MaplePrimes Questions

I have a print format problem in Maple 2024.  For documents I print out, I use a special layout where all the contents are inside a table. The table is rigged to print on A4 paper. This is useful for my math notes. I havent done this for 18+ months. There appears to be a bug in Maple 2024. Only the first page is printed. Things work ok in Maple 2023. Maybe it is a setting difference or corruption in my install. Could somebody confirm this. Also if you can reproduce the problem could you let me know if it is in Maple 2025. I haven't upgraded yet.

 

2025-05-15_Q_page_print_formating.mw 
2025-05-15_Q_page_print_formating_M_2023.pdf
2025-05-15_Q_page_print_formating_M_2024.pdf

Hi! how to find posint solution of this equation?

Is factorial move fast so that cannot solve?

any advice is appreciated.

restart

NULL

eq := `assuming`([factorial(x)+1 = y^2], [x::posint, y::posint])

factorial(x)+1 = y^2

(1)

`assuming`([solve(eq, {x, y})], [x <= 100, y <= 100])

{x = RootOf(factorial(_Z)-y^2+1), y = y}

(2)
 

NULL

Download find_posint_.mw

The last few mornings there's been a high rate of spam.  I just deleted 5 or 6 posts.  How are they getting through and why haven't they stopped?

... to solve familiar problems using Maple. The attached exercises "test" and "test1" don't produce the familiar result. What am I doing wrong?

test.mw

test1.mw

The following Array does not convert to a column vector as described in ?convert,Vector

A := Array([1, 2, 3]);
convert(A, Vector);# the default orientation should be column;
whattype(%);
convert(convert(A, list), Vector);# here the default orientation is column
                         A := [1, 2, 3]

                           [1, 2, 3]

                          Vector[row]

                              [1]
                              [ ]
                              [2]
                              [ ]
                              [3]

Is there something special with the data structure Array that convert(A, Vector[column]) has to be used to convert to a column vector?

Dear All,

I am facing some problems. This kind of error has been shown ""Error, (in plot/iplot2d/expression) bad range arguments 0.3e-1 = .1 .. .5, 0.3e-1 = .1 .. .5"

Error.mw

Hello,

With the new version 2025, double-clicking a file opens a second instance of Maple.

How can I make this open a new tab in the active instance, as it did with version 2024?

Thank you.

Bests regards.

I wanted to try this simplification in Maple 2025, only to find timelimit hangs.

Waited 3 hrs when timelimit was 30 second. It seems simplify got locked up and timelimit does not work.

Not only that, Maple itself hangs and clicking on retsrat kernel or red small bottom at lower level corner in Maple 2025 has no effect at all.  

Only way is to kill all of Maple from command line.

Make sure to save all your work before trying.

There are two bugs here: First is that timelimit still hangs (even though Maplesoft claimed it is fixed almost 5 years ago)

https://www.mapleprimes.com/maplesoftblog/213986-Introducing-Maple-Learn-officially

You will also be pleased to know that Maple 2021 addresses the timelimit() issue that you mentioned.

The second issue is that one can not close the kernel from frontend. (well, this is because kernel hanged)

Note that closing Maple works using File->EXIT but this leaves the Maple kernel/mserver  running  in background!

So had to go kill that process from command line manually also.

So make sure to do this, else you will end up with many mserver processes running in background after maple is closed if you try this more than one time.

Any one knows why this happens for this example? Should not timelimit have finally been fixed in Maple 2025?

I have been complaining about timelimit not always working for ages. Have no idea why Maplesoft can't figure solution to this problem for good. 

timelimit is the most important command for me, as without it, my program will never work and will just keep hanging.

I spend 50% of my time finding worarounds around Maple bugs instead of what I should be doing which is write more code.

interface(version);

`Standard Worksheet Interface, Maple 2025.0, Linux, March 24 2025 Build ID 1909157`

Physics:-Version();

`The "Physics Updates" version in the MapleCloud is 1869. The version installed in this computer is 1866 created 2025, May 6, 10:52 hours Pacific Time, found in the directory /home/me/maple/toolbox/2025/Physics Updates/lib/`

SupportTools:-Version();

`The Customer Support Updates version in the MapleCloud is 17 and is the same as the version installed in this computer, created May 5, 2025, 12:37 hours Eastern Time.`

restart;

e:= -a*(-1/2*((1/2*x)^a)^4*(2^a)^4*_C8^4*a*x+1/2*((1/2*x)^a)^3*(2^a)^3*(((2^a)^2*((
1/2*x)^a)^2*_C8^2-a^2*b^2+b^2)^2/(2^a)^2/((1/2*x)^a)^2/_C8^2)^(1/2)*_C8^3*x+1/4
*((1/2*x)^a)^2*(2^a)^2*(((2^a)^2*((1/2*x)^a)^2*_C8^2-a^2*b^2+b^2)^2/(2^a)^2/((1
/2*x)^a)^2/_C8^2)^(1/2)*4^(1/2)*(x^2*(((1/2*x)^a)^4*(2^a)^4*_C8^4*a^2+(2^a)^4*(
(1/2*x)^a)^4*_C8^4+2*((1/2*x)^a)^2*(2^a)^2*_C8^2*a^4*b^2-2*((1/2*x)^a)^3*(2^a)^
3*(((2^a)^2*((1/2*x)^a)^2*_C8^2-a^2*b^2+b^2)^2/(2^a)^2/((1/2*x)^a)^2/_C8^2)^(1/
2)*_C8^3*a-4*a^2*b^2*(2^a)^2*((1/2*x)^a)^2*_C8^2+a^6*b^4-2*(1/2*x)^a*2^a*(((2^a
)^2*((1/2*x)^a)^2*_C8^2-a^2*b^2+b^2)^2/(2^a)^2/((1/2*x)^a)^2/_C8^2)^(1/2)*_C8*a
^3*b^2+2*b^2*(2^a)^2*((1/2*x)^a)^2*_C8^2-a^4*b^4+2*(1/2*x)^a*2^a*(((2^a)^2*((1/
2*x)^a)^2*_C8^2-a^2*b^2+b^2)^2/(2^a)^2/((1/2*x)^a)^2/_C8^2)^(1/2)*_C8*a*b^2-a^2
*b^4+b^4)/(a-1)^2/(1+a)^2/_C8^2/((1/2*x)^a)^2/(2^a)^2)^(1/2)*_C8^2*a^2+1/2*a^5*
b^4*x-1/2*(1/2*x)^a*2^a*(((2^a)^2*((1/2*x)^a)^2*_C8^2-a^2*b^2+b^2)^2/(2^a)^2/((
1/2*x)^a)^2/_C8^2)^(1/2)*_C8*a^2*b^2*x-1/4*((1/2*x)^a)^2*(2^a)^2*(((2^a)^2*((1/
2*x)^a)^2*_C8^2-a^2*b^2+b^2)^2/(2^a)^2/((1/2*x)^a)^2/_C8^2)^(1/2)*4^(1/2)*(x^2*
(((1/2*x)^a)^4*(2^a)^4*_C8^4*a^2+(2^a)^4*((1/2*x)^a)^4*_C8^4+2*((1/2*x)^a)^2*(2
^a)^2*_C8^2*a^4*b^2-2*((1/2*x)^a)^3*(2^a)^3*(((2^a)^2*((1/2*x)^a)^2*_C8^2-a^2*b
^2+b^2)^2/(2^a)^2/((1/2*x)^a)^2/_C8^2)^(1/2)*_C8^3*a-4*a^2*b^2*(2^a)^2*((1/2*x)
^a)^2*_C8^2+a^6*b^4-2*(1/2*x)^a*2^a*(((2^a)^2*((1/2*x)^a)^2*_C8^2-a^2*b^2+b^2)^
2/(2^a)^2/((1/2*x)^a)^2/_C8^2)^(1/2)*_C8*a^3*b^2+2*b^2*(2^a)^2*((1/2*x)^a)^2*
_C8^2-a^4*b^4+2*(1/2*x)^a*2^a*(((2^a)^2*((1/2*x)^a)^2*_C8^2-a^2*b^2+b^2)^2/(2^a
)^2/((1/2*x)^a)^2/_C8^2)^(1/2)*_C8*a*b^2-a^2*b^4+b^4)/(a-1)^2/(1+a)^2/_C8^2/((1
/2*x)^a)^2/(2^a)^2)^(1/2)*_C8^2-a^3*b^4*x+1/2*(1/2*x)^a*2^a*(((2^a)^2*((1/2*x)^
a)^2*_C8^2-a^2*b^2+b^2)^2/(2^a)^2/((1/2*x)^a)^2/_C8^2)^(1/2)*_C8*b^2*x+1/2*a*b^
4*x)/(a-1)/(1+a)/_C8^2/(((2^a)^2*((1/2*x)^a)^2*_C8^2-a^2*b^2+b^2)^2/(2^a)^2/((1
/2*x)^a)^2/_C8^2)^(1/2)/((1/2*x)^a)^2/(2^a)^2:

try
  timelimit(30, (simplify(e) assuming real)):
catch:
   print("cought timelimit");
end try:

 

 

Download timelimit_hang_in_maple_2025.mw

Hello,
Can you tell me how to decompose a rational fraction into simple elements in Fp?

Thank you.

I'm using an old old version of Maple (Maple 7) and there's a mistake in the Mellin Transform which hopefully has long since been fixed in subsequent versions but just in case it hasn't....

I was taking the Mellin Transform of Bessel Functions, specifically BesselK, and it's fine for BesselK(0,x), but when I compute BesselK(0,x^{1/2}), it gives the wrong answer.

In the transform of BesselK(0,x^(1/2)), It should be Gamma(p) not Gamma(p/2).

I'm not sure if this is fixed in newer Maples or if there's a work around. 

Whenever I size a 3d plot, that I'm trying to stretch out the width while keeping the height, never seems to work.  For example using the size=[3000,800] produces a plot area that's bigger but NOT actually a plot stretched in the x axis.  Going to size=[3000,3000] of course then makes the plot and the area bigger and so scales both x and y bigger.  However I don't want the y axis scaled up - I'm trying to scale the plot up - not the area.  And what happened to the window zoom, icon - we've lost zoom control to just magnify + and magnify - (at least in 2022) this seems like a regression. 

Is this plot size a bug or just a plot command that fails to function like it should? 

in Maple 2025 on Linux, I see random Error, (in evala/Factors) the modular inverse does not exist from call to allvalues().

Sometimes it happens and sometimes not. Any explanation of this?

 

It seems Maple uses random number generatror to decide when to generate an internal error as I am not able to see a pattern.

interface(version);

`Standard Worksheet Interface, Maple 2025.0, Linux, March 24 2025 Build ID 1909157`

Physics:-Version();

`The "Physics Updates" version in the MapleCloud is 1868. The version installed in this computer is 1866 created 2025, May 6, 10:52 hours Pacific Time, found in the directory /home/me/maple/toolbox/2025/Physics Updates/lib/`

SupportTools:-Version();

`The Customer Support Updates version in the MapleCloud is 17 and is the same as the version installed in this computer, created May 5, 2025, 12:37 hours Eastern Time.`

restart;

kernelopts('assertlevel'=2):

sol:=[1/3*exp(RootOf(-5*I*Pi-ln(256/(x+1)^6/(exp(_Z)^81+9)*(exp(_Z)^81+3)^3)+162*_Z))^81+2];
allvalues(sol);

[(1/3)*(exp(RootOf(-(5*I)*Pi-ln(256*((exp(_Z))^81+3)^3/((x+1)^6*((exp(_Z))^81+9)))+162*_Z)))^81+2]

Error, (in evala/Factors) the modular inverse does not exist

allvalues(sol);

`[Length of output exceeds limit of 100000]`

allvalues(sol);

`[Length of output exceeds limit of 100000]`

allvalues(sol);

`[Length of output exceeds limit of 100000]`

allvalues(sol);

Error, (in evala/Factors) the modular inverse does not exist

allvalues(sol);

`[Length of output exceeds limit of 100000]`

allvalues(sol);

`[Length of output exceeds limit of 100000]`

allvalues(sol);

Error, (in evala/Factors) the modular inverse does not exist

allvalues(sol);

`[Length of output exceeds limit of 100000]`

allvalues(sol);

`[Length of output exceeds limit of 100000]`

 


 

Download why_fail_sometimes_may_11_2025_V2.mw

Update was able to produce this also in Maple 2024.2 on windows

interface(version);

`Standard Worksheet Interface, Maple 2024.2, Windows 10, October 29 2024 Build ID 1872373`

Physics:-Version();

`The "Physics Updates" version in the MapleCloud is 1868. The version installed in this computer is 1849 created 2025, March 12, 12:37 hours Pacific Time, found in the directory C:\Users\Owner\maple\toolbox\2024\Physics Updates\lib\`

restart;

kernelopts('assertlevel'=2):
sol:=[1/3*exp(RootOf(-5*I*Pi-ln(256/(x+1)^6/(exp(_Z)^81+9)*(exp(_Z)^81+3)^3)+162*_Z))^81+2];
allvalues(sol);

[(1/3)*(exp(RootOf(-(5*I)*Pi-ln(256*((exp(_Z))^81+3)^3/((x+1)^6*((exp(_Z))^81+9)))+162*_Z)))^81+2]

`[Length of output exceeds limit of 100000]`

allvalues(sol);

`[Length of output exceeds limit of 100000]`

allvalues(sol);

`[Length of output exceeds limit of 100000]`

allvalues(sol);

`[Length of output exceeds limit of 100000]`

allvalues(sol);

`[Length of output exceeds limit of 100000]`

allvalues(sol);

`[Length of output exceeds limit of 100000]`

allvalues(sol);

Error, (in evala/Factors) the modular inverse does not exist

allvalues(sol);

`[Length of output exceeds limit of 100000]`

allvalues(sol);

Error, (in evala/Factors) the modular inverse does not exist

allvalues(sol);

`[Length of output exceeds limit of 100000]`

allvalues(sol);

`[Length of output exceeds limit of 100000]`

allvalues(sol);

`[Length of output exceeds limit of 100000]`

allvalues(sol);

`[Length of output exceeds limit of 100000]`

allvalues(sol);

`[Length of output exceeds limit of 100000]`

allvalues(sol);

`[Length of output exceeds limit of 100000]`

allvalues(sol);

Error, (in evala/Factors) the modular inverse does not exist

 


 

Download modular_inverse_maple_2024_2.mw

 

Hi, I'm new to Maple.

when nesting some multiplications in a summation operator, I get results that I can't figure out.

I've entered 4 formulas that should give the same result, if I understood things correctly. The formula FB gives me problems; am I doing something wrong, or is there a bug in Maple? The problem arose in a more complicated formula, but I trimmed the formula down to a minimum, in order to illustrate the discrepancy.

I hope someone can shed some light on this, because I'm stuck.

Is this a bug (the correct answer = 2)?

 

restart

 

FA := modp(5, product(2, t = 0 .. modp(1-1, 3)))+modp(5, product(2, t = 0 .. modp(2-1, 3))); FB := sum(modp(5, product(2, t = 0 .. modp(q-1, 3))), q = 1 .. 2)

10

(1)

FC := modp(5, product(2, t = 0 .. modp(0, 3)))+modp(5, product(2, t = 0 .. modp(1, 3))); FD := sum(modp(5, product(2, t = 0 .. modp(q, 3))), q = 0 .. 1)

2

(2)

NULL

FA := modp(5, product(2, t = 0 .. modp(1 - 1, 3))) + modp(5, product(2, t = 0 .. modp(2 - 1, 3)));

2

(3)

 

FB := sum(modp(5, product(2, t = 0 .. modp(q - 1, 3))), q = 1 .. 2);

10

(4)

 

FC := modp(5, product(2, t = 0 .. modp(0, 3))) + modp(5, product(2, t = 0 .. modp(1, 3)));

2

(5)

NULL

FD := sum(modp(5, product(2, t = 0 .. modp(q, 3))), q = 0 .. 1);

2

(6)

NULL

Download BugTestSimple.mw

How do I find the solutions "links" with only answers in the range 0 to +1? The domain of vgl is 0 <=beta <= 1. If the system is inconsistent or insufficient to solve xi (for example, if xi does not appear in the equation) then give the text "no solution". If there is a solution then show it. Filter only real solutions. Please help me with better code:

restart;
assume(beta > 0, beta < 1):
interface(showassumed=0):

vgl[1] := -((beta*xi^2 + 2*xi^2 - beta)*(beta - 1)^2)/4 = 0:  # or some other equation (sometimes xi does not appear in the equation)

if has(lhs(vgl[1]), xi) or has(rhs(vgl[1]), xi) then
    links := solve([vgl[1], xi > 0, xi < beta], xi):
    # Filter only real solutions
    links_real := select(x -> type(x, equation) and is(Im(rhs(x)) = 0), [links]):
    if nops(links_real) > 0 then
        x1 := links_real;
        print("Real solution(s):", x1);
    else
        print("No real solution in range for xi.");
    end if;
else
    print("The equation does not contain xi — solving for xi is not possible.");
end if;

 

I would like to automatically select a set of parameters that gives me a "good" solution, ideally, one where not all parameters are zero. The parameters A[0], A[1], A[2], B[1], and B[2] are essential and must always be included. The other parameters are optional and can be selected in various combinations (e.g., one, two, or more at a time).

Currently, I manually add or remove these optional parameters, which is time-consuming. I’m looking for a way to automate the selection process to find the best combination of parameters that yields a valid and meaningful (non-zero) solution.

How can I approach this systematically?

params.mw

restart

with(PDEtools)

with(LinearAlgebra)

NULL

with(SolveTools)

with(LargeExpressions)

undeclare(prime)

`There is no more prime differentiation variable; all derivatives will be displayed as indexed functions`

(1)

declare(u(x, t), quiet); declare(V(xi), quiet); declare(U(xi), quiet)

NULL

CoefficientNullity := [0 = k^3*(beta*s-w)*(A[0]+A[1]+A[2]+B[1]+B[2])*(-5*beta*s*A[0]^2*c[2]-10*beta*s*A[0]*A[1]*c[2]-10*beta*s*A[0]*A[2]*c[2]-10*beta*s*A[0]*B[1]*c[2]-10*beta*s*A[0]*B[2]*c[2]-5*beta*s*A[1]^2*c[2]-10*beta*s*A[1]*A[2]*c[2]-10*beta*s*A[1]*B[1]*c[2]-10*beta*s*A[1]*B[2]*c[2]-5*beta*s*A[2]^2*c[2]-10*beta*s*A[2]*B[1]*c[2]-10*beta*s*A[2]*B[2]*c[2]-5*beta*s*B[1]^2*c[2]-10*beta*s*B[1]*B[2]*c[2]-5*beta*s*B[2]^2*c[2]+3*beta*k*s*w+5*w*A[0]^2*c[2]+10*w*A[0]*A[1]*c[2]+10*w*A[0]*A[2]*c[2]+10*w*A[0]*B[1]*c[2]+10*w*A[0]*B[2]*c[2]+5*w*A[1]^2*c[2]+10*w*A[1]*A[2]*c[2]+10*w*A[1]*B[1]*c[2]+10*w*A[1]*B[2]*c[2]+5*w*A[2]^2*c[2]+10*w*A[2]*B[1]*c[2]+10*w*A[2]*B[2]*c[2]+5*w*B[1]^2*c[2]+10*w*B[1]*B[2]*c[2]+5*w*B[2]^2*c[2]+2*k*s^2-5*k*w^2), 0 = (beta*s-w)*(5*beta*k^3*s*A[0]^3*c[2]-15*beta*k^3*s*A[0]^2*A[1]*c[2]-45*beta*k^3*s*A[0]^2*A[2]*c[2]+45*beta*k^3*s*A[0]^2*B[1]*c[2]+45*beta*k^3*s*A[0]^2*B[2]*c[2]-45*beta*k^3*s*A[0]*A[1]^2*c[2]-150*beta*k^3*s*A[0]*A[1]*A[2]*c[2]+30*beta*k^3*s*A[0]*A[1]*B[1]*c[2]+30*beta*k^3*s*A[0]*A[1]*B[2]*c[2]-105*beta*k^3*s*A[0]*A[2]^2*c[2]-30*beta*k^3*s*A[0]*A[2]*B[1]*c[2]-30*beta*k^3*s*A[0]*A[2]*B[2]*c[2]+75*beta*k^3*s*A[0]*B[1]^2*c[2]+150*beta*k^3*s*A[0]*B[1]*B[2]*c[2]+75*beta*k^3*s*A[0]*B[2]^2*c[2]-25*beta*k^3*s*A[1]^3*c[2]-105*beta*k^3*s*A[1]^2*A[2]*c[2]-15*beta*k^3*s*A[1]^2*B[1]*c[2]-15*beta*k^3*s*A[1]^2*B[2]*c[2]-135*beta*k^3*s*A[1]*A[2]^2*c[2]-90*beta*k^3*s*A[1]*A[2]*B[1]*c[2]-90*beta*k^3*s*A[1]*A[2]*B[2]*c[2]+45*beta*k^3*s*A[1]*B[1]^2*c[2]+90*beta*k^3*s*A[1]*B[1]*B[2]*c[2]+45*beta*k^3*s*A[1]*B[2]^2*c[2]-55*beta*k^3*s*A[2]^3*c[2]-75*beta*k^3*s*A[2]^2*B[1]*c[2]-75*beta*k^3*s*A[2]^2*B[2]*c[2]+15*beta*k^3*s*A[2]*B[1]^2*c[2]+30*beta*k^3*s*A[2]*B[1]*B[2]*c[2]+15*beta*k^3*s*A[2]*B[2]^2*c[2]+35*beta*k^3*s*B[1]^3*c[2]+105*beta*k^3*s*B[1]^2*B[2]*c[2]+105*beta*k^3*s*B[1]*B[2]^2*c[2]+35*beta*k^3*s*B[2]^3*c[2]-3*beta*k^4*s*w*A[0]+3*beta*k^4*s*w*A[1]+9*beta*k^4*s*w*A[2]-9*beta*k^4*s*w*B[1]-9*beta*k^4*s*w*B[2]-5*k^3*w*A[0]^3*c[2]+15*k^3*w*A[0]^2*A[1]*c[2]+45*k^3*w*A[0]^2*A[2]*c[2]-45*k^3*w*A[0]^2*B[1]*c[2]-45*k^3*w*A[0]^2*B[2]*c[2]+45*k^3*w*A[0]*A[1]^2*c[2]+150*k^3*w*A[0]*A[1]*A[2]*c[2]-30*k^3*w*A[0]*A[1]*B[1]*c[2]-30*k^3*w*A[0]*A[1]*B[2]*c[2]+105*k^3*w*A[0]*A[2]^2*c[2]+30*k^3*w*A[0]*A[2]*B[1]*c[2]+30*k^3*w*A[0]*A[2]*B[2]*c[2]-75*k^3*w*A[0]*B[1]^2*c[2]-150*k^3*w*A[0]*B[1]*B[2]*c[2]-75*k^3*w*A[0]*B[2]^2*c[2]+25*k^3*w*A[1]^3*c[2]+105*k^3*w*A[1]^2*A[2]*c[2]+15*k^3*w*A[1]^2*B[1]*c[2]+15*k^3*w*A[1]^2*B[2]*c[2]+135*k^3*w*A[1]*A[2]^2*c[2]+90*k^3*w*A[1]*A[2]*B[1]*c[2]+90*k^3*w*A[1]*A[2]*B[2]*c[2]-45*k^3*w*A[1]*B[1]^2*c[2]-90*k^3*w*A[1]*B[1]*B[2]*c[2]-45*k^3*w*A[1]*B[2]^2*c[2]+55*k^3*w*A[2]^3*c[2]+75*k^3*w*A[2]^2*B[1]*c[2]+75*k^3*w*A[2]^2*B[2]*c[2]-15*k^3*w*A[2]*B[1]^2*c[2]-30*k^3*w*A[2]*B[1]*B[2]*c[2]-15*k^3*w*A[2]*B[2]^2*c[2]-35*k^3*w*B[1]^3*c[2]-105*k^3*w*B[1]^2*B[2]*c[2]-105*k^3*w*B[1]*B[2]^2*c[2]-35*k^3*w*B[2]^3*c[2]+40*beta^2*k^2*s^2*A[1]+80*beta^2*k^2*s^2*A[2]-40*beta^2*k^2*s^2*B[1]-40*beta^2*k^2*s^2*B[2]-2*k^4*s^2*A[0]+2*k^4*s^2*A[1]+6*k^4*s^2*A[2]-6*k^4*s^2*B[1]-6*k^4*s^2*B[2]+5*k^4*w^2*A[0]-5*k^4*w^2*A[1]-15*k^4*w^2*A[2]+15*k^4*w^2*B[1]+15*k^4*w^2*B[2]-80*beta*k^2*s*w*A[1]-160*beta*k^2*s*w*A[2]+80*beta*k^2*s*w*B[1]+80*beta*k^2*s*w*B[2]+40*k^2*s^2*A[1]+80*k^2*s^2*A[2]-40*k^2*s^2*B[1]-40*k^2*s^2*B[2]-160*beta*s*w*A[1]-320*beta*s*w*A[2]+160*beta*s*w*B[1]+160*beta*s*w*B[2]+160*s^2*A[1]+320*s^2*A[2]-160*s^2*B[1]-160*s^2*B[2]), 0 = (beta*s-w)*(25*beta*k^3*s*A[0]^3*c[2]+75*beta*k^3*s*A[0]^2*A[1]*c[2]+15*beta*k^3*s*A[0]^2*A[2]*c[2]+15*beta*k^3*s*A[0]^2*B[1]*c[2]+15*beta*k^3*s*A[0]^2*B[2]*c[2]+15*beta*k^3*s*A[0]*A[1]^2*c[2]-210*beta*k^3*s*A[0]*A[1]*A[2]*c[2]+150*beta*k^3*s*A[0]*A[1]*B[1]*c[2]+150*beta*k^3*s*A[0]*A[1]*B[2]*c[2]-285*beta*k^3*s*A[0]*A[2]^2*c[2]+150*beta*k^3*s*A[0]*A[2]*B[1]*c[2]+150*beta*k^3*s*A[0]*A[2]*B[2]*c[2]-105*beta*k^3*s*A[0]*B[1]^2*c[2]-210*beta*k^3*s*A[0]*B[1]*B[2]*c[2]-105*beta*k^3*s*A[0]*B[2]^2*c[2]-35*beta*k^3*s*A[1]^3*c[2]-285*beta*k^3*s*A[1]^2*A[2]*c[2]+75*beta*k^3*s*A[1]^2*B[1]*c[2]+75*beta*k^3*s*A[1]^2*B[2]*c[2]-525*beta*k^3*s*A[1]*A[2]^2*c[2]+30*beta*k^3*s*A[1]*A[2]*B[1]*c[2]+30*beta*k^3*s*A[1]*A[2]*B[2]*c[2]+15*beta*k^3*s*A[1]*B[1]^2*c[2]+30*beta*k^3*s*A[1]*B[1]*B[2]*c[2]+15*beta*k^3*s*A[1]*B[2]^2*c[2]-275*beta*k^3*s*A[2]^3*c[2]-105*beta*k^3*s*A[2]^2*B[1]*c[2]-105*beta*k^3*s*A[2]^2*B[2]*c[2]+75*beta*k^3*s*A[2]*B[1]^2*c[2]+150*beta*k^3*s*A[2]*B[1]*B[2]*c[2]+75*beta*k^3*s*A[2]*B[2]^2*c[2]-95*beta*k^3*s*B[1]^3*c[2]-285*beta*k^3*s*B[1]^2*B[2]*c[2]-285*beta*k^3*s*B[1]*B[2]^2*c[2]-95*beta*k^3*s*B[2]^3*c[2]-15*beta*k^4*s*w*A[0]-15*beta*k^4*s*w*A[1]-3*beta*k^4*s*w*A[2]-3*beta*k^4*s*w*B[1]-3*beta*k^4*s*w*B[2]-25*k^3*w*A[0]^3*c[2]-75*k^3*w*A[0]^2*A[1]*c[2]-15*k^3*w*A[0]^2*A[2]*c[2]-15*k^3*w*A[0]^2*B[1]*c[2]-15*k^3*w*A[0]^2*B[2]*c[2]-15*k^3*w*A[0]*A[1]^2*c[2]+210*k^3*w*A[0]*A[1]*A[2]*c[2]-150*k^3*w*A[0]*A[1]*B[1]*c[2]-150*k^3*w*A[0]*A[1]*B[2]*c[2]+285*k^3*w*A[0]*A[2]^2*c[2]-150*k^3*w*A[0]*A[2]*B[1]*c[2]-150*k^3*w*A[0]*A[2]*B[2]*c[2]+105*k^3*w*A[0]*B[1]^2*c[2]+210*k^3*w*A[0]*B[1]*B[2]*c[2]+105*k^3*w*A[0]*B[2]^2*c[2]+35*k^3*w*A[1]^3*c[2]+285*k^3*w*A[1]^2*A[2]*c[2]-75*k^3*w*A[1]^2*B[1]*c[2]-75*k^3*w*A[1]^2*B[2]*c[2]+525*k^3*w*A[1]*A[2]^2*c[2]-30*k^3*w*A[1]*A[2]*B[1]*c[2]-30*k^3*w*A[1]*A[2]*B[2]*c[2]-15*k^3*w*A[1]*B[1]^2*c[2]-30*k^3*w*A[1]*B[1]*B[2]*c[2]-15*k^3*w*A[1]*B[2]^2*c[2]+275*k^3*w*A[2]^3*c[2]+105*k^3*w*A[2]^2*B[1]*c[2]+105*k^3*w*A[2]^2*B[2]*c[2]-75*k^3*w*A[2]*B[1]^2*c[2]-150*k^3*w*A[2]*B[1]*B[2]*c[2]-75*k^3*w*A[2]*B[2]^2*c[2]+95*k^3*w*B[1]^3*c[2]+285*k^3*w*B[1]^2*B[2]*c[2]+285*k^3*w*B[1]*B[2]^2*c[2]+95*k^3*w*B[2]^3*c[2]+120*beta^2*k^2*s^2*A[1]+560*beta^2*k^2*s^2*A[2]+200*beta^2*k^2*s^2*B[1]+200*beta^2*k^2*s^2*B[2]-10*k^4*s^2*A[0]-10*k^4*s^2*A[1]-2*k^4*s^2*A[2]-2*k^4*s^2*B[1]-2*k^4*s^2*B[2]+25*k^4*w^2*A[0]+25*k^4*w^2*A[1]+5*k^4*w^2*A[2]+5*k^4*w^2*B[1]+5*k^4*w^2*B[2]-240*beta*k^2*s*w*A[1]-1120*beta*k^2*s*w*A[2]-400*beta*k^2*s*w*B[1]-400*beta*k^2*s*w*B[2]+120*k^2*s^2*A[1]+560*k^2*s^2*A[2]+200*k^2*s^2*B[1]+200*k^2*s^2*B[2]-2400*beta*s*w*A[1]-9920*beta*s*w*A[2]-2720*beta*s*w*B[1]-2720*beta*s*w*B[2]+2400*s^2*A[1]+9920*s^2*A[2]+2720*s^2*B[1]+2720*s^2*B[2]), 0 = (beta*s-w)*(-25*beta*k^3*s*A[0]^3*c[2]+75*beta*k^3*s*A[0]^2*A[1]*c[2]+165*beta*k^3*s*A[0]^2*A[2]*c[2]-165*beta*k^3*s*A[0]^2*B[1]*c[2]-165*beta*k^3*s*A[0]^2*B[2]*c[2]+165*beta*k^3*s*A[0]*A[1]^2*c[2]+150*beta*k^3*s*A[0]*A[1]*A[2]*c[2]-150*beta*k^3*s*A[0]*A[1]*B[1]*c[2]-150*beta*k^3*s*A[0]*A[1]*B[2]*c[2]-315*beta*k^3*s*A[0]*A[2]^2*c[2]+150*beta*k^3*s*A[0]*A[2]*B[1]*c[2]+150*beta*k^3*s*A[0]*A[2]*B[2]*c[2]-75*beta*k^3*s*A[0]*B[1]^2*c[2]-150*beta*k^3*s*A[0]*B[1]*B[2]*c[2]-75*beta*k^3*s*A[0]*B[2]^2*c[2]+25*beta*k^3*s*A[1]^3*c[2]-315*beta*k^3*s*A[1]^2*A[2]*c[2]+75*beta*k^3*s*A[1]^2*B[1]*c[2]+75*beta*k^3*s*A[1]^2*B[2]*c[2]-1125*beta*k^3*s*A[1]*A[2]^2*c[2]+330*beta*k^3*s*A[1]*A[2]*B[1]*c[2]+330*beta*k^3*s*A[1]*A[2]*B[2]*c[2]-165*beta*k^3*s*A[1]*B[1]^2*c[2]-330*beta*k^3*s*A[1]*B[1]*B[2]*c[2]-165*beta*k^3*s*A[1]*B[2]^2*c[2]-825*beta*k^3*s*A[2]^3*c[2]+75*beta*k^3*s*A[2]^2*B[1]*c[2]+75*beta*k^3*s*A[2]^2*B[2]*c[2]-75*beta*k^3*s*A[2]*B[1]^2*c[2]-150*beta*k^3*s*A[2]*B[1]*B[2]*c[2]-75*beta*k^3*s*A[2]*B[2]^2*c[2]+105*beta*k^3*s*B[1]^3*c[2]+315*beta*k^3*s*B[1]^2*B[2]*c[2]+315*beta*k^3*s*B[1]*B[2]^2*c[2]+105*beta*k^3*s*B[2]^3*c[2]+15*beta*k^4*s*w*A[0]-15*beta*k^4*s*w*A[1]-33*beta*k^4*s*w*A[2]+33*beta*k^4*s*w*B[1]+33*beta*k^4*s*w*B[2]+25*k^3*w*A[0]^3*c[2]-75*k^3*w*A[0]^2*A[1]*c[2]-165*k^3*w*A[0]^2*A[2]*c[2]+165*k^3*w*A[0]^2*B[1]*c[2]+165*k^3*w*A[0]^2*B[2]*c[2]-165*k^3*w*A[0]*A[1]^2*c[2]-150*k^3*w*A[0]*A[1]*A[2]*c[2]+150*k^3*w*A[0]*A[1]*B[1]*c[2]+150*k^3*w*A[0]*A[1]*B[2]*c[2]+315*k^3*w*A[0]*A[2]^2*c[2]-150*k^3*w*A[0]*A[2]*B[1]*c[2]-150*k^3*w*A[0]*A[2]*B[2]*c[2]+75*k^3*w*A[0]*B[1]^2*c[2]+150*k^3*w*A[0]*B[1]*B[2]*c[2]+75*k^3*w*A[0]*B[2]^2*c[2]-25*k^3*w*A[1]^3*c[2]+315*k^3*w*A[1]^2*A[2]*c[2]-75*k^3*w*A[1]^2*B[1]*c[2]-75*k^3*w*A[1]^2*B[2]*c[2]+1125*k^3*w*A[1]*A[2]^2*c[2]-330*k^3*w*A[1]*A[2]*B[1]*c[2]-330*k^3*w*A[1]*A[2]*B[2]*c[2]+165*k^3*w*A[1]*B[1]^2*c[2]+330*k^3*w*A[1]*B[1]*B[2]*c[2]+165*k^3*w*A[1]*B[2]^2*c[2]+825*k^3*w*A[2]^3*c[2]-75*k^3*w*A[2]^2*B[1]*c[2]-75*k^3*w*A[2]^2*B[2]*c[2]+75*k^3*w*A[2]*B[1]^2*c[2]+150*k^3*w*A[2]*B[1]*B[2]*c[2]+75*k^3*w*A[2]*B[2]^2*c[2]-105*k^3*w*B[1]^3*c[2]-315*k^3*w*B[1]^2*B[2]*c[2]-315*k^3*w*B[1]*B[2]^2*c[2]-105*k^3*w*B[2]^3*c[2]+1120*beta^2*k^2*s^2*A[2]-320*beta^2*k^2*s^2*B[1]-320*beta^2*k^2*s^2*B[2]+10*k^4*s^2*A[0]-10*k^4*s^2*A[1]-22*k^4*s^2*A[2]+22*k^4*s^2*B[1]+22*k^4*s^2*B[2]-25*k^4*w^2*A[0]+25*k^4*w^2*A[1]+55*k^4*w^2*A[2]-55*k^4*w^2*B[1]-55*k^4*w^2*B[2]-2240*beta*k^2*s*w*A[2]+640*beta*k^2*s*w*B[1]+640*beta*k^2*s*w*B[2]+1120*k^2*s^2*A[2]-320*k^2*s^2*B[1]-320*k^2*s^2*B[2]-9600*beta*s*w*A[1]-65920*beta*s*w*A[2]+14720*beta*s*w*B[1]+14720*beta*s*w*B[2]+9600*s^2*A[1]+65920*s^2*A[2]-14720*s^2*B[1]-14720*s^2*B[2]), 0 = (beta*s-w)*(25*beta*k^3*s*A[0]^3*c[2]+75*beta*k^3*s*A[0]^2*A[1]*c[2]-45*beta*k^3*s*A[0]^2*A[2]*c[2]-45*beta*k^3*s*A[0]^2*B[1]*c[2]-45*beta*k^3*s*A[0]^2*B[2]*c[2]-45*beta*k^3*s*A[0]*A[1]^2*c[2]-330*beta*k^3*s*A[0]*A[1]*A[2]*c[2]+150*beta*k^3*s*A[0]*A[1]*B[1]*c[2]+150*beta*k^3*s*A[0]*A[1]*B[2]*c[2]-45*beta*k^3*s*A[0]*A[2]^2*c[2]+150*beta*k^3*s*A[0]*A[2]*B[1]*c[2]+150*beta*k^3*s*A[0]*A[2]*B[2]*c[2]-165*beta*k^3*s*A[0]*B[1]^2*c[2]-330*beta*k^3*s*A[0]*B[1]*B[2]*c[2]-165*beta*k^3*s*A[0]*B[2]^2*c[2]-55*beta*k^3*s*A[1]^3*c[2]-45*beta*k^3*s*A[1]^2*A[2]*c[2]+75*beta*k^3*s*A[1]^2*B[1]*c[2]+75*beta*k^3*s*A[1]^2*B[2]*c[2]+675*beta*k^3*s*A[1]*A[2]^2*c[2]-90*beta*k^3*s*A[1]*A[2]*B[1]*c[2]-90*beta*k^3*s*A[1]*A[2]*B[2]*c[2]-45*beta*k^3*s*A[1]*B[1]^2*c[2]-90*beta*k^3*s*A[1]*B[1]*B[2]*c[2]-45*beta*k^3*s*A[1]*B[2]^2*c[2]+825*beta*k^3*s*A[2]^3*c[2]-165*beta*k^3*s*A[2]^2*B[1]*c[2]-165*beta*k^3*s*A[2]^2*B[2]*c[2]+75*beta*k^3*s*A[2]*B[1]^2*c[2]+150*beta*k^3*s*A[2]*B[1]*B[2]*c[2]+75*beta*k^3*s*A[2]*B[2]^2*c[2]-15*beta*k^3*s*B[1]^3*c[2]-45*beta*k^3*s*B[1]^2*B[2]*c[2]-45*beta*k^3*s*B[1]*B[2]^2*c[2]-15*beta*k^3*s*B[2]^3*c[2]-15*beta*k^4*s*w*A[0]-15*beta*k^4*s*w*A[1]+9*beta*k^4*s*w*A[2]+9*beta*k^4*s*w*B[1]+9*beta*k^4*s*w*B[2]-25*k^3*w*A[0]^3*c[2]-75*k^3*w*A[0]^2*A[1]*c[2]+45*k^3*w*A[0]^2*A[2]*c[2]+45*k^3*w*A[0]^2*B[1]*c[2]+45*k^3*w*A[0]^2*B[2]*c[2]+45*k^3*w*A[0]*A[1]^2*c[2]+330*k^3*w*A[0]*A[1]*A[2]*c[2]-150*k^3*w*A[0]*A[1]*B[1]*c[2]-150*k^3*w*A[0]*A[1]*B[2]*c[2]+45*k^3*w*A[0]*A[2]^2*c[2]-150*k^3*w*A[0]*A[2]*B[1]*c[2]-150*k^3*w*A[0]*A[2]*B[2]*c[2]+165*k^3*w*A[0]*B[1]^2*c[2]+330*k^3*w*A[0]*B[1]*B[2]*c[2]+165*k^3*w*A[0]*B[2]^2*c[2]+55*k^3*w*A[1]^3*c[2]+45*k^3*w*A[1]^2*A[2]*c[2]-75*k^3*w*A[1]^2*B[1]*c[2]-75*k^3*w*A[1]^2*B[2]*c[2]-675*k^3*w*A[1]*A[2]^2*c[2]+90*k^3*w*A[1]*A[2]*B[1]*c[2]+90*k^3*w*A[1]*A[2]*B[2]*c[2]+45*k^3*w*A[1]*B[1]^2*c[2]+90*k^3*w*A[1]*B[1]*B[2]*c[2]+45*k^3*w*A[1]*B[2]^2*c[2]-825*k^3*w*A[2]^3*c[2]+165*k^3*w*A[2]^2*B[1]*c[2]+165*k^3*w*A[2]^2*B[2]*c[2]-75*k^3*w*A[2]*B[1]^2*c[2]-150*k^3*w*A[2]*B[1]*B[2]*c[2]-75*k^3*w*A[2]*B[2]^2*c[2]+15*k^3*w*B[1]^3*c[2]+45*k^3*w*B[1]^2*B[2]*c[2]+45*k^3*w*B[1]*B[2]^2*c[2]+15*k^3*w*B[2]^3*c[2]+160*beta^2*k^2*s^2*A[1]-80*beta^2*k^2*s^2*A[2]-10*k^4*s^2*A[0]-10*k^4*s^2*A[1]+6*k^4*s^2*A[2]+6*k^4*s^2*B[1]+6*k^4*s^2*B[2]+25*k^4*w^2*A[0]+25*k^4*w^2*A[1]-15*k^4*w^2*A[2]-15*k^4*w^2*B[1]-15*k^4*w^2*B[2]-320*beta*k^2*s*w*A[1]+160*beta*k^2*s*w*A[2]+160*k^2*s^2*A[1]-80*k^2*s^2*A[2]+8000*beta*s*w*A[1]+100160*beta*s*w*A[2]+20160*beta*s*w*B[1]+20160*beta*s*w*B[2]-8000*s^2*A[1]-100160*s^2*A[2]-20160*s^2*B[1]-20160*s^2*B[2]), 0 = (beta*s-w)*(-25*beta*k^3*s*A[0]^3*c[2]+75*beta*k^3*s*A[0]^2*A[1]*c[2]+105*beta*k^3*s*A[0]^2*A[2]*c[2]-105*beta*k^3*s*A[0]^2*B[1]*c[2]-105*beta*k^3*s*A[0]^2*B[2]*c[2]+105*beta*k^3*s*A[0]*A[1]^2*c[2]-210*beta*k^3*s*A[0]*A[1]*A[2]*c[2]-150*beta*k^3*s*A[0]*A[1]*B[1]*c[2]-150*beta*k^3*s*A[0]*A[1]*B[2]*c[2]-315*beta*k^3*s*A[0]*A[2]^2*c[2]+150*beta*k^3*s*A[0]*A[2]*B[1]*c[2]+150*beta*k^3*s*A[0]*A[2]*B[2]*c[2]+105*beta*k^3*s*A[0]*B[1]^2*c[2]+210*beta*k^3*s*A[0]*B[1]*B[2]*c[2]+105*beta*k^3*s*A[0]*B[2]^2*c[2]-35*beta*k^3*s*A[1]^3*c[2]-315*beta*k^3*s*A[1]^2*A[2]*c[2]+75*beta*k^3*s*A[1]^2*B[1]*c[2]+75*beta*k^3*s*A[1]^2*B[2]*c[2]+315*beta*k^3*s*A[1]*A[2]^2*c[2]+210*beta*k^3*s*A[1]*A[2]*B[1]*c[2]+210*beta*k^3*s*A[1]*A[2]*B[2]*c[2]-105*beta*k^3*s*A[1]*B[1]^2*c[2]-210*beta*k^3*s*A[1]*B[1]*B[2]*c[2]-105*beta*k^3*s*A[1]*B[2]^2*c[2]+1155*beta*k^3*s*A[2]^3*c[2]-105*beta*k^3*s*A[2]^2*B[1]*c[2]-105*beta*k^3*s*A[2]^2*B[2]*c[2]-75*beta*k^3*s*A[2]*B[1]^2*c[2]-150*beta*k^3*s*A[2]*B[1]*B[2]*c[2]-75*beta*k^3*s*A[2]*B[2]^2*c[2]+105*beta*k^3*s*B[1]^3*c[2]+315*beta*k^3*s*B[1]^2*B[2]*c[2]+315*beta*k^3*s*B[1]*B[2]^2*c[2]+105*beta*k^3*s*B[2]^3*c[2]+15*beta*k^4*s*w*A[0]-15*beta*k^4*s*w*A[1]-21*beta*k^4*s*w*A[2]+21*beta*k^4*s*w*B[1]+21*beta*k^4*s*w*B[2]+25*k^3*w*A[0]^3*c[2]-75*k^3*w*A[0]^2*A[1]*c[2]-105*k^3*w*A[0]^2*A[2]*c[2]+105*k^3*w*A[0]^2*B[1]*c[2]+105*k^3*w*A[0]^2*B[2]*c[2]-105*k^3*w*A[0]*A[1]^2*c[2]+210*k^3*w*A[0]*A[1]*A[2]*c[2]+150*k^3*w*A[0]*A[1]*B[1]*c[2]+150*k^3*w*A[0]*A[1]*B[2]*c[2]+315*k^3*w*A[0]*A[2]^2*c[2]-150*k^3*w*A[0]*A[2]*B[1]*c[2]-150*k^3*w*A[0]*A[2]*B[2]*c[2]-105*k^3*w*A[0]*B[1]^2*c[2]-210*k^3*w*A[0]*B[1]*B[2]*c[2]-105*k^3*w*A[0]*B[2]^2*c[2]+35*k^3*w*A[1]^3*c[2]+315*k^3*w*A[1]^2*A[2]*c[2]-75*k^3*w*A[1]^2*B[1]*c[2]-75*k^3*w*A[1]^2*B[2]*c[2]-315*k^3*w*A[1]*A[2]^2*c[2]-210*k^3*w*A[1]*A[2]*B[1]*c[2]-210*k^3*w*A[1]*A[2]*B[2]*c[2]+105*k^3*w*A[1]*B[1]^2*c[2]+210*k^3*w*A[1]*B[1]*B[2]*c[2]+105*k^3*w*A[1]*B[2]^2*c[2]-1155*k^3*w*A[2]^3*c[2]+105*k^3*w*A[2]^2*B[1]*c[2]+105*k^3*w*A[2]^2*B[2]*c[2]+75*k^3*w*A[2]*B[1]^2*c[2]+150*k^3*w*A[2]*B[1]*B[2]*c[2]+75*k^3*w*A[2]*B[2]^2*c[2]-105*k^3*w*B[1]^3*c[2]-315*k^3*w*B[1]^2*B[2]*c[2]-315*k^3*w*B[1]*B[2]^2*c[2]-105*k^3*w*B[2]^3*c[2]+120*beta^2*k^2*s^2*A[1]+960*beta^2*k^2*s^2*A[2]-280*beta^2*k^2*s^2*B[1]-280*beta^2*k^2*s^2*B[2]+10*k^4*s^2*A[0]-10*k^4*s^2*A[1]-14*k^4*s^2*A[2]+14*k^4*s^2*B[1]+14*k^4*s^2*B[2]-25*k^4*w^2*A[0]+25*k^4*w^2*A[1]+35*k^4*w^2*A[2]-35*k^4*w^2*B[1]-35*k^4*w^2*B[2]-240*beta*k^2*s*w*A[1]-1920*beta*k^2*s*w*A[2]+560*beta*k^2*s*w*B[1]+560*beta*k^2*s*w*B[2]+120*k^2*s^2*A[1]+960*k^2*s^2*A[2]-280*k^2*s^2*B[1]-280*k^2*s^2*B[2]+4320*beta*s*w*A[1]+168960*beta*s*w*A[2]-32480*beta*s*w*B[1]-32480*beta*s*w*B[2]-4320*s^2*A[1]-168960*s^2*A[2]+32480*s^2*B[1]+32480*s^2*B[2]), 0 = (beta*s-w)*(25*beta*k^3*s*A[0]^3*c[2]+75*beta*k^3*s*A[0]^2*A[1]*c[2]-105*beta*k^3*s*A[0]^2*A[2]*c[2]-105*beta*k^3*s*A[0]^2*B[1]*c[2]-105*beta*k^3*s*A[0]^2*B[2]*c[2]-105*beta*k^3*s*A[0]*A[1]^2*c[2]-210*beta*k^3*s*A[0]*A[1]*A[2]*c[2]+150*beta*k^3*s*A[0]*A[1]*B[1]*c[2]+150*beta*k^3*s*A[0]*A[1]*B[2]*c[2]+315*beta*k^3*s*A[0]*A[2]^2*c[2]+150*beta*k^3*s*A[0]*A[2]*B[1]*c[2]+150*beta*k^3*s*A[0]*A[2]*B[2]*c[2]-105*beta*k^3*s*A[0]*B[1]^2*c[2]-210*beta*k^3*s*A[0]*B[1]*B[2]*c[2]-105*beta*k^3*s*A[0]*B[2]^2*c[2]-35*beta*k^3*s*A[1]^3*c[2]+315*beta*k^3*s*A[1]^2*A[2]*c[2]+75*beta*k^3*s*A[1]^2*B[1]*c[2]+75*beta*k^3*s*A[1]^2*B[2]*c[2]+315*beta*k^3*s*A[1]*A[2]^2*c[2]-210*beta*k^3*s*A[1]*A[2]*B[1]*c[2]-210*beta*k^3*s*A[1]*A[2]*B[2]*c[2]-105*beta*k^3*s*A[1]*B[1]^2*c[2]-210*beta*k^3*s*A[1]*B[1]*B[2]*c[2]-105*beta*k^3*s*A[1]*B[2]^2*c[2]-1155*beta*k^3*s*A[2]^3*c[2]-105*beta*k^3*s*A[2]^2*B[1]*c[2]-105*beta*k^3*s*A[2]^2*B[2]*c[2]+75*beta*k^3*s*A[2]*B[1]^2*c[2]+150*beta*k^3*s*A[2]*B[1]*B[2]*c[2]+75*beta*k^3*s*A[2]*B[2]^2*c[2]+105*beta*k^3*s*B[1]^3*c[2]+315*beta*k^3*s*B[1]^2*B[2]*c[2]+315*beta*k^3*s*B[1]*B[2]^2*c[2]+105*beta*k^3*s*B[2]^3*c[2]-15*beta*k^4*s*w*A[0]-15*beta*k^4*s*w*A[1]+21*beta*k^4*s*w*A[2]+21*beta*k^4*s*w*B[1]+21*beta*k^4*s*w*B[2]-25*k^3*w*A[0]^3*c[2]-75*k^3*w*A[0]^2*A[1]*c[2]+105*k^3*w*A[0]^2*A[2]*c[2]+105*k^3*w*A[0]^2*B[1]*c[2]+105*k^3*w*A[0]^2*B[2]*c[2]+105*k^3*w*A[0]*A[1]^2*c[2]+210*k^3*w*A[0]*A[1]*A[2]*c[2]-150*k^3*w*A[0]*A[1]*B[1]*c[2]-150*k^3*w*A[0]*A[1]*B[2]*c[2]-315*k^3*w*A[0]*A[2]^2*c[2]-150*k^3*w*A[0]*A[2]*B[1]*c[2]-150*k^3*w*A[0]*A[2]*B[2]*c[2]+105*k^3*w*A[0]*B[1]^2*c[2]+210*k^3*w*A[0]*B[1]*B[2]*c[2]+105*k^3*w*A[0]*B[2]^2*c[2]+35*k^3*w*A[1]^3*c[2]-315*k^3*w*A[1]^2*A[2]*c[2]-75*k^3*w*A[1]^2*B[1]*c[2]-75*k^3*w*A[1]^2*B[2]*c[2]-315*k^3*w*A[1]*A[2]^2*c[2]+210*k^3*w*A[1]*A[2]*B[1]*c[2]+210*k^3*w*A[1]*A[2]*B[2]*c[2]+105*k^3*w*A[1]*B[1]^2*c[2]+210*k^3*w*A[1]*B[1]*B[2]*c[2]+105*k^3*w*A[1]*B[2]^2*c[2]+1155*k^3*w*A[2]^3*c[2]+105*k^3*w*A[2]^2*B[1]*c[2]+105*k^3*w*A[2]^2*B[2]*c[2]-75*k^3*w*A[2]*B[1]^2*c[2]-150*k^3*w*A[2]*B[1]*B[2]*c[2]-75*k^3*w*A[2]*B[2]^2*c[2]-105*k^3*w*B[1]^3*c[2]-315*k^3*w*B[1]^2*B[2]*c[2]-315*k^3*w*B[1]*B[2]^2*c[2]-105*k^3*w*B[2]^3*c[2]+120*beta^2*k^2*s^2*A[1]-960*beta^2*k^2*s^2*A[2]-280*beta^2*k^2*s^2*B[1]-280*beta^2*k^2*s^2*B[2]-10*k^4*s^2*A[0]-10*k^4*s^2*A[1]+14*k^4*s^2*A[2]+14*k^4*s^2*B[1]+14*k^4*s^2*B[2]+25*k^4*w^2*A[0]+25*k^4*w^2*A[1]-35*k^4*w^2*A[2]-35*k^4*w^2*B[1]-35*k^4*w^2*B[2]-240*beta*k^2*s*w*A[1]+1920*beta*k^2*s*w*A[2]+560*beta*k^2*s*w*B[1]+560*beta*k^2*s*w*B[2]+120*k^2*s^2*A[1]-960*k^2*s^2*A[2]-280*k^2*s^2*B[1]-280*k^2*s^2*B[2]+4320*beta*s*w*A[1]-168960*beta*s*w*A[2]-32480*beta*s*w*B[1]-32480*beta*s*w*B[2]-4320*s^2*A[1]+168960*s^2*A[2]+32480*s^2*B[1]+32480*s^2*B[2]), 0 = (beta*s-w)*(-25*beta*k^3*s*A[0]^3*c[2]+75*beta*k^3*s*A[0]^2*A[1]*c[2]+45*beta*k^3*s*A[0]^2*A[2]*c[2]-45*beta*k^3*s*A[0]^2*B[1]*c[2]-45*beta*k^3*s*A[0]^2*B[2]*c[2]+45*beta*k^3*s*A[0]*A[1]^2*c[2]-330*beta*k^3*s*A[0]*A[1]*A[2]*c[2]-150*beta*k^3*s*A[0]*A[1]*B[1]*c[2]-150*beta*k^3*s*A[0]*A[1]*B[2]*c[2]+45*beta*k^3*s*A[0]*A[2]^2*c[2]+150*beta*k^3*s*A[0]*A[2]*B[1]*c[2]+150*beta*k^3*s*A[0]*A[2]*B[2]*c[2]+165*beta*k^3*s*A[0]*B[1]^2*c[2]+330*beta*k^3*s*A[0]*B[1]*B[2]*c[2]+165*beta*k^3*s*A[0]*B[2]^2*c[2]-55*beta*k^3*s*A[1]^3*c[2]+45*beta*k^3*s*A[1]^2*A[2]*c[2]+75*beta*k^3*s*A[1]^2*B[1]*c[2]+75*beta*k^3*s*A[1]^2*B[2]*c[2]+675*beta*k^3*s*A[1]*A[2]^2*c[2]+90*beta*k^3*s*A[1]*A[2]*B[1]*c[2]+90*beta*k^3*s*A[1]*A[2]*B[2]*c[2]-45*beta*k^3*s*A[1]*B[1]^2*c[2]-90*beta*k^3*s*A[1]*B[1]*B[2]*c[2]-45*beta*k^3*s*A[1]*B[2]^2*c[2]-825*beta*k^3*s*A[2]^3*c[2]-165*beta*k^3*s*A[2]^2*B[1]*c[2]-165*beta*k^3*s*A[2]^2*B[2]*c[2]-75*beta*k^3*s*A[2]*B[1]^2*c[2]-150*beta*k^3*s*A[2]*B[1]*B[2]*c[2]-75*beta*k^3*s*A[2]*B[2]^2*c[2]-15*beta*k^3*s*B[1]^3*c[2]-45*beta*k^3*s*B[1]^2*B[2]*c[2]-45*beta*k^3*s*B[1]*B[2]^2*c[2]-15*beta*k^3*s*B[2]^3*c[2]+15*beta*k^4*s*w*A[0]-15*beta*k^4*s*w*A[1]-9*beta*k^4*s*w*A[2]+9*beta*k^4*s*w*B[1]+9*beta*k^4*s*w*B[2]+25*k^3*w*A[0]^3*c[2]-75*k^3*w*A[0]^2*A[1]*c[2]-45*k^3*w*A[0]^2*A[2]*c[2]+45*k^3*w*A[0]^2*B[1]*c[2]+45*k^3*w*A[0]^2*B[2]*c[2]-45*k^3*w*A[0]*A[1]^2*c[2]+330*k^3*w*A[0]*A[1]*A[2]*c[2]+150*k^3*w*A[0]*A[1]*B[1]*c[2]+150*k^3*w*A[0]*A[1]*B[2]*c[2]-45*k^3*w*A[0]*A[2]^2*c[2]-150*k^3*w*A[0]*A[2]*B[1]*c[2]-150*k^3*w*A[0]*A[2]*B[2]*c[2]-165*k^3*w*A[0]*B[1]^2*c[2]-330*k^3*w*A[0]*B[1]*B[2]*c[2]-165*k^3*w*A[0]*B[2]^2*c[2]+55*k^3*w*A[1]^3*c[2]-45*k^3*w*A[1]^2*A[2]*c[2]-75*k^3*w*A[1]^2*B[1]*c[2]-75*k^3*w*A[1]^2*B[2]*c[2]-675*k^3*w*A[1]*A[2]^2*c[2]-90*k^3*w*A[1]*A[2]*B[1]*c[2]-90*k^3*w*A[1]*A[2]*B[2]*c[2]+45*k^3*w*A[1]*B[1]^2*c[2]+90*k^3*w*A[1]*B[1]*B[2]*c[2]+45*k^3*w*A[1]*B[2]^2*c[2]+825*k^3*w*A[2]^3*c[2]+165*k^3*w*A[2]^2*B[1]*c[2]+165*k^3*w*A[2]^2*B[2]*c[2]+75*k^3*w*A[2]*B[1]^2*c[2]+150*k^3*w*A[2]*B[1]*B[2]*c[2]+75*k^3*w*A[2]*B[2]^2*c[2]+15*k^3*w*B[1]^3*c[2]+45*k^3*w*B[1]^2*B[2]*c[2]+45*k^3*w*B[1]*B[2]^2*c[2]+15*k^3*w*B[2]^3*c[2]+160*beta^2*k^2*s^2*A[1]+80*beta^2*k^2*s^2*A[2]+10*k^4*s^2*A[0]-10*k^4*s^2*A[1]-6*k^4*s^2*A[2]+6*k^4*s^2*B[1]+6*k^4*s^2*B[2]-25*k^4*w^2*A[0]+25*k^4*w^2*A[1]+15*k^4*w^2*A[2]-15*k^4*w^2*B[1]-15*k^4*w^2*B[2]-320*beta*k^2*s*w*A[1]-160*beta*k^2*s*w*A[2]+160*k^2*s^2*A[1]+80*k^2*s^2*A[2]+8000*beta*s*w*A[1]-100160*beta*s*w*A[2]+20160*beta*s*w*B[1]+20160*beta*s*w*B[2]-8000*s^2*A[1]+100160*s^2*A[2]-20160*s^2*B[1]-20160*s^2*B[2]), 0 = (beta*s-w)*(-25*beta*k^3*s*A[0]^3*c[2]-75*beta*k^3*s*A[0]^2*A[1]*c[2]+165*beta*k^3*s*A[0]^2*A[2]*c[2]+165*beta*k^3*s*A[0]^2*B[1]*c[2]+165*beta*k^3*s*A[0]^2*B[2]*c[2]+165*beta*k^3*s*A[0]*A[1]^2*c[2]-150*beta*k^3*s*A[0]*A[1]*A[2]*c[2]-150*beta*k^3*s*A[0]*A[1]*B[1]*c[2]-150*beta*k^3*s*A[0]*A[1]*B[2]*c[2]-315*beta*k^3*s*A[0]*A[2]^2*c[2]-150*beta*k^3*s*A[0]*A[2]*B[1]*c[2]-150*beta*k^3*s*A[0]*A[2]*B[2]*c[2]-75*beta*k^3*s*A[0]*B[1]^2*c[2]-150*beta*k^3*s*A[0]*B[1]*B[2]*c[2]-75*beta*k^3*s*A[0]*B[2]^2*c[2]-25*beta*k^3*s*A[1]^3*c[2]-315*beta*k^3*s*A[1]^2*A[2]*c[2]-75*beta*k^3*s*A[1]^2*B[1]*c[2]-75*beta*k^3*s*A[1]^2*B[2]*c[2]+1125*beta*k^3*s*A[1]*A[2]^2*c[2]+330*beta*k^3*s*A[1]*A[2]*B[1]*c[2]+330*beta*k^3*s*A[1]*A[2]*B[2]*c[2]+165*beta*k^3*s*A[1]*B[1]^2*c[2]+330*beta*k^3*s*A[1]*B[1]*B[2]*c[2]+165*beta*k^3*s*A[1]*B[2]^2*c[2]-825*beta*k^3*s*A[2]^3*c[2]-75*beta*k^3*s*A[2]^2*B[1]*c[2]-75*beta*k^3*s*A[2]^2*B[2]*c[2]-75*beta*k^3*s*A[2]*B[1]^2*c[2]-150*beta*k^3*s*A[2]*B[1]*B[2]*c[2]-75*beta*k^3*s*A[2]*B[2]^2*c[2]-105*beta*k^3*s*B[1]^3*c[2]-315*beta*k^3*s*B[1]^2*B[2]*c[2]-315*beta*k^3*s*B[1]*B[2]^2*c[2]-105*beta*k^3*s*B[2]^3*c[2]+15*beta*k^4*s*w*A[0]+15*beta*k^4*s*w*A[1]-33*beta*k^4*s*w*A[2]-33*beta*k^4*s*w*B[1]-33*beta*k^4*s*w*B[2]+25*k^3*w*A[0]^3*c[2]+75*k^3*w*A[0]^2*A[1]*c[2]-165*k^3*w*A[0]^2*A[2]*c[2]-165*k^3*w*A[0]^2*B[1]*c[2]-165*k^3*w*A[0]^2*B[2]*c[2]-165*k^3*w*A[0]*A[1]^2*c[2]+150*k^3*w*A[0]*A[1]*A[2]*c[2]+150*k^3*w*A[0]*A[1]*B[1]*c[2]+150*k^3*w*A[0]*A[1]*B[2]*c[2]+315*k^3*w*A[0]*A[2]^2*c[2]+150*k^3*w*A[0]*A[2]*B[1]*c[2]+150*k^3*w*A[0]*A[2]*B[2]*c[2]+75*k^3*w*A[0]*B[1]^2*c[2]+150*k^3*w*A[0]*B[1]*B[2]*c[2]+75*k^3*w*A[0]*B[2]^2*c[2]+25*k^3*w*A[1]^3*c[2]+315*k^3*w*A[1]^2*A[2]*c[2]+75*k^3*w*A[1]^2*B[1]*c[2]+75*k^3*w*A[1]^2*B[2]*c[2]-1125*k^3*w*A[1]*A[2]^2*c[2]-330*k^3*w*A[1]*A[2]*B[1]*c[2]-330*k^3*w*A[1]*A[2]*B[2]*c[2]-165*k^3*w*A[1]*B[1]^2*c[2]-330*k^3*w*A[1]*B[1]*B[2]*c[2]-165*k^3*w*A[1]*B[2]^2*c[2]+825*k^3*w*A[2]^3*c[2]+75*k^3*w*A[2]^2*B[1]*c[2]+75*k^3*w*A[2]^2*B[2]*c[2]+75*k^3*w*A[2]*B[1]^2*c[2]+150*k^3*w*A[2]*B[1]*B[2]*c[2]+75*k^3*w*A[2]*B[2]^2*c[2]+105*k^3*w*B[1]^3*c[2]+315*k^3*w*B[1]^2*B[2]*c[2]+315*k^3*w*B[1]*B[2]^2*c[2]+105*k^3*w*B[2]^3*c[2]+1120*beta^2*k^2*s^2*A[2]+320*beta^2*k^2*s^2*B[1]+320*beta^2*k^2*s^2*B[2]+10*k^4*s^2*A[0]+10*k^4*s^2*A[1]-22*k^4*s^2*A[2]-22*k^4*s^2*B[1]-22*k^4*s^2*B[2]-25*k^4*w^2*A[0]-25*k^4*w^2*A[1]+55*k^4*w^2*A[2]+55*k^4*w^2*B[1]+55*k^4*w^2*B[2]-2240*beta*k^2*s*w*A[2]-640*beta*k^2*s*w*B[1]-640*beta*k^2*s*w*B[2]+1120*k^2*s^2*A[2]+320*k^2*s^2*B[1]+320*k^2*s^2*B[2]+9600*beta*s*w*A[1]-65920*beta*s*w*A[2]-14720*beta*s*w*B[1]-14720*beta*s*w*B[2]-9600*s^2*A[1]+65920*s^2*A[2]+14720*s^2*B[1]+14720*s^2*B[2]), 0 = (beta*s-w)*(-25*beta*k^3*s*A[0]^3*c[2]+75*beta*k^3*s*A[0]^2*A[1]*c[2]-15*beta*k^3*s*A[0]^2*A[2]*c[2]+15*beta*k^3*s*A[0]^2*B[1]*c[2]+15*beta*k^3*s*A[0]^2*B[2]*c[2]-15*beta*k^3*s*A[0]*A[1]^2*c[2]-210*beta*k^3*s*A[0]*A[1]*A[2]*c[2]-150*beta*k^3*s*A[0]*A[1]*B[1]*c[2]-150*beta*k^3*s*A[0]*A[1]*B[2]*c[2]+285*beta*k^3*s*A[0]*A[2]^2*c[2]+150*beta*k^3*s*A[0]*A[2]*B[1]*c[2]+150*beta*k^3*s*A[0]*A[2]*B[2]*c[2]+105*beta*k^3*s*A[0]*B[1]^2*c[2]+210*beta*k^3*s*A[0]*B[1]*B[2]*c[2]+105*beta*k^3*s*A[0]*B[2]^2*c[2]-35*beta*k^3*s*A[1]^3*c[2]+285*beta*k^3*s*A[1]^2*A[2]*c[2]+75*beta*k^3*s*A[1]^2*B[1]*c[2]+75*beta*k^3*s*A[1]^2*B[2]*c[2]-525*beta*k^3*s*A[1]*A[2]^2*c[2]-30*beta*k^3*s*A[1]*A[2]*B[1]*c[2]-30*beta*k^3*s*A[1]*A[2]*B[2]*c[2]+15*beta*k^3*s*A[1]*B[1]^2*c[2]+30*beta*k^3*s*A[1]*B[1]*B[2]*c[2]+15*beta*k^3*s*A[1]*B[2]^2*c[2]+275*beta*k^3*s*A[2]^3*c[2]-105*beta*k^3*s*A[2]^2*B[1]*c[2]-105*beta*k^3*s*A[2]^2*B[2]*c[2]-75*beta*k^3*s*A[2]*B[1]^2*c[2]-150*beta*k^3*s*A[2]*B[1]*B[2]*c[2]-75*beta*k^3*s*A[2]*B[2]^2*c[2]-95*beta*k^3*s*B[1]^3*c[2]-285*beta*k^3*s*B[1]^2*B[2]*c[2]-285*beta*k^3*s*B[1]*B[2]^2*c[2]-95*beta*k^3*s*B[2]^3*c[2]+15*beta*k^4*s*w*A[0]-15*beta*k^4*s*w*A[1]+3*beta*k^4*s*w*A[2]-3*beta*k^4*s*w*B[1]-3*beta*k^4*s*w*B[2]+25*k^3*w*A[0]^3*c[2]-75*k^3*w*A[0]^2*A[1]*c[2]+15*k^3*w*A[0]^2*A[2]*c[2]-15*k^3*w*A[0]^2*B[1]*c[2]-15*k^3*w*A[0]^2*B[2]*c[2]+15*k^3*w*A[0]*A[1]^2*c[2]+210*k^3*w*A[0]*A[1]*A[2]*c[2]+150*k^3*w*A[0]*A[1]*B[1]*c[2]+150*k^3*w*A[0]*A[1]*B[2]*c[2]-285*k^3*w*A[0]*A[2]^2*c[2]-150*k^3*w*A[0]*A[2]*B[1]*c[2]-150*k^3*w*A[0]*A[2]*B[2]*c[2]-105*k^3*w*A[0]*B[1]^2*c[2]-210*k^3*w*A[0]*B[1]*B[2]*c[2]-105*k^3*w*A[0]*B[2]^2*c[2]+35*k^3*w*A[1]^3*c[2]-285*k^3*w*A[1]^2*A[2]*c[2]-75*k^3*w*A[1]^2*B[1]*c[2]-75*k^3*w*A[1]^2*B[2]*c[2]+525*k^3*w*A[1]*A[2]^2*c[2]+30*k^3*w*A[1]*A[2]*B[1]*c[2]+30*k^3*w*A[1]*A[2]*B[2]*c[2]-15*k^3*w*A[1]*B[1]^2*c[2]-30*k^3*w*A[1]*B[1]*B[2]*c[2]-15*k^3*w*A[1]*B[2]^2*c[2]-275*k^3*w*A[2]^3*c[2]+105*k^3*w*A[2]^2*B[1]*c[2]+105*k^3*w*A[2]^2*B[2]*c[2]+75*k^3*w*A[2]*B[1]^2*c[2]+150*k^3*w*A[2]*B[1]*B[2]*c[2]+75*k^3*w*A[2]*B[2]^2*c[2]+95*k^3*w*B[1]^3*c[2]+285*k^3*w*B[1]^2*B[2]*c[2]+285*k^3*w*B[1]*B[2]^2*c[2]+95*k^3*w*B[2]^3*c[2]+120*beta^2*k^2*s^2*A[1]-560*beta^2*k^2*s^2*A[2]+200*beta^2*k^2*s^2*B[1]+200*beta^2*k^2*s^2*B[2]+10*k^4*s^2*A[0]-10*k^4*s^2*A[1]+2*k^4*s^2*A[2]-2*k^4*s^2*B[1]-2*k^4*s^2*B[2]-25*k^4*w^2*A[0]+25*k^4*w^2*A[1]-5*k^4*w^2*A[2]+5*k^4*w^2*B[1]+5*k^4*w^2*B[2]-240*beta*k^2*s*w*A[1]+1120*beta*k^2*s*w*A[2]-400*beta*k^2*s*w*B[1]-400*beta*k^2*s*w*B[2]+120*k^2*s^2*A[1]-560*k^2*s^2*A[2]+200*k^2*s^2*B[1]+200*k^2*s^2*B[2]-2400*beta*s*w*A[1]+9920*beta*s*w*A[2]-2720*beta*s*w*B[1]-2720*beta*s*w*B[2]+2400*s^2*A[1]-9920*s^2*A[2]+2720*s^2*B[1]+2720*s^2*B[2]), 0 = (beta*s-w)*(-5*beta*k^3*s*A[0]^3*c[2]-15*beta*k^3*s*A[0]^2*A[1]*c[2]+45*beta*k^3*s*A[0]^2*A[2]*c[2]+45*beta*k^3*s*A[0]^2*B[1]*c[2]+45*beta*k^3*s*A[0]^2*B[2]*c[2]+45*beta*k^3*s*A[0]*A[1]^2*c[2]-150*beta*k^3*s*A[0]*A[1]*A[2]*c[2]-30*beta*k^3*s*A[0]*A[1]*B[1]*c[2]-30*beta*k^3*s*A[0]*A[1]*B[2]*c[2]+105*beta*k^3*s*A[0]*A[2]^2*c[2]-30*beta*k^3*s*A[0]*A[2]*B[1]*c[2]-30*beta*k^3*s*A[0]*A[2]*B[2]*c[2]-75*beta*k^3*s*A[0]*B[1]^2*c[2]-150*beta*k^3*s*A[0]*B[1]*B[2]*c[2]-75*beta*k^3*s*A[0]*B[2]^2*c[2]-25*beta*k^3*s*A[1]^3*c[2]+105*beta*k^3*s*A[1]^2*A[2]*c[2]-15*beta*k^3*s*A[1]^2*B[1]*c[2]-15*beta*k^3*s*A[1]^2*B[2]*c[2]-135*beta*k^3*s*A[1]*A[2]^2*c[2]+90*beta*k^3*s*A[1]*A[2]*B[1]*c[2]+90*beta*k^3*s*A[1]*A[2]*B[2]*c[2]+45*beta*k^3*s*A[1]*B[1]^2*c[2]+90*beta*k^3*s*A[1]*B[1]*B[2]*c[2]+45*beta*k^3*s*A[1]*B[2]^2*c[2]+55*beta*k^3*s*A[2]^3*c[2]-75*beta*k^3*s*A[2]^2*B[1]*c[2]-75*beta*k^3*s*A[2]^2*B[2]*c[2]-15*beta*k^3*s*A[2]*B[1]^2*c[2]-30*beta*k^3*s*A[2]*B[1]*B[2]*c[2]-15*beta*k^3*s*A[2]*B[2]^2*c[2]+35*beta*k^3*s*B[1]^3*c[2]+105*beta*k^3*s*B[1]^2*B[2]*c[2]+105*beta*k^3*s*B[1]*B[2]^2*c[2]+35*beta*k^3*s*B[2]^3*c[2]+3*beta*k^4*s*w*A[0]+3*beta*k^4*s*w*A[1]-9*beta*k^4*s*w*A[2]-9*beta*k^4*s*w*B[1]-9*beta*k^4*s*w*B[2]+5*k^3*w*A[0]^3*c[2]+15*k^3*w*A[0]^2*A[1]*c[2]-45*k^3*w*A[0]^2*A[2]*c[2]-45*k^3*w*A[0]^2*B[1]*c[2]-45*k^3*w*A[0]^2*B[2]*c[2]-45*k^3*w*A[0]*A[1]^2*c[2]+150*k^3*w*A[0]*A[1]*A[2]*c[2]+30*k^3*w*A[0]*A[1]*B[1]*c[2]+30*k^3*w*A[0]*A[1]*B[2]*c[2]-105*k^3*w*A[0]*A[2]^2*c[2]+30*k^3*w*A[0]*A[2]*B[1]*c[2]+30*k^3*w*A[0]*A[2]*B[2]*c[2]+75*k^3*w*A[0]*B[1]^2*c[2]+150*k^3*w*A[0]*B[1]*B[2]*c[2]+75*k^3*w*A[0]*B[2]^2*c[2]+25*k^3*w*A[1]^3*c[2]-105*k^3*w*A[1]^2*A[2]*c[2]+15*k^3*w*A[1]^2*B[1]*c[2]+15*k^3*w*A[1]^2*B[2]*c[2]+135*k^3*w*A[1]*A[2]^2*c[2]-90*k^3*w*A[1]*A[2]*B[1]*c[2]-90*k^3*w*A[1]*A[2]*B[2]*c[2]-45*k^3*w*A[1]*B[1]^2*c[2]-90*k^3*w*A[1]*B[1]*B[2]*c[2]-45*k^3*w*A[1]*B[2]^2*c[2]-55*k^3*w*A[2]^3*c[2]+75*k^3*w*A[2]^2*B[1]*c[2]+75*k^3*w*A[2]^2*B[2]*c[2]+15*k^3*w*A[2]*B[1]^2*c[2]+30*k^3*w*A[2]*B[1]*B[2]*c[2]+15*k^3*w*A[2]*B[2]^2*c[2]-35*k^3*w*B[1]^3*c[2]-105*k^3*w*B[1]^2*B[2]*c[2]-105*k^3*w*B[1]*B[2]^2*c[2]-35*k^3*w*B[2]^3*c[2]+40*beta^2*k^2*s^2*A[1]-80*beta^2*k^2*s^2*A[2]-40*beta^2*k^2*s^2*B[1]-40*beta^2*k^2*s^2*B[2]+2*k^4*s^2*A[0]+2*k^4*s^2*A[1]-6*k^4*s^2*A[2]-6*k^4*s^2*B[1]-6*k^4*s^2*B[2]-5*k^4*w^2*A[0]-5*k^4*w^2*A[1]+15*k^4*w^2*A[2]+15*k^4*w^2*B[1]+15*k^4*w^2*B[2]-80*beta*k^2*s*w*A[1]+160*beta*k^2*s*w*A[2]+80*beta*k^2*s*w*B[1]+80*beta*k^2*s*w*B[2]+40*k^2*s^2*A[1]-80*k^2*s^2*A[2]-40*k^2*s^2*B[1]-40*k^2*s^2*B[2]-160*beta*s*w*A[1]+320*beta*s*w*A[2]+160*beta*s*w*B[1]+160*beta*s*w*B[2]+160*s^2*A[1]-320*s^2*A[2]-160*s^2*B[1]-160*s^2*B[2]), 0 = k^3*(beta*s-w)*(A[0]-A[1]+A[2]-B[1]-B[2])*(-5*beta*s*A[0]^2*c[2]+10*beta*s*A[0]*A[1]*c[2]-10*beta*s*A[0]*A[2]*c[2]+10*beta*s*A[0]*B[1]*c[2]+10*beta*s*A[0]*B[2]*c[2]-5*beta*s*A[1]^2*c[2]+10*beta*s*A[1]*A[2]*c[2]-10*beta*s*A[1]*B[1]*c[2]-10*beta*s*A[1]*B[2]*c[2]-5*beta*s*A[2]^2*c[2]+10*beta*s*A[2]*B[1]*c[2]+10*beta*s*A[2]*B[2]*c[2]-5*beta*s*B[1]^2*c[2]-10*beta*s*B[1]*B[2]*c[2]-5*beta*s*B[2]^2*c[2]+3*beta*k*s*w+5*w*A[0]^2*c[2]-10*w*A[0]*A[1]*c[2]+10*w*A[0]*A[2]*c[2]-10*w*A[0]*B[1]*c[2]-10*w*A[0]*B[2]*c[2]+5*w*A[1]^2*c[2]-10*w*A[1]*A[2]*c[2]+10*w*A[1]*B[1]*c[2]+10*w*A[1]*B[2]*c[2]+5*w*A[2]^2*c[2]-10*w*A[2]*B[1]*c[2]-10*w*A[2]*B[2]*c[2]+5*w*B[1]^2*c[2]+10*w*B[1]*B[2]*c[2]+5*w*B[2]^2*c[2]+2*k*s^2-5*k*w^2)]

indets(CoefficientNullity)

{beta, k, s, w, A[0], A[1], A[2], B[1], B[2], c[2]}

(2)

sols := solve(CoefficientNullity, [beta, k, s, w, A[0], A[1], A[2], B[1], B[2], c[2]]); sols := `assuming`([eval(sols)], [b > 0]); whattype(sols); print(cat(`$`('_', 120))); `~`[print](sols)

[[beta = beta, k = 0, s = 0, w = w, A[0] = A[0], A[1] = A[1], A[2] = A[2], B[1] = B[1], B[2] = B[2], c[2] = c[2]], [beta = beta, k = 0, s = s, w = w, A[0] = A[0], A[1] = 0, A[2] = 0, B[1] = -B[2], B[2] = B[2], c[2] = c[2]], [beta = w/s, k = 0, s = s, w = w, A[0] = A[0], A[1] = A[1], A[2] = A[2], B[1] = B[1], B[2] = B[2], c[2] = c[2]], [beta = beta, k = 0, s = beta*w, w = w, A[0] = A[0], A[1] = A[1], A[2] = A[2], B[1] = B[1], B[2] = B[2], c[2] = c[2]]]

 

list

 

________________________________________________________________________________________________________________________

 

[beta = beta, k = 0, s = 0, w = w, A[0] = A[0], A[1] = A[1], A[2] = A[2], B[1] = B[1], B[2] = B[2], c[2] = c[2]]

 

[beta = beta, k = 0, s = s, w = w, A[0] = A[0], A[1] = 0, A[2] = 0, B[1] = -B[2], B[2] = B[2], c[2] = c[2]]

 

[beta = w/s, k = 0, s = s, w = w, A[0] = A[0], A[1] = A[1], A[2] = A[2], B[1] = B[1], B[2] = B[2], c[2] = c[2]]

 

[beta = beta, k = 0, s = beta*w, w = w, A[0] = A[0], A[1] = A[1], A[2] = A[2], B[1] = B[1], B[2] = B[2], c[2] = c[2]]

(3)

Download params.mw

1 2 3 4 5 6 7 Last Page 1 of 2414