MaplePrimes Questions

Hi guys,

This is the first time of solving partial differential equation, can some please help me point out some errows in my code. 


ODEs := `<,>`(diff(v(y), y, y)+(diff(v(y), y))/y-(Ha^2/(1-eta)^2+1/y^2)*v(y)-Re*v(y)*(diff(v(y), y)) = 0, diff(theta(y), y, y)+Ec*Pr*(diff(v(y), y)-v(y)/y)^2-Pr*Re*v(y)*(diff(theta(y), y))+Nb*(diff(theta(y), y))*(diff(phi(y), y))+Nt*(diff(theta(y), y))^2 = 0, diff(phi(y), y, y)-Re*Sc*v(y)*(diff(phi(y), y))+Nt*(diff(theta(y), y, y)+(diff(theta(y), y))/y)/Nb = 0)

ODEs := Matrix(3, 1, {(1, 1) = diff(diff(v(y), y), y)+(diff(v(y), y))/y-(Ha^2/(1-eta)^2+1/y^2)*v(y)-Re*v(y)*(diff(v(y), y)) = 0, (2, 1) = diff(diff(theta(y), y), y)+Ec*Pr*(diff(v(y), y)-v(y)/y)^2-Pr*Re*v(y)*(diff(theta(y), y))+Nb*(diff(theta(y), y))*(diff(phi(y), y))+Nt*(diff(theta(y), y))^2 = 0, (3, 1) = diff(diff(phi(y), y), y)-Re*Sc*v(y)*(diff(phi(y), y))+Nt*(diff(diff(theta(y), y), y)+(diff(theta(y), y))/y)/Nb = 0})


BCs := `<,>`(phi(eta) = 1, v(eta) = 1, theta(eta) = 1, phi(1) = 0, theta(1) = 0, v(1) = 0)

BCs := Matrix(6, 1, {(1, 1) = phi(eta) = 1, (2, 1) = v(eta) = 1, (3, 1) = theta(eta) = 1, (4, 1) = phi(1) = 0, (5, 1) = theta(1) = 0, (6, 1) = v(1) = 0})


param_names := [eta, Ha, Ec, Nt, Nb, Re, Sc, Pr];

[eta, Ha, Ec, Nt, Nb, Re, Sc, Pr]


pdSolve := subs(_P = param_names, proc ({ eta::realcons := .5, Ha::realcons := 1, Sc::realcons := .8, Nt::realcons := .1, Nb::realcons := .1, Re::realcons := 2, Ec::realcons := 0.1e-1, Pr::realcons := 10 }) userinfo(1, Solve, `~`[`=`](param_names, _P)); dsolve(eval(`union`(convert(ODEs, set), convert(BCs, set)), `~`[`=`](param_names, _P)), numeric) end proc);

proc ({ Ec::realcons := 0.1e-1, Ha::realcons := 1, Nb::realcons := .1, Nt::realcons := .1, Pr::realcons := 10, Re::realcons := 2, Sc::realcons := .8, eta::realcons := .5 }) userinfo(1, Solve, `~`[`=`](param_names, [eta, Ha, Ec, Nt, Nb, Re, Sc, Pr])); dsolve(eval(`union`(convert(ODEs, set), convert(BCs, set)), `~`[`=`](param_names, [eta, Ha, Ec, Nt, Nb, Re, Sc, Pr])), numeric) end proc


infolevel[Solve] := 1:

Fig. 3 (changing values of Ha):

P:= Ha:
vals:= [1, 5, 10, 20]:
sols:= [seq(Solve(P= v), v= vals)]:
colors:= [red, green, blue]:
for F in [v,theta,phi](y) do
         plots:-odeplot(sols[k], [y,F], color= colors[k], legend= [P= vals[k]]),
         k= 1..nops(vals)
      labeldirections= [horizontal,vertical]

Error, pdeplot is not a command in the plots package






How can I use Maple to solve a difference quotient problem? How do I enter the basic difference quotient formula and the quadratic equation to be used in the problem?

1.47449729919434*10^10*c[0, 1]*c[0, 2]*c[2, 2]*c[3, 0]+3.38624318440755*10^8*c[0, 1]*c[0, 3]*c[1, 0]*c[2, 1]+1.54309415817260*10^10*c[0, 1]*c[0, 3]*c[1, 3]*c[2, 0]+1.69527735464914*10^14*c[0, 2]*c[0, 3]*c[1, 3]*c[3, 3]+5.64571777979530*10^11*c[0, 1]*c[1, 3]*c[3, 0]*c[3, 1]+5.64571777979530*10^11*c[0, 1]*c[1, 1]*c[3, 0]*c[3, 3]+3.44365358352662*10^11*c[0, 1]*c[1, 1]*c[3, 1]*c[3, 2]+4.56141047477722*10^11*c[0, 1]*c[0, 2]*c[2, 1]*c[3, 3]+1.47449729919434*10^10*c[0, 1]*c[0, 2]*c[2, 0]*c[3, 2]+1.00292015075684*10^10*c[0, 1]*c[0, 2]*c[2, 1]*c[3, 1]+4.96419365552208*10^14*c[1, 1]*c[2, 3]*c[3, 1]*c[3, 2]+2.41547661753786*10^16*c[1, 1]*c[2, 3]*c[3, 2]*c[3, 3]+3.09237360954284*10^11*c[0, 2]*c[1, 1]*c[1, 3]*c[3, 1]+2.07077209298372*10^13*c[0, 2]*c[2, 2]*c[2, 3]*c[3, 0]+2.77395036220550*10^11*c[0, 2]*c[1, 1]*c[1, 2]*c[3, 2]+3.25883571082134*10^15*c[1, 2]*c[2, 3]*c[3, 1]*c[3, 2]+2.77442234357198*10^11*c[0, 2]*c[1, 1]*c[2, 1]*c[2, 3]+7.80736282336175*10^14*c[2, 0]*c[2, 1]*c[3, 2]*c[3, 3]+3.25883571082134*10^15*c[1, 2]*c[2, 2]*c[3, 1]*c[3, 3]+5.35593751087840*10^15*c[1, 2]*c[2, 3]*c[3, 0]*c[3, 3]+3.63255405301248*10^15*c[1, 1]*c[2, 3]*c[3, 1]*c[3, 3]+3.25883571082134*10^15*c[1, 2]*c[2, 1]*c[3, 2]*c[3, 3]+1.48022406855142*10^13*c[1, 0]*c[2, 1]*c[2, 2]*c[3, 3]+5.19766484559825*10^15*c[0, 1]*c[2, 3]*c[3, 2]*c[3, 3]+3.63255405301248*10^15*c[1, 3]*c[2, 1]*c[3, 1]*c[3, 3]+1.03156027712140*10^14*c[0, 3]*c[1, 2]*c[1, 3]*c[2, 3]+6.84418565576730*10^13*c[1, 1]*c[1, 2]*c[1, 3]*c[3, 3]+1.36253689407226*10^13*c[0, 1]*c[1, 2]*c[2, 3]*c[3, 2]+4.50722523384354*10^11*c[0, 1]*c[0, 2]*c[1, 2]*c[3, 3]+4.63272867590191*10^14*c[1, 1]*c[1, 3]*c[2, 3]*c[3, 2]+9.56722337372450*10^9*c[0, 1]*c[0, 2]*c[1, 2]*c[1, 3]+7.56283392524430*10^14*c[0, 3]*c[1, 1]*c[2, 3]*c[3, 3]+1.51879056084535*10^13*c[0, 3]*c[1, 1]*c[2, 3]*c[3, 1]+8.15436050904650*10^14*c[1, 1]*c[2, 3]*c[3, 0]*c[3, 3]+1.51879056084535*10^13*c[0, 1]*c[1, 1]*c[2, 3]*c[3, 3]+3.05712170936082*10^11*c[0, 1]*c[1, 1]*c[1, 3]*c[2, 3]+2.21942429315476*10^9*c[0, 1]*c[0, 2]*c[1, 0]*c[3, 2]+1.50960286458333*10^9*c[0, 1]*c[0, 2]*c[1, 1]*c[3, 1]+6.37602806091310*10^9*c[0, 1]*c[1, 1]*c[1, 2]*c[1, 3]+2.22015380859375*10^7*c[0, 0]*c[1, 0]*c[1, 1]*c[3, 0]+2.24812825520834*10^6*c[0, 0]*c[0, 1]*c[1, 0]*c[2, 1]+2.24812825520834*10^6*c[0, 0]*c[0, 1]*c[1, 1]*c[2, 0]+4.45556640625000*10^5*c[0, 0]*c[0, 1]*c[0, 2]*c[1, 0]+1.80236816406250*10^7*c[0, 0]*c[0, 2]*c[0, 3]*c[1, 0]+9.99813988095240*10^6*c[0, 1]*c[1, 0]*c[1, 1]*c[2, 0]+1.64310515873016*10^7*c[0, 0]*c[0, 1]*c[1, 0]*c[3, 1]+1.09924316406250*10^7*c[0, 0]*c[0, 1]*c[0, 2]*c[1, 2]+1.22578938802084*10^7*c[0, 0]*c[0, 1]*c[0, 3]*c[1, 1]+6.74438476562500*10^5*c[0, 0]*c[0, 1]*c[1, 0]*c[2, 0]+3.27484130859375*10^7*c[0, 0]*c[0, 1]*c[2, 0]*c[3, 0]+4.96419365552208*10^14*c[1, 1]*c[2, 2]*c[3, 1]*c[3, 3]+1.48022406855142*10^13*c[1, 2]*c[2, 0]*c[2, 1]*c[3, 3]+1.48022406855142*10^13*c[1, 2]*c[2, 0]*c[2, 3]*c[3, 1]+7.00457388588595*10^14*c[1, 2]*c[2, 0]*c[2, 3]*c[3, 3]+9.01806926154510*10^12*c[1, 2]*c[2, 1]*c[2, 2]*c[3, 1]+4.26195329427362*10^14*c[1, 1]*c[2, 2]*c[2, 3]*c[3, 2]+8.70017911044035*10^14*c[1, 1]*c[3, 0]*c[3, 2]*c[3, 3]+1.64960358855012*10^13*c[1, 2]*c[1, 3]*c[3, 0]*c[3, 1]+8.70017911044035*10^14*c[1, 3]*c[3, 0]*c[3, 1]*c[3, 2]+4.11701503132284*10^16*c[1, 3]*c[3, 0]*c[3, 2]*c[3, 3]+1.32823657812862*10^13*c[2, 0]*c[2, 1]*c[2, 2]*c[2, 3]+2.49782355477406*10^13*c[0, 1]*c[0, 3]*c[3, 1]*c[3, 3]+1.86077008928572*10^7*c[0, 0]*c[0, 1]*c[0, 2]*c[0, 3]+4.50750425170068*10^11*c[0, 3]*c[1, 2]*c[1, 3]*c[2, 0]+2.41765159606934*10^10*c[0, 0]*c[0, 2]*c[2, 0]*c[3, 3]+1.28155946659681*10^15*c[2, 0]*c[2, 3]*c[3, 0]*c[3, 3]+7.80736282336175*10^14*c[2, 0]*c[2, 3]*c[3, 1]*c[3, 2]+2.95015059452266*10^13*c[2, 0]*c[2, 3]*c[3, 0]*c[3, 1]+1.64424324035644*10^10*c[0, 1]*c[0, 3]*c[2, 0]*c[3, 1]+7.80736282336175*10^14*c[2, 0]*c[2, 2]*c[3, 1]*c[3, 3]+3.38624318440755*10^8*c[0, 1]*c[0, 3]*c[1, 1]*c[2, 0]+6.83811849201320*10^14*c[0, 2]*c[2, 1]*c[2, 3]*c[3, 3]+4.96419365552208*10^14*c[1, 1]*c[2, 1]*c[3, 2]*c[3, 3]+4.50722523384354*10^11*c[0, 1]*c[0, 2]*c[1, 3]*c[3, 2]+2.74640085129511*10^12*c[0, 3]^2*c[1, 3]*c[3, 0]+4.53797990504672*10^10*c[0, 2]^2*c[2, 0]*c[2, 3]+2.76260943995885*10^10*c[0, 2]^2*c[2, 1]*c[2, 2]+5.63905988420760*10^10*c[0, 3]^2*c[1, 0]*c[3, 1]+2.74640085129511*10^12*c[0, 3]^2*c[1, 0]*c[3, 3]+5.63905988420760*10^10*c[0, 3]^2*c[1, 1]*c[3, 0]+1.67039675031390*10^12*c[0, 3]^2*c[1, 1]*c[3, 2]+1.67039675031390*10^12*c[0, 3]^2*c[1, 2]*c[3, 1]