Zaninetti Lorenzo

10 Reputation

3 Badges

14 years, 339 days

MaplePrimes Activity


These are questions asked by

The command eval allows to simplify a complicated expression

in a more compact form for a later output in LATEX

In the example which follows I was able to insert A and B but non C in the expression.

There is already a post on this kind of topic but I failed to understand the details.

Perhaps a Maple worksheet of answer on this topic  would be useful !

bye Lorenzo
 

restart;

expression:=exp(-b*x^c/2)*((x^(-(3*c)/2 + a/2 + 1/2)*(c + a + 1)*b^(-(3*c + a + 1)/(2*c)) + c*x^(a/2 + 1/2 - c/2)*b^(-(c + a + 1)/(2*c)))*c*WhittakerM((-c + a + 1)/(2*c), (2*c + a + 1)/(2*c), b*x^c) + b^(-(3*c + a + 1)/(2*c))*x^(-(3*c)/2 + a/2 + 1/2)*WhittakerM((c + a + 1)/(2*c), (2*c + a + 1)/(2*c), b*x^c)*(c + a + 1)^2)/((a + 1)*(c + a + 1)*(2*c + a + 1));

exp(-(1/2)*b*x^c)*((x^(-(3/2)*c+(1/2)*a+1/2)*(c+a+1)*b^(-(1/2)*(3*c+a+1)/c)+c*x^((1/2)*a+1/2-(1/2)*c)*b^(-(1/2)*(c+a+1)/c))*c*WhittakerM((1/2)*(-c+a+1)/c, (1/2)*(2*c+a+1)/c, b*x^c)+b^(-(1/2)*(3*c+a+1)/c)*x^(-(3/2)*c+(1/2)*a+1/2)*WhittakerM((1/2)*(c+a+1)/c, (1/2)*(2*c+a+1)/c, b*x^c)*(c+a+1)^2)/((a+1)*(c+a+1)*(2*c+a+1))

(1)

``

(2)

expression_ABC:=eval(expression,[x^(-(3*c)/2 + a/2 + 1/2)*(c + a + 1)*b^(-(3*c + a + 1)/(2*c))=A,c*x^(a/2 + 1/2 - c/2)*b^(-(c + a + 1)/(2*c))=B,((a + 1)*(c + a + 1)*(2*c + a + 1))=C]);

exp(-(1/2)*b*x^c)*((A+B)*c*WhittakerM((1/2)*(-c+a+1)/c, (1/2)*(2*c+a+1)/c, b*x^c)+b^(-(1/2)*(3*c+a+1)/c)*x^(-(3/2)*c+(1/2)*a+1/2)*WhittakerM((1/2)*(c+a+1)/c, (1/2)*(2*c+a+1)/c, b*x^c)*(c+a+1)^2)/((a+1)*(c+a+1)*(2*c+a+1))

(3)

 

 

 

 


 

Download maple_primes_eval.mw

 

In dark matter cosmology the following integral in x  does not yet have an analytical solution. I report the integral in

Maple 2018 notation

int(1/sqrt((1+x)^3*a+(1-a)*(1+x)^(3+3*b)), x)

If someone has some smart idea is welcome

Page 1 of 1