John May

Dr. John May

2526 Reputation

18 Badges

15 years, 263 days
Pasadena, California, United States

Social Networks and Content at

I have been a part of the Mathematical Software Group at Maplesoft since 2007. I have a Ph.D in Mathematics from North Carolina State University as well as Masters and Bachelors degrees from the University of Oregon. I have been working on research in computational mathematics since 1997. I currently work on symbolic solvers and visualization as well as other subsystems of Maple.

MaplePrimes Activity

These are Posts that have been published by John May

This year, for Christmas, my children* got a Valve Steam Deck under the Christmas tree.  It's a pretty cool device that looks a little  like a monsterous Nintendo Switch, but it can run an impressive subset of the Steam video game catalog, games mostly designed to run on Windows PCs.  It manages this by sporting a custom x86_64 processor by AMD and running a customized version of Arch Linux that uses Wine via Valve's Proton tool.  The key point here, is that it is a tiny x86_64 compatible computer running Linux. So, of course, I needed to install Maple on it. So, I just paired a bluetooth keyboard, rebooted it into desktop mode and with a few small trick, bam, Maple on the Steam Deck:

There were a few small hiccups that required some work. I had absolutely no problems getting the Maple installer onto the device via a USB drive and no problems running it. I only ran into problems durring license activation:

Fortunately, I talked to our crack technical support team and they were able to identify this as a problem with Arch Linux not having full LSB 3.0 support installed by default. The process for fixing that is documented on the Arch Linux Wiki and involves just installing the ld-lsb package via pacman -- with the small additional wrinkle that you need to take the Steam Deck operating system out of 'read-only' mode in order to do that. But once that was done, I had a full version of Maple running well (albeit at 1280x800 resolution on a 7" display).

Since this device is designed for gaming, I was curious how fast it is compared to some other machines I work on. I chose an arbitrary benchmark of exactly solving a random linear system with integer coefficients.

N := 400;
A := LinearAlgebra:-RandomMatrix(N, N):
b := LinearAlgebra:-RandomVector(N):
v := [seq(cat(v__, i), i = 1 .. N)]:
sys := LinearAlgebra:-GenerateEquations(A, v, b):
CodeTools:-Usage(SolveTools:-LinearSolvers:-Rational(`~`[lhs - rhs](sys), v, dense = false)):

which it solves in decent time:

For comparison, this is 30% faster than the 32 core Xeon e5 workstation I do most of my work on, and only 5% slower than my notebook computer with an 8th gen Intel i7.  Not bad for a toy! (please don't make me sad by telling me how much faster this is on a Mac M1 or M2)

Let me know in the comments if you have other benchmarks you want me to run on the Steam Deck. Also, please let me know if you manage to get your employer to buy you a Steam Deck to do scientific computing.


*Okay, maybe it was a gift for me. Shhhh, don't tell.

This is a friendly reminder that the deadline for submissions for this year's Maple Conference Creative Works Exhibit is fast approaching!

If you are looking for inspiration, you can take a look at the writeup of the works that were featured last year in this write up in the most recent issue of Maple Transations.

Also, don't forget that you can also submit art made in Maple Learn for a special exhibit alongside the main gallery.

Hi Maple Users

As I hope you have already heard, Maplesoft is having our Maple Conference again this fall. And that means that

Last year we had many great submissions and you can still read about them in detail on the 2021 conference site. Some of the featured works were excellent Maple visualizations, including a special prize for a student contribution by Avek Dongol (center).

But we also featured a number of impressive physical works, including the people's choice winning wood carving by Paul DeMarco (left), and the judges' choice winning cross stitch by Bridjet Lee and Curtis Bright (right).

This year, we are again looking to fill our virtual exhibition with all types of mathematical art, ranging from computer graphics and animations, to needlework, geometrical sculptures, or almost anything you can come up with. Surprise us!

The full announcement can be found at the Maple Conference Art Gallery page. We would like to have all submissions by September 22nd so that we can review and finalize the gallery before the conference begins November 2nd.

I can't wait to see what everyone sends in this year!

As most Maple Primes readers have hopefully seen, Maplesoft is having our Maple Conference again this fall. This year we decided to add a space to the conference to showcase creative and artistic work that would be interesting to our Maple Community. The conference organizers asked me if I would coordinate and curate this exhibition of creative uses of Math and Maple, and I agreed. So now, I am asking the Maple community to send us your most creative work related to or using Maple.

The obvious thing to submit would be a beautiful digital plot or animation with an interesting mathematical story and of course, we are really interested to see those. But, we would are especially excited to see some art created with physcial media. I would love to see your knitting or needle point project that is inspired by a mathematical theme or was created with the help of Maple.

The full announcement can be found at the Maple Conference Art Gallery page. We would like to have all submissions by October 12th so that can review and finalize the gallery before the conference begins November 1st.

Oh yeah, there will also be prizes.

I can't wait to see what everyone sends in!

This is Maple:

These are some primes:

22424170499, 106507053661, 193139816479, 210936428939, 329844591829, 386408307611,
395718860549, 396412723027, 412286285849, 427552056871, 454744396991, 694607189303,
730616292977, 736602622363, 750072072203, 773012980121, 800187484471, 842622684461

This is a Maple prime:

In plain text (so you can check it in Maple!) that number is:


This is a 3900 digit prime number. It took me about 400 seconds of computation to find using Maple.  Inspired by the Corpus Christi College Prime, I wanted to make an application in Maple to make my own pictures from primes.

It turns out be be really easy to do because prime numbers are realy quite common.  If you have a piece of ascii art where all the characters are numerals, you could just call on it and get a prime number that is still ascii art with a couple digits in the corner messed up (for a number this size, I expect fewer than 10 of the least significant digits would be altered).  You may notice, however, that my Maple Prime has beautiful corners!  This is possible because I found the prime in a slightly different way.

To get the ascii art in Maple, I started out by using to import ( )  and process the original image.  First then and to get a nice 78 pixel wide image.  Then to make it a pure 1-bit black or white image.

Then, from the image, I create a new Array of the decimal digits of the ascii art and my prime number.  For each of the black pixels I randomly use one of the digits or and for the white pixels (the background) I use 's.  Now I convert the Array to a large integer and test if it is prime using (it probably isn't) so, I just randomly change one of the black pixels to a different digit (there are 4 other choices) and call again. For the Maple Prime I had to do this about 1000 times before I landed on a prime number. That was surprisingly fast to me! It is a great object lesson in how dense the prime numbers really are.

So that you can join the fun without having to replicate my work, here is a small interactive Maple document that you can use to find prime numbers that draw ascii art of your source images. It has a tool that lets you preview both the pixelated image and the initial ascii art before you launch the search for the prime version.

1 2 3 4 5 6 7 Last Page 1 of 9