MaplePrimes Questions

How do we use on the axes Pi, Pi/2, ...,  in Maple 13 plots without evaluating Pi? When I just put enter Pi, Maple gives me 3.1415... . "piticks" is not available for Maple 13. I do have access to the university ocmputer's Maple 18, but, recently, it has decided that Citrix iwill not serve Windows 7.

Thank you.

mapleatha

Hello, 

im looking to see if there is a way to read in RGB values of the pixels in images and put those values into matrices.

any help or suggestions are appreciated.

Hi,

I'm new to Maple and was wondering if anyone could help me with how to put a discrete distribution such as Pr(X=1)=0.25, Pr(X=2)=0.65, Pr(X=3)=0.1, into Maple.

Thanks.


Dear Colleagues,

Apologies for the generic question below.

I am trying to obtain the Nash equilibrium solutions for a two-person game. I am not sure of any in-built packages that can help me in obtaining the solutions computationally. The algorithms that I created do not seem to give good solutions that are meaningful in my application. Any suggestion would be much appreciated. 

Regards,

Omkar

 

 

Hi guys

I want to solve the following non-linear differential equation but by using dsolve(), the computer cannot solve it, so please guide me.

Q:=2*diff(a(t), t, t)*a(t)^3 - 3*diff(a(t), t)^4 + diff(a(t), t)^2*a(t)^2

with the best regards

i have two nonlinear functions from which one is exicuted properly but 2nd funnction not risponde properly. i can not understan how to overcome it
 

restart

with(LinearAlgebra):

F := proc (x) options operator, arrow; x^2 end proc:

F(u(t));

u(t)^2

(1)

G := proc (w) options operator, arrow; w*dw/dt end proc:

G(h(t));

h(t)*dw/dt

(2)

for n from 0 while n <= 6 do V[n] := (diff(F(sum(t^i*u[i], i = 0 .. n)), [`$`(t, n)]))/factorial(n); U[n] := (diff(G(sum(t^i*h[i], i = 0 .. n)), [`$`(t, n)]))/factorial(n) end do:

t := 0;

0

(3)

for i from 0 while i <= n-1 do A[i] := V[i]; B[i] := U[i] end do;

u[0]^2

 

h[0]*dw/dt

 

2*u[0]*u[1]

 

h[1]*dw/dt

 

2*u[0]*u[2]+u[1]^2

 

h[2]*dw/dt

 

2*u[0]*u[3]+2*u[1]*u[2]

 

h[3]*dw/dt

 

2*u[0]*u[4]+2*u[1]*u[3]+u[2]^2

 

h[4]*dw/dt

 

2*u[0]*u[5]+2*u[1]*u[4]+2*u[2]*u[3]

 

h[5]*dw/dt

 

2*u[0]*u[6]+2*u[1]*u[5]+2*u[2]*u[4]+u[3]^2

 

h[6]*dw/dt

(4)

for j from 0 while j <= n-1 do u[0] := 1; u[j+1] := int(x*B[j], x)+int(A[j], x) end do;

1

 

(1/2)*x^2*h[0]*dw/dt+x

 

1

 

(1/2)*x^2*h[1]*dw/dt+(1/3)*x^3*h[0]*dw/dt+x^2

 

1

 

(1/2)*x^2*h[2]*dw/dt+(1/3)*x^3*h[1]*dw/dt+(5/12)*x^4*h[0]*dw/dt+x^3+(1/20)*h[0]^2*dw^2*x^5/dt^2

 

1

 

(1/2)*x^2*h[3]*dw/dt+(1/3)*x^3*h[2]*dw/dt+(1/6)*x^4*h[1]*dw/dt+(1/6)*x^5*h[0]*dw/dt+(1/2)*x^4+(13/180)*h[0]^2*dw^2*x^6/dt^2+(2/5)*((1/3)*h[0]*dw/dt+(1/2)*h[0]*dw*((1/2)*h[1]*dw/dt+1)/dt)*x^5+(1/2)*((1/2)*h[1]*dw/dt+1)*x^4

 

1

 

(1/2)*x^2*h[4]*dw/dt+(1/3)*x^3*h[3]*dw/dt+(5/12)*x^4*h[2]*dw/dt+(1/15)*x^5*h[1]*dw/dt+(1/18)*x^6*h[0]*dw/dt+(1/5)*x^5+(139/1260)*h[0]^2*dw^2*x^7/dt^2+(2/15)*((1/3)*h[0]*dw/dt+(1/2)*h[0]*dw*((1/2)*h[1]*dw/dt+1)/dt)*x^6+(1/5)*((1/2)*h[1]*dw/dt+1)*x^5+(1/160)*h[0]^3*dw^3*x^8/dt^3+(1/3)*((5/12)*h[0]*dw/dt+(1/2)*h[0]*dw*((1/3)*h[1]*dw/dt+1)/dt)*x^6+(2/5)*((1/3)*h[1]*dw/dt+1+(1/4)*h[0]*dw^2*h[2]/dt^2)*x^5+(1/9)*h[0]*dw*((1/2)*h[1]*dw/dt+1)*x^6/dt+(1/5)*((1/2)*h[1]*dw/dt+1)^2*x^5

 

1

 

(1/2)*x^2*h[5]*dw/dt+(1/3)*x^3*h[4]*dw/dt+(5/12)*x^4*h[3]*dw/dt+(1/6)*x^5*h[2]*dw/dt+(1/45)*x^6*h[1]*dw/dt+(1/63)*x^7*h[0]*dw/dt+(139/5040)*h[0]^2*dw^2*x^8/dt^2+(17/1296)*h[0]^3*dw^3*x^9/dt^3+(1/15)*x^6+(4/105)*((1/3)*h[0]*dw/dt+(1/2)*h[0]*dw*((1/2)*h[1]*dw/dt+1)/dt)*x^7+(1/15)*((1/2)*h[1]*dw/dt+1)*x^6+(2/21)*((5/12)*h[0]*dw/dt+(1/2)*h[0]*dw*((1/3)*h[1]*dw/dt+1)/dt)*x^7+(2/15)*((1/3)*h[1]*dw/dt+1+(1/4)*h[0]*dw^2*h[2]/dt^2)*x^6+(1/15)*((1/2)*h[1]*dw/dt+1)^2*x^6+(1/4)*((13/180)*h[0]^2*dw^2/dt^2+(1/2)*h[0]*dw*((3/10)*h[0]*dw/dt+(1/5)*h[0]*dw*((1/2)*h[1]*dw/dt+1)/dt)/dt)*x^8+(2/7)*((3/10)*h[0]*dw/dt+(1/5)*h[0]*dw*((1/2)*h[1]*dw/dt+1)/dt+(1/2)*h[0]*dw*((5/12)*h[1]*dw/dt+1)/dt)*x^7+(1/3)*((5/12)*h[1]*dw/dt+1+(1/6)*h[0]*dw^2*h[2]/dt^2)*x^6+(2/5)*((1/3)*h[2]*dw/dt+(1/4)*h[0]*dw^2*h[3]/dt^2)*x^5+(1/4)*((1/20)*((1/2)*h[1]*dw/dt+1)*h[0]^2*dw^2/dt^2+(5/36)*h[0]^2*dw^2/dt^2)*x^8+(2/7)*((5/12)*h[0]*dw*((1/2)*h[1]*dw/dt+1)/dt+(1/3)*h[0]*dw*((1/3)*h[1]*dw/dt+1)/dt)*x^7+(1/3)*(((1/2)*h[1]*dw/dt+1)*((1/3)*h[1]*dw/dt+1)+(1/6)*h[0]*dw^2*h[2]/dt^2)*x^6+(1/5)*((1/2)*h[1]*dw/dt+1)*h[2]*dw*x^5/dt+(2/63)*h[0]*dw*((1/2)*h[1]*dw/dt+1)*x^7/dt

 

1

 

(1/20)*h[2]^2*dw^2*x^5/dt^2+(1/3)*x^3*h[5]*dw/dt+(5/12)*x^4*h[4]*dw/dt+(1/6)*x^5*h[3]*dw/dt+(1/18)*x^6*h[2]*dw/dt+(2/315)*x^7*h[1]*dw/dt+(1/252)*x^8*h[0]*dw/dt+(139/22680)*h[0]^2*dw^2*x^9/dt^2+(2167/90720)*h[0]^3*dw^3*x^10/dt^3+(7/8800)*h[0]^4*dw^4*x^11/dt^4+(1/2)*x^2*h[6]*dw/dt+(2/105)*x^7+(2/9)*((13/180)*((1/2)*h[1]*dw/dt+1)*h[0]^2*dw^2/dt^2+(1/3)*h[0]*dw*((3/10)*h[0]*dw/dt+(1/5)*h[0]*dw*((1/2)*h[1]*dw/dt+1)/dt)/dt)*x^9+(1/4)*(((1/2)*h[1]*dw/dt+1)*((3/10)*h[0]*dw/dt+(1/5)*h[0]*dw*((1/2)*h[1]*dw/dt+1)/dt)+(1/3)*h[0]*dw*((5/12)*h[1]*dw/dt+1)/dt)*x^8+(2/7)*(((1/2)*h[1]*dw/dt+1)*((5/12)*h[1]*dw/dt+1)+(1/9)*h[0]*dw^2*h[2]/dt^2)*x^7+(1/3)*((1/3)*((1/2)*h[1]*dw/dt+1)*h[2]*dw/dt+(1/6)*h[0]*dw^2*h[3]/dt^2)*x^6+(1/105)*((1/3)*h[0]*dw/dt+(1/2)*h[0]*dw*((1/2)*h[1]*dw/dt+1)/dt)*x^8+(2/105)*((1/2)*h[1]*dw/dt+1)*x^7+(1/42)*((5/12)*h[0]*dw/dt+(1/2)*h[0]*dw*((1/3)*h[1]*dw/dt+1)/dt)*x^8+(4/105)*((1/3)*h[1]*dw/dt+1+(1/4)*h[0]*dw^2*h[2]/dt^2)*x^7+(2/105)*((1/2)*h[1]*dw/dt+1)^2*x^7+(1/18)*((13/180)*h[0]^2*dw^2/dt^2+(1/2)*h[0]*dw*((3/10)*h[0]*dw/dt+(1/5)*h[0]*dw*((1/2)*h[1]*dw/dt+1)/dt)/dt)*x^9+(1/14)*((3/10)*h[0]*dw/dt+(1/5)*h[0]*dw*((1/2)*h[1]*dw/dt+1)/dt+(1/2)*h[0]*dw*((5/12)*h[1]*dw/dt+1)/dt)*x^8+(2/21)*((5/12)*h[1]*dw/dt+1+(1/6)*h[0]*dw^2*h[2]/dt^2)*x^7+(2/15)*((1/3)*h[2]*dw/dt+(1/4)*h[0]*dw^2*h[3]/dt^2)*x^6+(1/18)*((1/20)*((1/2)*h[1]*dw/dt+1)*h[0]^2*dw^2/dt^2+(5/36)*h[0]^2*dw^2/dt^2)*x^9+(1/14)*((5/12)*h[0]*dw*((1/2)*h[1]*dw/dt+1)/dt+(1/3)*h[0]*dw*((1/3)*h[1]*dw/dt+1)/dt)*x^8+(2/21)*(((1/2)*h[1]*dw/dt+1)*((1/3)*h[1]*dw/dt+1)+(1/6)*h[0]*dw^2*h[2]/dt^2)*x^7+(1/9)*((1/10)*((1/3)*h[1]*dw/dt+1)*h[0]^2*dw^2/dt^2+(25/144)*h[0]^2*dw^2/dt^2)*x^9+(1/8)*((1/20)*h[2]*dw^3*h[0]^2/dt^3+(5/6)*h[0]*dw*((1/3)*h[1]*dw/dt+1)/dt)*x^8+(1/7)*((5/12)*h[0]*dw^2*h[2]/dt^2+((1/3)*h[1]*dw/dt+1)^2)*x^7+(2/9)*((139/1260)*h[0]^2*dw^2/dt^2+(1/2)*h[0]*dw*((43/180)*h[0]*dw/dt+(8/45)*h[0]*dw*((1/2)*h[1]*dw/dt+1)/dt+(1/6)*h[0]*dw*((1/3)*h[1]*dw/dt+1)/dt)/dt)*x^9+(1/4)*((43/180)*h[0]*dw/dt+(8/45)*h[0]*dw*((1/2)*h[1]*dw/dt+1)/dt+(1/6)*h[0]*dw*((1/3)*h[1]*dw/dt+1)/dt+(1/2)*h[0]*dw*((3/10)*h[1]*dw/dt+4/5+(1/10)*h[0]*dw^2*h[2]/dt^2+(1/5)*((1/2)*h[1]*dw/dt+1)^2)/dt)*x^8+(2/7)*((3/10)*h[1]*dw/dt+4/5+(37/120)*h[0]*dw^2*h[2]/dt^2+(1/5)*((1/2)*h[1]*dw/dt+1)^2)*x^7+(1/3)*((5/12)*h[2]*dw/dt+(1/6)*h[0]*dw^2*h[3]/dt^2)*x^6+(2/5)*((1/3)*h[3]*dw/dt+(1/4)*h[0]*dw^2*h[4]/dt^2)*x^5+(1/5)*((1/2)*h[1]*dw/dt+1)*h[3]*dw*x^5/dt+(1/15)*((1/2)*h[1]*dw/dt+1)*h[2]*dw*x^6/dt+(1/126)*h[0]*dw*((1/2)*h[1]*dw/dt+1)*x^8/dt+(1/6)*h[2]*dw*((1/3)*h[1]*dw/dt+1)*x^6/dt

(5)

y := sum(u[l], l = 0 .. n-1);

1+(1/2)*x^4+(1/5)*x^5+(1/2)*x^2*h[0]*dw/dt+(1/2)*x^2*h[1]*dw/dt+(1/3)*x^3*h[0]*dw/dt+(1/2)*x^2*h[2]*dw/dt+(1/3)*x^3*h[1]*dw/dt+(5/12)*x^4*h[0]*dw/dt+(1/20)*h[0]^2*dw^2*x^5/dt^2+(1/2)*x^2*h[3]*dw/dt+(1/3)*x^3*h[2]*dw/dt+(1/6)*x^4*h[1]*dw/dt+(1/6)*x^5*h[0]*dw/dt+(13/180)*h[0]^2*dw^2*x^6/dt^2+(1/2)*x^2*h[4]*dw/dt+(1/3)*x^3*h[3]*dw/dt+(5/12)*x^4*h[2]*dw/dt+(1/15)*x^5*h[1]*dw/dt+(1/18)*x^6*h[0]*dw/dt+(139/1260)*h[0]^2*dw^2*x^7/dt^2+(1/160)*h[0]^3*dw^3*x^8/dt^3+(1/2)*x^2*h[5]*dw/dt+(1/3)*x^3*h[4]*dw/dt+(5/12)*x^4*h[3]*dw/dt+(1/6)*x^5*h[2]*dw/dt+(1/45)*x^6*h[1]*dw/dt+(1/63)*x^7*h[0]*dw/dt+(139/5040)*h[0]^2*dw^2*x^8/dt^2+(17/1296)*h[0]^3*dw^3*x^9/dt^3+x+(1/15)*x^6+x^3+(2/15)*((1/3)*h[1]*dw/dt+1+(1/4)*h[0]*dw^2*h[2]/dt^2)*x^6+(1/15)*((1/2)*h[1]*dw/dt+1)^2*x^6+(1/4)*((13/180)*h[0]^2*dw^2/dt^2+(1/2)*h[0]*dw*((3/10)*h[0]*dw/dt+(1/5)*h[0]*dw*((1/2)*h[1]*dw/dt+1)/dt)/dt)*x^8+(2/7)*((3/10)*h[0]*dw/dt+(1/5)*h[0]*dw*((1/2)*h[1]*dw/dt+1)/dt+(1/2)*h[0]*dw*((5/12)*h[1]*dw/dt+1)/dt)*x^7+(1/3)*((5/12)*h[1]*dw/dt+1+(1/6)*h[0]*dw^2*h[2]/dt^2)*x^6+(2/5)*((1/3)*h[2]*dw/dt+(1/4)*h[0]*dw^2*h[3]/dt^2)*x^5+(1/4)*((1/20)*((1/2)*h[1]*dw/dt+1)*h[0]^2*dw^2/dt^2+(5/36)*h[0]^2*dw^2/dt^2)*x^8+(2/7)*((5/12)*h[0]*dw*((1/2)*h[1]*dw/dt+1)/dt+(1/3)*h[0]*dw*((1/3)*h[1]*dw/dt+1)/dt)*x^7+(1/3)*(((1/2)*h[1]*dw/dt+1)*((1/3)*h[1]*dw/dt+1)+(1/6)*h[0]*dw^2*h[2]/dt^2)*x^6+(4/105)*((1/3)*h[0]*dw/dt+(1/2)*h[0]*dw*((1/2)*h[1]*dw/dt+1)/dt)*x^7+(1/15)*((1/2)*h[1]*dw/dt+1)*x^6+(2/21)*((5/12)*h[0]*dw/dt+(1/2)*h[0]*dw*((1/3)*h[1]*dw/dt+1)/dt)*x^7+(2/15)*((1/3)*h[0]*dw/dt+(1/2)*h[0]*dw*((1/2)*h[1]*dw/dt+1)/dt)*x^6+(1/5)*((1/2)*h[1]*dw/dt+1)*x^5+(1/3)*((5/12)*h[0]*dw/dt+(1/2)*h[0]*dw*((1/3)*h[1]*dw/dt+1)/dt)*x^6+(2/5)*((1/3)*h[1]*dw/dt+1+(1/4)*h[0]*dw^2*h[2]/dt^2)*x^5+(1/5)*((1/2)*h[1]*dw/dt+1)^2*x^5+(2/5)*((1/3)*h[0]*dw/dt+(1/2)*h[0]*dw*((1/2)*h[1]*dw/dt+1)/dt)*x^5+(1/2)*((1/2)*h[1]*dw/dt+1)*x^4+(1/5)*((1/2)*h[1]*dw/dt+1)*h[2]*dw*x^5/dt+(2/63)*h[0]*dw*((1/2)*h[1]*dw/dt+1)*x^7/dt+(1/9)*h[0]*dw*((1/2)*h[1]*dw/dt+1)*x^6/dt+x^2

(6)

``

NULL


 

Download incomplete_example.mw

I've been studying the  drawing  of graph lately .    One of the themes is  1-planar graph .

A 1-planar graph is a graph that can be drawn in the Euclidean plane in such a way that each edge has at most one crossing point,  where it crosses a single additional edge. If a 1-planar graph, one of the most natural generalizations of planar graphs, is drawn that way, the drawing is called a 1-plane graph or 1-planar embedding of the graph.

 

 

 

 

 

I know it is NP hard to determine whether a graph is a 1-planar . My idea is to take advantage of some mathematical software to provide some roughly and  intuitive understanding before determining .

Now,  the layout of vertices or edges becomes important.  The drawing of a plane graph is a good example.

G1:=AddEdge( CycleGraph([v__1,v__2,v__3,v__4]),{{v__2,v__4},{v__1,v__3}}):
DrawGraph(G1)
DrawGraph(G1,style=planar)

K5 := CompleteGraph(5);
DrawGraph(K5);
vp:=[[-1,0],[1,0],[-0.2,0.5],[0.2,0.5],[0,1]];
SetVertexPositions(K5,vp);  #modified the vertex position

DrawGraph(K5);

My problem is that I see that  Maple2020 has updated a lot of layouts about DrawGraph  graph theory backpack , and I don’t know which ones are working towards the least possible number of crossing of  each edges of graph . 

Some links that may be useful:

https://de.maplesoft.com/products/maple/new_features/Maple2020/graphtheory.aspx

https://de.maplesoft.com/support/help/Maple/view.aspx?path=GraphTheory/SetVertexPositions

I think the software can improve some calculations related to topological graph theory, such as crossing number of graph, etc.

 

The uploaded worksheet plots conics in polar coordinates.

A circle, parabola and hyperbola all plot correctly, but the plot command for the ellipse displays a shifted circle. What's wrong?

Conic_quandry.mw

How to find sgn on maple?

signum.mw

I am trying to generate all non-isomorphic graphs of a certain order and size that have the same degree sequence (not necessarily regular). I assume I would have to use the select option in GraphTheory[NonIsomorphicGraphs] command, however, there are no examples (that I could find) of how to use the option. Any idea how this could be done?

I have an n x n matrix. I am trying to write a procedure that will randomly choose a row (column) in the matrix, and replace another row (column) with the entries of the chosen row (column). So, the end result will be another n x n matrix that has two identical rows (columns). How could one do this?

Hello there, 

Would you please tell me how to get the 'Desired' expression from the 'Sec_Z2prim' expression?

My 'Attempt' did not work. 


 

restart;

TR_turns_ratio := N = n2 / n1;

N = n2/n1

(1)

Sec_Z2prim := Z1 = Z2*n1^2/n2^2;

Z1 = Z2*n1^2/n2^2

(2)

Attempt := subs(TR_turns_ratio, Sec_Z2prim) assuming (n1 > 0, n2 > 0);

Z1 = Z2*n1^2/n2^2

(3)

Desired := Z1 = Z2*(1/N)^2;

Z1 = Z2/N^2

(4)

 

 

Thank you, 
 

Download Q20201014.mw

I usually piecewise functions in my maple codes. I want to export  the my maple code to a Matlab code in order to utilize advantages of plots of Matlab.

What methods would you recommend me?

 

For example:

Suppose that I have a piecewise u function.

restart:
u:=1/(1. + exp(x))^2 + 1/(1. + exp(-5.*t))^2 - 0.2500000000 + x*(1/(1. + exp(1 - 5*t))^2 - 1./((1. + exp(-5*t))^2) + 0.1776705118 + 0.0415431679756514*piecewise(0. <= t and t <= 0.5000000000, 1.732050808, 0.) + 0.00922094377856479*piecewise(0. <= t and t <= 0.5000000000, 30.98386677*t - 7.745966692, 0.) + 0.0603742508215732*piecewise(0.5000000000 <= t and t <= 1., 1.732050808, 0.) - 0.00399645630498528*piecewise(0.5000000000 <= t and t <= 1., 30.98386677*t - 23.23790008, 0.)) + (-0.00243051684581302*piecewise(0. <= x and x <= 0.5000000000, 1.732050808, 0.) - 0.000809061198761621*piecewise(0. <= x and x <= 0.5000000000, 30.98386677*x - 7.745966692, 0.) - 0.0152377552205917*piecewise(0.5000000000 <= x and x <= 1., 1.732050808, 0.) - 0.00195593427342862*piecewise(0.5000000000 <= x and x <= 1., 30.98386677*x - 23.23790008, 0.))*piecewise(0. <= t and t <= 0.5000000000, 1.732050808, 0.) + (-0.000433590063316381*piecewise(0. <= x and x <= 0.5000000000, 1.732050808, 0.) - 0.000146112803263678*piecewise(0. <= x and x <= 0.5000000000, 30.98386677*x - 7.745966692, 0.) - 0.00319022339097685*piecewise(0.5000000000 <= x and x <= 1., 1.732050808, 0.) - 0.000477063086307787*piecewise(0.5000000000 <= x and x <= 1., 30.98386677*x - 23.23790008, 0.))*piecewise(0. <= t and t <= 0.5000000000, 30.98386677*t - 7.745966692, 0.) + (-0.00276114805649180*piecewise(0. <= x and x <= 0.5000000000, 1.732050808, 0.) - 0.000933166016624500*piecewise(0. <= x and x <= 0.5000000000, 30.98386677*x - 7.745966692, 0.) - 0.0207984584912892*piecewise(0.5000000000 <= x and x <= 1., 1.732050808, 0.) - 0.00314360556336114*piecewise(0.5000000000 <= x and x <= 1., 30.98386677*x - 23.23790008, 0.))*piecewise(0.5000000000 <= t and t <= 1., 1.732050808, 0.) + (0.000172746997599710*piecewise(0. <= x and x <= 0.5000000000, 1.732050808, 0.) + 0.0000586775450031145*piecewise(0. <= x and x <= 0.5000000000, 30.98386677*x - 7.745966692, 0.) + 0.00136190009033518*piecewise(0.5000000000 <= x and x <= 1., 1.732050808, 0.) + 0.000211410172315387*piecewise(0.5000000000 <= x and x <= 1., 30.98386677*x - 23.23790008, 0.))*piecewise(0.5000000000 <= t and t <= 1., 30.98386677*t - 23.23790008, 0.);

 

 

I use the following code to transform a Matlab code, but the output is not working in Matlab.

 

with(CodeGeneration):
 	
Matlab(u,resultname="w");

 

Using solve on this example:

restart;
eq:=x^3 - 3*x^2 + 3*x - 1=0;
solve(eq,x);

gives solution x=1, with multiplicty 3

              1, 1, 1

When using PDEtools:-Solve

restart;
eq:=x^3 - 3*x^2 + 3*x - 1=0;
solve(eq,x);
PDEtools:-Solve(eq,x);

it gives

         x = 1

How can one make it show x=1, x=1, x=1 ?

Found that only when using PDEtools:-Solve(eq,x,numeric) it gives 

           x = 1., x = 1., x = 1.

How to make it do the same without using numeric?

Maple 2020.1.1

 

First 437 438 439 440 441 442 443 Last Page 439 of 2376