 0)*delta(frac((F[k][2]-1)*(1/4)), 0)+1/2*(delta(frac((F[k][2]-2)*(1/4)), 0)+delta(frac((F[k][2]-3)*(1/4)), 0)-delta(frac((F[k][2]-2)*(1/4)), 0)*delta(frac((F[k][2]-3)*(1/4)), 0))+1), k = 1 .. nops(F))

1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2

(5)

[seq(frac(`mod`(T[k][1], T[k][2])+(1/4)*T[k][2]*(T[k][2]-1)), k = 2 .. nops(T))]

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

(6)

seq(frac(-delta(frac((1/4)*T[k][2]), 0)-delta(frac((T[k][2]-1)*(1/4)), 0)+delta(frac((1/4)*T[k][2]), 0)*delta(frac((T[k][2]-1)*(1/4)), 0)+1/2*(delta(frac((T[k][2]-2)*(1/4)), 0)+delta(frac((T[k][2]-3)*(1/4)), 0)-delta(frac((T[k][2]-2)*(1/4)), 0)*delta(frac((T[k][2]-3)*(1/4)), 0))+1), k = 1 .. nops(F))

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

(7)

``


 

Download KRONECKER_delta_RECIPROCITY.mw

First 844 845 846 847 848 849 850 Last Page 846 of 2427