MaplePrimes Questions

Dear Users!

Hope everyone is fine. I am want use the command of isolate only red color term. Then I need help to simplify the expression term by term like simplify the rational expressions, combine powers, simplify radicals etc..

x*c*(diff(f(eta), eta))*epsilon/(-epsilon*t+1)^2+(1/2)*x*c^2*(diff(f(eta), eta, eta))*y*epsilon/((-epsilon*t+1)^3*sqrt(c/(nu*(-epsilon*t+1)))*nu)+x*c^2*(diff(f(eta), eta))^2/(-epsilon*t+1)^2-sqrt(c*nu/(-epsilon*t+1))*f(eta)*x*c*(diff(f(eta), eta, eta))*sqrt(c/(nu*(-epsilon*t+1)))/(-epsilon*t+1) = a*x*epsilon/(-epsilon*t+1)^2+a^2*x/(-epsilon*t+1)^2+x*c^2*(diff(f(eta), eta, eta, eta))/(-epsilon*t+1)^2+sqrt(2)*GAMMA*x^2*c^3*(diff(f(eta), eta, eta))*sqrt(c/(nu*(-epsilon*t+1)))*(diff(f(eta), eta, eta, eta))/(-epsilon*t+1)^3+A*g*beta[T]*theta(eta)*T[w]-A*g*beta[T]*theta(eta)*T[infinity]+A*g*beta[C]*phi(eta)*C[w]-A*g*beta[C]*phi(eta)*C[infinity]-sigma*B^2*x*c*(diff(f(eta), eta))/(rho*(-epsilon*t+1))+sigma*B^2*a*x/(rho*(-epsilon*t+1))

I am waiting your postive answer on it.

 

Hi

I am trying to solve an inequality for the real parts of the solution to be less than 0. How do I do that? When trying to use solve, and specifying Re() Maple warns about lost solutions. I can see there are complex solutions to the equation, but i cannot make Maple calculate them. Maple gives me a range for the real solutions (6.1.11) and (6.1.12), but if I use a number out of the range the inequality is still met, the solutions is just complex, which does not matter. The variable a seems to be able to be between -8 and 3 for the real part of the solution to be less than 0.

Kind regards

Simon

I am considering a Fourier series

$cos (\alpha x) = \frac{1}{2}a_0 + \sum_{k=1}^{\infty}a_k cos(kx)$ for x between -pi and pi.

I have also shown using a different Fourier series that cos (\alpha x) has an alternative representation:

\frac{cos(\alpha x)}{\sin \alpha \pi} = \frac{1}{\pi \alpha} (1 + \frac{(\alpha \ pi)^2}{6} - \frac{\alpha x^2}{2 \pi} + \frac{2*\alpha^3}{\pi}\sum_{k=1}^{\infty}\frac{(-1)^{k-1}}{k^2(k^2 - \alpha^2}*cos(kx)$.

To show that the second representation is a better approximation, I need to find the number of terms for this series and the original Fourier series needed for there to be a difference of 10^{-3} from the exact value of cos(\alpha \pi), assuming that \alpha = 0.75.  Could someone advise how I might do this?


 

Hello, when I write a large document block in maple and want to do some operations, maple shows wait cursor (hourglass) for 2-3 minutes again and again. I attached a sample file below. 

I found out when maple is installed , javaw.exe also instal and when I open bellow file, the javaw use 15% of cpu and this cause maple works slowly. 

the attached file is just an example for large document block and I undrestand that it can be simplified. I want to know how to handle large expressions generally?

K-Euler_Lagrange.mw

 

Dear all,

Trying to divide the function (f1) at its maximum and normalized it.. there is error on. the (proc)

could anyone help me on that PLEASE.

 

restart:
assume(Delta,real):assume(c,real):xr:=1:ao:=sqrt(1+c^2):theta:=arctan(c):a:=ao*exp(I*theta):b:=I*0.5*Delta-a*(k-1)*xr*0.5:no:=1:AA:=5:theta1:=0:Omega:=10:
f:=sqrt(Pi/ao)*exp(-I*0.5*theta)*sum(exp(b^2/a)*exp(-a*(k-1)^2*xr^2),k=1..1):alpha:=AA*exp(I*theta1):
f1:= AA^2+((Re(f))^2+(Im(f))^2)*Omega^2+2*Omega*Im(conjugate(alpha)*f):
P1:=plot3d((f1),Delta=-5..5,c=-5..5,axes=boxed,font=[1,1,18]):
Normalize:= proc(P::specfunc(anything, PLOT))
local A,Smax1;
A:= op([1,1], P);
Smax1:= max(A[..,2]);
if A::list then A:= Matrix(A) end if;
A[..,2]:= A[..,2]/Smax1;
subsop([1,1]= A, P)
end proc:
P1:= Normalize(P1):
display([P||(1..1)]);

 

Hi

 

Maple 2017.3 wont open, when I launch it. I've tried updating Maple, updating Java, updating my graphic driver and of course restarting my computer. It just keeps on the loading launcher at a completely empty loading bar.

 

I've also tried downloading Maple 2018.0, and the same problem appears. This is how it looks:

Do anyone know how to fix this?


 

restart;

Digits:=50;

A11:= 1.0000000000000000000000000000000000000000000000000*10^(-7)*(-2.5371361080198636732473763516755733087783841018170*10^8515*y^52-2.5682916864364461018876089817027829349729972598145*10^8511*y^118-8.4747208167823896652789620415242113024646500383584*10^8475*y^156-7.0973392025624720825652840212522978368268373080519*10^8514*y^110-8.8052634112991425064821529334897431676429996585193*10^8504*y^31-1.6472736182931730318373390809274526418048821840783*10^8515*y^109-3.4915488631639337623561469549167018169698449760097*10^8516*y^105-1.8648897040502425673332564918257100737272347061207*10^8504*y^30-1.7350350044631380327296789440528743348277795652204*10^8506*y^33-2.4402743405185212194691411556528521403537441901346*10^8516*y^55-4.0714341045744099661015191696314839899399825641016*10^8491*y^15-1.2448510727169172443541597142261710648571818634985*10^8490*y^146-2.2769347278615925887334921880003704106200930647502*10^8518*y^98-4.1875154960616508784147371031658177346824585674863*10^8493*y^17-6.8908510205423224604237562530919308400658046098227*10^8518*y^65-8.0705757255759766519585958706737861776653196868557*10^8515*y^107-2.1234522662689238596130937707990549717374387500852*10^8494*y^142-4.6757486544282170861175940883663855408524031383409*10^8513*y^113-5.6256767384686469294547974274654974293947541346854*10^8487*y^148-2.3667794156402717849832357737043058826502430856228*10^8501*y^134-1.1955708738478973602304171305150038469305944735032*10^8513*y^46-1.2229433916279605188228472869508020737406276934003*10^8482*y^7-1.0359942900497464263463322634590397630995748789812*10^8519*y^66-7.3577937250552680213618842893731191171017237168564*10^8502*y^28-1.6780317940142468912677977158676729074792728705946*10^8520*y^79-1.0188879426769871779634856274674561388204588547021*10^8499*y^23-8.3834163867972974773322872823619870147258375964774*10^8498*y^137-8.7167696030066179229415400068223274105756753084368*10^8473*y^157-2.5423845331789200034600726713334929841949530920620*10^8479*y^154-3.8400819852144312141390565045108971739848198770878*10^8494*y^18-1.5967261576416053607752429820872991323335743262311*10^8520*y^78-1.0175740692585689531634424955890114976014444308933*10^8518*y^61-2.4285179995148629407580354176987125130661349445523*10^8501*y^26-9.9591230938294084010283929867041070209088721794711*10^8519*y^74-1.5124785750379412355186078281009850256857725039212*10^8509*y^38-1.3696257334801547432715188212364024825978277580525*10^8518*y^99-2.5043379550164697208863253414438885954940319418237*10^8510*y^120-2.6305035680296659521217994891132781709179981823953*10^8519*y^92-6.4633168857441661801397078657885868645527618896321*10^8512*y^115-5.4017137062835482229400862860704710101104939466346*10^8477*y^155-1.3319332479266630416544055381399156457205375789742*10^8520*y^76-1.1229179453936158801565711524134745656617998399217*10^8515*y^51-2.1072238939760510496168542795319210517882197759574*10^8509*y^122-7.4202951194571591382703904653143254672490997668970*10^8483*y^151-3.8070289285557325159584243346313284671324915495170*10^8500*y^135-1.1039925581103150720522042406500486542915736245074*10^8520*y^86-5.6617914522620010790945778522914661973615369528464*10^8510*y^41-1.6087035160973756036538832079523009248794530721987*10^8491*y^145-1.4850201031906675776350324581492012684281688447293*10^8498*y^22-1.5146247410262645573925305579471723277055334370925*10^8519*y^67-4.7211130001373051878950913154719403710636491284680*10^8480*y^6-1.6530002518788994941149248059829590520008440377562*10^8520*y^82-1.7047076469980128563965847960657802574607166189462*10^8516*y^106-2.1535689236782065779546222373046347806024179149085*10^8519*y^68-1.7663207202025704123021189232952843065338109601207*10^8511*y^42-2.0054000346149665950873656769091881277646008431218*10^8514*y^49-8.7980985658203695061909911148317791080293037920173*10^8518*y^95-6.6382089342334567702605185897161035295052107532885*10^8499*y^24-5.2423518701418206080645845528109724107178201134724*10^8519*y^71-2.5005223984780390224009659120569911266411465016141*10^8517*y^102-2.9166995984685295180483355964884005809318120438676*10^8507*y^35-5.5605332423183301781370124657024028252864513225132*10^8515*y^53-4.2088985508608984037637955818873668034650441141989*10^8508*y^37-1.5359069780830356990250444855818636390995287737421*10^8487*y^11-4.8195822055982315209243519558327594854332125953476*10^8514*y^50-7.4019159776239374282920917712985331824056305640757*10^8509*y^121-1.1824401371065279253129270148658783843985808299790*10^8516*y^54-5.7699445263820038176602320228433347310150065071114*10^8518*y^96-4.8887240826161304314145695217669095642625562448079*10^8516*y^56-9.3168096457369483705678128915607768202734995258500*10^8519*y^87-7.6483335053880959242217872221711779939205126053655*10^8519*y^88-2.8022165140012359383220386299165583012323933610511*10^8518*y^63-8.7913174849933209946633264469576789417889752795771*10^8488*y^147-6.1070602577931150981002852101247677893073469678402*10^8519*y^89-6.6735204940436023143379559279002699661221027971978*10^8519*y^72-3.7038607578150625427768021537592932141372135512900*10^8515*y^108+5.5995397939405705863936427820385249633853690301901*10^8421*y^159-4.3799087536966483665257287911378520187315931817599*10^8512*y^45-9.4337845613405718940130376244112818126880382165350*10^8480*y^153-4.4016195590145096005766570015038486034582368219020*10^8471*y^158-1.4784004951305251483287425910074636246579062530163*10^8520*y^77-1.1676033897795360110462286752509022111562435500029*10^8520*y^75-4.7427135181787991184688543830207217422380205833472*10^8519*y^90-3.5818759543146989618794907784153306342212103904257*10^8519*y^91-2.8768350368005885940563302395281705469054862585455*10^8482*y^152-3.6771857043660158298381532799555738376579808022118*10^8518*y^97-5.7742267895039022888493018177602123584240907866086*10^8508*y^123-1.5218640168300510004670286762333676500821162581119*10^8508*y^124-6.9363266130432307646160571603392977489800453447226*10^8516*y^104-3.8549456737127999631950059294088326187118239169420*10^8507*y^125-1.3038646941427179585479412972113396840849763203455*10^8519*y^94-9.3769183236089634533707582015234272852123699634161*10^8506*y^126-2.1883460511492724399923503091958445837748647554809*10^8506*y^127-4.8952355695591150781154733643349486659924454852842*10^8505*y^128-1.0485551218896142863897772812320674499053506074930*10^8505*y^129-2.1483004849606144673542914705607906743103507356628*10^8504*y^130-1.5494046860190940893117310239564235431335253582146*10^8479*y^5-4.2050892248314891927169507900332495837852587131883*10^8503*y^131-7.8538509212710903676476053761137885299117479777654*10^8502*y^132-1.7679296011804914111899945823594272494083899795581*10^8513*y^114-1.3977330303040222916262119370925154156250920192924*10^8502*y^133-2.2836218310348946748292247113705163976110465439789*10^8512*y^116-1.6533707860628046530984037048564661559444860961959*10^8485*y^150-1.7738267900460782472328912396328729755803273367139*10^8496*y^140-1.3676977983447018389059938263870520777868757472621*10^8502*y^27-1.7532220610894821901402812335568196588780524656718*10^8510*y^40-2.9516667478247717303744755604240227679518544503104*10^8489*y^13-2.0078485219641074088681384788655152200468572797253*10^8495*y^141-7.2534968017593560796900029165663885808889467407042*10^8506*y^34-1.8782944849703674516724096576717626326317341794424*10^8519*y^93-2.0907666515043372491230443764285994608560169686906*10^8493*y^143-2.6808899325124839556461459330466132992445220875319*10^8496*y^20-1.7962835711332494336805796222040147543604919397749*10^8517*y^58-5.4474384367082808317163737539358816103803871321611*10^8484*y^9-1.5571340726161882570376111526003454631767695961990*10^8520*y^83-3.2958720940671047883146026860724984669547118316376*10^8517*y^59-1.4687727415575590757685715836381595286522117449742*10^8497*y^139-1.5344448441567496276049482049576739361813653354745*10^8472*y-4.0062327156227432382072256857028086598174510645193*10^8519*y^70-2.2256208759316108462191745825128758956786705696656*10^8488*y^12-1.7128080720010109342300618533017903391406104656571*10^8518*y^62-1.4488310233892170018677437784196556238400754716621*10^8474*y^2-4.4566101716291020698717085074274573116469890550923*10^8518*y^64-4.2029603531877473602300653127904760668035481584082*10^8477*y^4-1.7159339796472553785782565251223997167618655958886*10^8520*y^80-8.0018392438184895700350129431383523489160676243144*10^8517*y^100-1.1431132947377835933677909314512473142342468129873*10^8498*y^138-1.5528557895104117505629838315428185662885043206980*10^8512*y^44-5.3259299922124925079252469156846992302211340211063*10^8511*y^43-1.1961940078561649410725379838699228379084312338078*10^8514*y^112-8.2650702947572812374443391862411033157750240871144*10^8519*y^73-3.6038519328959043764932476220790958383056626568968*10^8490*y^14-5.8750222885796028432029457209659433624366593508487*10^8517*y^60-2.9782247314797054440053943823121072327807111764507*10^8519*y^69-1.4271577212742115454194606820736918306650395799998*10^8520*y^84-5.2419710499572071559459392125912520936103065428996*10^8509*y^39-9.0470847079462863373002288403969299088803805903436*10^8475*y^3-1.7073689675569899357965868260045611920484368126906*10^8520*y^81-2.7490545183768481300696110547122587420207975070651*10^8483*y^8-8.0870222079134394054578641820960280470472182895804*10^8513*y^48-9.5092124980645835527948721888861109860959780909706*10^8516*y^57-1.9088786071022477512000956890347726124864762562306*10^8492*y^144-8.1665400133683419929504658676911027201350987281122*10^8510*y^119-7.7940149703420578302211347620617495161349846282540*10^8511*y^117-1.2726020138589118131640895055500859385419846765556*10^8520*y^85-4.1137060724962539927628645399979725855947084575515*10^8500*y^25-2.9613776979262276712567720748534124677278327491945*10^8514*y^111-3.9886813366620949017604872009396705017047367343796*10^8505*y^32-9.6339764896810740918288183849113614094086813551150*10^8485*y^10-4.5397243965554587696124387458818609498482834229720*10^8517*y^101-8.0610496604773945424526841585659432841153157298199*10^8469-3.1595859599995844431190300667470894936598803935830*10^8513*y^47-5.8069799798859938188773381248178913031371004331946*10^8499*y^136-3.3066505703809297774777128515048686047829738531131*10^8495*y^19-1.1289228780398689439823389755153400672408049690863*10^8508*y^36-4.2748301589688548612528628462694982603680131567960*10^8492*y^16-2.0515105530842760733607137620543330754932084577092*10^8497*y^21-1.3368969018951640582663135748352287399549274065000*10^8517*y^103-3.7856405631183749770547245709288279462381186137537*10^8503*y^29-3.2342616324171613158346212734129357416916941462362*10^8486*y^149)/(1.0275320415803315156196412938338297681984560269404*10^8497*y^142+7.2074738611024839760485010033121948546764089498432*10^8518*y^104+2.6344438538915235729584862169224178942113917471059*10^8510*y^124+7.7269427784996328753131864828788890154577015432686*10^8517*y^54+4.7966099112549557496065971311467469066323121080261*10^8521*y^72+1.6436508656270743624235442722662834838296535349398*10^8498*y^20+5.9824900435438360423741179078260472329081981399211*10^8521*y^73+2.2098453249044266402295296299205061265834207600204*10^8492*y^14+3.3626028213644035385119266184572602921456492299404*10^8513*y^43+8.8921037481327278629779623137100880211832513990260*10^8497*y^141+3.6945739111819195537576336659929529415396506770667*10^8518*y^105+3.7941538977962517035078446396214257700633494829187*10^8512*y^120+1.0541972911293401511194135342970822107799699817148*10^8521*y^67+3.7085701075566606251056192363279443498764949476841*10^8489*y^149+4.9979182196421627680361556344726038720598428302025*10^8471+3.1047310225787945050404664917181829065483165557314*10^8516*y^50+1.8104804085503941007388809493822301053732738117012*10^8491*y^13+7.7733956025329698702125971974426483871941166399221*10^8519*y^100+1.3099563433049268843432208209963728307431666384118*10^8520*y^99+9.2432144294312316337701603700407799123041506911315*10^8492*y^146+4.0186134326152853844568075500234225284493692059100*10^8521*y^90+1.2003957641549743643238011718197752112074303760662*10^8513*y^119+2.8410138724121332923328140261773053008121154044396*10^8521*y^70+1.8120729667637843979231000903077339813711665016491*10^8509*y^35+9.7664977715290799289625191591367315212861368134672*10^8505*y^131+4.7565647016520711836685914813771702731486825295248*10^8506*y^130+7.2310841481197099276130489747226712991769831922515*10^8498*y^140+2.1450670719313925617992560870512326526851079332332*10^8520*y^98+7.1685445687757441212253327263089295436292976190471*10^8520*y^66+2.7795704224406471877575269914403802745252444667200*10^8514*y^45+8.5065099316590626530904280547438369500879248936853*10^8514*y^115+1.0819026411423377435552369695725582377091055605334*10^8514*y^117+1.0979097119284617833685450821856738351400471178695*10^8503*y^135+2.5275577823614247543384564872692369233334811410927*10^8502*y^25+6.0524534823776202410765271166756707959326406239820*10^8485*y^152+9.5016865118190072974349026904388235385173314551993*10^8473*y+2.3537052432857573642087675584528278486338092168194*10^8496*y^18+1.2011260673965961157678046451268643439535656115324*10^8522*y^78+6.8559785692320127923934091076443163243297733806306*10^8519*y^61+1.4931717305679235382204313601714427892359329573002*10^8503*y^26+7.2611516234013660704887268529525715768505841891315*10^8521*y^74+3.9392773616453875295022066077873404994159597961433*10^8519*y^60+2.0984767769519903504457345197792883639123300524168*10^8521*y^69+3.5406511839848893315250048897056467446289985089317*10^8516*y^111+8.3005918410147984589715785219696067523000663580617*10^8516*y^110+2.5938519642259676919395942297323864800231598895776*10^8479*y^4+3.6199522318931850871132044809426211103701628911392*10^8517*y^53+2.1996317650667973324413185153557592503934210114469*10^8519*y^59+4.4815194705296061179749323920109151590200406543259*10^8519*y^101+3.4036731316363395134433986501641371998250934597991*10^8511*y^122+3.4137807356717198819905753805294505715589603344067*10^8520*y^97+6.9231381528206205275504939041809637733465286868266*10^8509*y^125+2.6203111139728421961105970771308512942641685230453*10^8494*y^16+8.9483839713345256189519376133794905552649446494345*10^8521*y^86+1.0209248652370776293535300104667332313758445264337*10^8522*y^85+5.5399377255048165810477683124597258614642830258662*10^8499*y^139+3.5977605850912099796035195620407722716854980172752*10^8504*y^133+3.0494823097799289792703915275798781836769876102014*10^8520*y^64+4.7411309382792058998933459781265135885941311822752*10^8520*y^65+1.9178874156536490997317738637809129304845933985707*10^8505*y^132+3.5579613504222455233778530562551513807743559313230*10^8512*y^41+1.1252777152344925161272215786999893685637524934365*10^8495*y^144+3.7423139100265445428376966713621559765838165224834*10^8521*y^71+7.2581939877238253461285429597636828288378753215357*10^8516*y^51+2.4673712478186244222706213348009578633571053812535*10^8507*y^32+9.8288363037702820352859372803690272741574768297768*10^8513*y^44+1.6456894435440850658132474743354962225072115888013*10^8517*y^52+2.2646876458404861436283294587774176880990906994146*10^8488*y^150+8.5767750424729333610942330083836124591623720785213*10^8521*y^75+4.5314184478372590521573509046449359583606526167416*10^8504*y^28+7.4425166109529191193610700414644269162537659530512*10^8491*y^147+1.2247680159291484198326128501009567353449812523225*10^8522*y^83+4.4994769543565358222700988404272035883696791246800*10^8508*y^34+3.6666868538377650157945270695147354903612610250699*10^8513*y^118+9.4459956116496298167719675594215836122403939438439*10^8510*y^38+7.6081883818184656560271083922421172801856887214631*10^8514*y^46+1.2418952730347433284886011597905633927433886046207*10^8487*y^151+1.1335068553516361573539198312896033204049596934866*10^8522*y^84+3.2802157029332176918284621595346028285744073633154*10^8511*y^39+2.6237575992674271949172743197804944766724045455994*10^8510*y^37+9.4287726018893849207301211294752648772510718653650*10^8488*y^11+2.0269429215413387783133914986924474229891894935076*10^8497*y^19+7.0252466943446900380908915724593033693782135003392*10^8509*y^36+2.2363532434813158648131520688137066789398018028374*10^8474*y^159+1.1030750375033038764413326740132666331679335603480*10^8522*y^77+1.7809307769583624288811821533648490114451346289466*10^8502*y^136+9.1101698040516934751828427450818017439068241205251*10^8499*y^22+8.4158500402942200364452790976478268511672719572183*10^8503*y^27+9.5527967836685984998760066014663912712543569817831*10^8480*y^5+3.0851785965928879932810683819172748836008297716393*10^8514*y^116+5.5004929506311425165226677875477147739795447324754*10^8490*y^148+3.2202726296840308889492066139169825865962128583293*10^8518*y^56+1.2729436822330691813383520842185827599720877360344*10^8522*y^79+5.4400914385970619894575068231890907627662062051147*10^8506*y^31+2.7437948525440440137673417702536528754184324864036*10^8501*y^137+8.9608602503957842737264640694924739962139585100348*10^8475*y^2+4.0762093528286484193149238561357820472521958182258*10^8501*y^24+6.2902888314336454706498764394967942193011934023575*10^8518*y^57+1.3130127461826903678468576710850676252639231742988*10^8522*y^80+5.1150660995145144164515512914458391377087209573272*10^8521*y^89+1.6512694019675846646896369400167762107103346503986*10^8521*y^93+1.8858809652312525161093008362677460265731835707425*10^8517*y^109+1.3656609738974251164173996772033917600693168819339*10^8490*y^12+1.1597889143796090923973421771091781880297909710802*10^8520*y^62+1.6009226631427703061997032007753629978783291798093*10^8518*y^55+1.5415117389448964562781648660869805458937159828479*10^8478*y^157+1.9072637806168205018646653245201082653632823343413*10^8520*y^63+5.2809149250741208119144719573104453976441542132832*10^8520*y^96+1.8379824248114010276251322234410231911325783706753*10^8518*y^106+1.7498103785744154782034654828699275349303713253374*10^8509*y^126+6.3343222005333053453383203465110576681321347673540*10^8521*y^88+9.8594601638024021649514742294579378703873138654051*10^8521*y^76+1.3649022207876381276274745466840784658363572679454*10^8519*y^103+4.0078910351917299979823538947299589976156333591206*10^8500*y^138+2.5096781351045862251530908985101998092618054337366*10^8519*y^102+3.0714206772721181022712123271929076700264359749755*10^8521*y^91+5.5892566283611823400295522611435334084941322616829*10^8477*y^3+1.3181553417574193846454100528651841315451358605821*10^8522*y^81+2.9081536634637798678413746274705142738881885540116*10^8482*y^6+1.2879456712573791936105153983633547417235850936543*10^8522*y^82+1.5079930947895303179227714550055067345256686409380*10^8521*y^68+1.6906990036177003100932766018730939708326260693080*10^8485*y^8+5.1765436875141541654448593354680931722725190769576*10^8515*y^48+1.2581077823445390958296709827798258816658964133691*10^8499*y^21+5.9173519544570613927641307851335252490263615584906*10^8487*y^10+9.9128536441906719553305522214653622743244111341774*10^8507*y^128+1.1508458912062016184942568224431060106404407254938*10^8506*y^30+2.9811912504739566440260503946632074689766792788518*10^8481*y^155+3.3479462154460389206042397307690166340488983707216*10^8486*y^9+1.1571959974318628153577689242830343408240072481709*10^8512*y^121+2.5666208688642699675598307281903655949038342503711*10^8495*y^17+1.1934237003867097853029496941368825337755466368182*10^8519*y^58+1.1126031073836656908626482231451365583917808606282*10^8496*y^143+7.6384475840158124348329311316470647123934931323763*10^8479*y^156+2.2687771700563513529295953149038498940322333074518*10^8515*y^114+5.8557395412076321882119163497430089066891894347034*10^8515*y^113+1.4631595518927878296068106446107229549978736863399*10^8516*y^112+2.2834997392331659980851239366426290132977771581594*10^8521*y^92+7.5269376713605583845118113670284137902756151728226*10^8483*y^7+6.2532756388309742865553911299573565063259994385706*10^8500*y^23+2.0164246688802714718084594080461770911781785325594*10^8515*y^47+9.5544260649966913099435662829778503430999793934915*10^8482*y^154+4.1537080254350054854816761895314871309145992976382*10^8517*y^108+8.8716419753677731379982195802139147245523336407415*10^8517*y^107+2.2946302162430477400169519696558605097579171348735*10^8476*y^158+1.0993620549982798650933760574381939319316641367135*10^8512*y^40+1.0747235963274405899956074421648477654447087494663*10^8508*y^33+6.4389149200392426079107685289469750462283336842779*10^8503*y^134+1.0592646945465765033746586511207237258110401365522*10^8494*y^145+7.9419141887633594211221581043736001603573511979057*10^8520*y^95+1.0682870557789215831858735810482028286163225383669*10^8472*y^160+9.6487248698864223321065544988263891762436297686770*10^8510*y^123+7.6322938220989725411633523154165343131737763980327*10^8521*y^87+1.1612963162708548642944927465260222081789100774591*10^8521*y^94+2.3336970919234164775881104793312250836490336865026*10^8505*y^29+1.1125223740087102854670048695994301971764951365104*10^8513*y^42+2.2180167924495251774028369170270990768283882635699*10^8507*y^129+2.4960008754258160642458955406877861116816308381931*10^8493*y^15+2.5881241389016227353803719520763808027645200941600*10^8484*y^153+1.2876747669917078755139780993325314786408188080132*10^8516*y^49+4.2502164133706408795384785345737206936179170745107*10^8508*y^127):

 

factor(A11);

Warning,  computation interrupted

 

 

50

(1)

 

 

``


 

Download factor_puz.mw

Dear Maple users,

I am struck with a polynomial. Is there a way to factor it ?

work sheet is attached.

 

regards,

 

Hi every body: 

How can I solve this equation with maple? assuming x>0

eq:=-44.51913564*sinh(sqrt(x))*x^5*sin(sqrt(x))*cos(0.6232678986e-1*x)+5.872275982*x^(11/2)*cosh(sqrt(x))*sin(sqrt(x))*cos(0.6232678986e-1*x)+5.872295982*x^(11/2)*sinh(sqrt(x))*cos(sqrt(x))*cos(0.6232678986e-1*x)-0.1e-5*x^6*sinh(sqrt(x))*sin(sqrt(x))*cos(0.6232678986e-1*x)+11465.08352*x^6*cosh(sqrt(x))*cos(sqrt(x))*cos(0.6232678986e-1*x)-0.10000e-4*x^(11/2)*sin(sqrt(x))*cos(sqrt(x))*cos(0.6232678986e-1*x)+.1246535797*cosh(sqrt(x))*x^4*cos(sqrt(x))*cos(0.6232678986e-1*x)+158.9969129*x^(9/2)*sinh(sqrt(x))*cos(sqrt(x))*cos(0.6232678986e-1*x)-94.84329962*cosh(sqrt(x))*x^5*cos(sqrt(x))*sin(0.6232678986e-1*x)-0.2e-2*x^7*sinh(sqrt(x))*sin(sqrt(x))*sin(0.6232678986e-1*x)+0.4000e-2*x^(13/2)*cosh(sqrt(x))*sin(0.6232678986e-1*x)*sinh(sqrt(x))+0.10000e-4*x^(11/2)*cosh(sqrt(x))*sinh(sqrt(x))*cos(0.6232678986e-1*x)-158.9969129*cosh(sqrt(x))*x^(9/2)*sin(sqrt(x))*cos(0.6232678986e-1*x)+38209.64552*sinh(sqrt(x))*x^6*sin(sqrt(x))*sin(0.6232678986e-1*x)-3761.932636*x^(13/2)*cosh(sqrt(x))*sin(sqrt(x))*sin(0.6232678986e-1*x)-3761.924636*x^(13/2)*sinh(sqrt(x))*cos(sqrt(x))*sin(0.6232678986e-1*x)-0.4000e-2*x^(13/2)*sin(sqrt(x))*cos(sqrt(x))*sin(0.6232678986e-1*x)-2.*10^(-7)*x^(13/2)*cosh(sqrt(x))*sin(sqrt(x))*cos(0.6232678986e-1*x)-11465.08352*x^6*cos(0.6232678986e-1*x)+.1246535797*x^4*cos(0.6232678986e-1*x)-94.84329962*x^5*sin(0.6232678986e-1*x)+0.1e-5*x^6*cosh(sqrt(x))^2*cos(0.6232678986e-1*x)-0.1e-5*x^6*cos(sqrt(x))^2*cos(0.6232678986e-1*x)+0.3e-5*cosh(sqrt(x))^2*x^6*sin(0.6232678986e-1*x)-0.2e-2*x^7*cos(sqrt(x))^2*sin(0.6232678986e-1*x)+0.2e-2*x^7*cosh(sqrt(x))^2*sin(0.6232678986e-1*x)+2.*10^(-7)*x^(13/2)*sinh(sqrt(x))*cosh(sqrt(x))*cos(0.6232678986e-1*x)+2.*10^(-7)*x^(13/2)*cos(sqrt(x))*sin(sqrt(x))*cos(0.6232678986e-1*x)-2.*10^(-7)*x^(13/2)*sinh(sqrt(x))*cos(sqrt(x))*cos(0.6232678986e-1*x)+1.159305284*10^5*cosh(sqrt(x))*x^(11/2)*sin(sqrt(x))*sin(0.6232678986e-1*x)-1.159305284*10^5*x^(11/2)*sinh(sqrt(x))*cos(sqrt(x))*sin(0.6232678986e-1*x)-8.359616334*10^6*x^7*cosh(sqrt(x))*cos(sqrt(x))*sin(0.6232678986e-1*x)+8.359616334*10^6*x^7*sin(0.6232678986e-1*x) = 0

tnx ... 

Hello people in mapleprimes,
I have two files: a batchfile named test.command, and a mpl file,
both in <<my home directory>>.

And, the codes written there are, for the test.command,

/Library/Frameworks/Maple.framework/Versions/2017/bin/maple test.mpl > output.txt

And, for the mpl file,

1+1;
diff(x^2,x);
int(x^3,x);

The test.command was made executable with chmod u+x  test.command, in advance.

From my home directory, I can run the test.command, and obtain output.txt with the result of the calculation of 
the mpl file. The above things have no problem. 

My question is a following.

When I moved the two files, the batch file and the mpl file, to /Users/myname/Desktop/maple_test, 
I cannot get maple to exhaust the appropriate output.txt but an error message, saying it could not read the mpl file.
What should be done to the contents of two files?

I hope you will teach me about this.

Thanks in advance.

taro

 

 

 

Does MAPLEPrimes or MAPLESoft host a discussion forum on mathematics in general?  I know this site generally supports troubleshooting & code application.  I have had a couple of instances where I have posted a question that gets no responses because the question may fall outside the perview or objectives of troubleshooting & code application.  Perhaps I should pose these questions elsewhere?

Hello, 

I'm still new to maple, so I hope someone could help me out here

In the file attached I'm trying to generate equations depending on an array of values T[0 to m], of these I've the first T[0] and final T[m] values

before I set these 2 values, I got equations in T0 to T6 setting m=6, when i used the 2 values known i got the same equations only with T0 and T6 substituted, how do i solve them to get the rest of the T values, T1 , T2, and so on

 

thank you,


Download Advheat-ex52.mw

Hi everyone,

I'm trying to create a function that utilizes the index of a vector to preform the following:

 

Where x and y are both nx1 vectors.  I've tried using summation to no avail, as you can see below: 

Of course, it works when I do it this way, but it's incredibly inefficient if the vectors have a large number of rows:

 

Any help y'all can give me would be extremely appreciated!  Thank you kindly

Hi I am trying to get Maple to find for which value k two parametric lines intersect using geom3d package. Is that possible?

my code is as follows. 

restart; with(geom3d);

#First I define the the point and vector to construct the line l.

point(P, 1, 0, -2);
 
v := [1, 1, 2];
                    
line(l, {P, v});

Equation(l) = [1 + t, t, -2 + 2 t]
 

#Next I try to define the line m. 
line(m, [k*s+4, 2*s, 3*s], s)

but how (if possible to I get the line to take in the second paramter k? 

and if its possible? which syntax do I use in the intersection-command to get Maple to print out the value k? so it still uses the parameter s for the intersection? 

best regards 

Fred

I want to include the result of an evaluation in a document block that is included in a workbook. It is easy to write sin(Pi) and obtatin sin(Pi)=0 in your document block. Howwever in the case below I want to preserve only y=x/3  removing the isolate(...) expression. Does anyone know if this can be done and if so how to do it?
 

x = 3*y

x = 3*y

(1)

``

Here  is an inline evaluation of a previous formula isolate(x = 3*y, y) = y = (1/3)*xwhere we have an uneeded '=' sign which can be edited out easily. But is it possible to hide the formula that is evaluated leaving only the output inline and to do this only for the current document block?


Thanks for any help.

Download maple_query_document_blocks.mw

First 849 850 851 852 853 854 855 Last Page 851 of 2433