18909 Reputation

26 Badges

14 years, 34 days

MaplePrimes Activity

These are replies submitted by Kitonum

@exality  I never use the context menu and I always work by direct commands in 1D input mode. It's more convenient, faster and more reliable. 

@toandhsp  For convenience, I collected all the codes in one file.

@waseem  In the code below, I took into account your wishes:

h1:=z->1-(delta2/2)*(1 + cos(2*(Pi/L1)*(z - d1 - L1))):
h2:=z->1-(delta2/2)*(1 + cos(2*(Pi/L2)*(z - d2 - L2))):
assign(seq(K[i]=((4/h||i(z)^4)-(sin(alpha)/F)-h||i(z)^2+Nb*h||i(z)^4), i=1..3)):

plot( [seq(eval(lambda, Nb=j), j in [0.1,0.2,0.3])], delta2=0.02..0.1);

@Markiyan Hirnyk  It is obvious that both results (mine and vv's) are correct, but relate to slightly different distributions.


You made several syntax errors:

1. It is not useful to assign one name  h  to different objects, because only the last assignment will work.

2. This line of code causes an error

h:=z->1-(delta2/2)*(1 + cos(2*(Pi/L1)*(z - d1 - L1))): for 0<z<0.2

Just take  for 0<z<0.2  away. This range is indicated in the integral.

@Markiyan Hirnyk  In my answer I did not use this function, so I did not look at Maple for help on it and immediately looked at the wiki.

@Markiyan Hirnyk  Quotation from the wiki:

"In probability theory and statistics, the geometric distribution is either of two discrete probability distributions:

  • The probability distribution of the number X of Bernoulli trials needed to get one success, supported on the set { 1, 2, 3, ...}
  • The probability distribution of the number Y = X − 1 of failures before the first success, supported on the set { 0, 1, 2, 3, ... }"      You did not specify what kind of case is meant. I took the first as the more common .

@escorpsy I think that it is impossible to obtain analytically explicit dependences of roots on parameters, but it is possible to investigate how the roots change when individual parameters change. This can be done, for example, using  Explore  command. See update to my answer.

@mahmood1800  Sorry for my inattention. I corrected the definitions of  b[n,m]  in the body of  HybrFunc  procedure. Code1_new  file is replaced by  Code1_new1  (see my answer).



g:=(x,k)->Int(exp(k*cos(z)), z = 0 .. x):
f:=(y,k)->fsolve(y=g(x,k), x=0..infinity): 
# The inverse to g  
h:=(u,v,k1,k2)->evalf(Int(exp(sin('f'(x,k1))*sin('f'(y,k2))), [x = 0..u, y = 0..v]));


The examples of use:


@Annonymouse   Use  seq  command to write this shorter:

S1 := convert~(S, list): 
S2 := rhs~(Array(S1));
m, n := op(S2)[1 .. 2]; 
Res:=seq(AllNonZero(S2[i]), i = m);

We see that  true  are on the 9th, 10th and 13th places. These 3 numbers we can return programmatically as follows (continuation of the previous code):

ListTools:-SearchAll(true, [Res]);
9, 10, 13



@kivan  The reason is that your integral is not expressed in terms of known functions, so it can only be calculated numerically. Therefore, the inverse function can not be expressed symbolically, but can only be calculated numerically using  fsolve  command:

g:=x->Int(exp(cos(z)), z = 0 .. x): 
h:=y->fsolve(y=g(x), x=0..infinity):   

Example of use:

plot([g,h], 0..10, 0..10, color=[red,blue], scaling=constrained);  # Visualization




@toandhsp  You can do it according to the same scheme. The only significant difference is that Maple does not solve the equation  x^2+y^2+z^2=r^2  in integers and you have to do it yourself, for example using nested for loops.

@mbras  I still do not understand what you are going to do with the list  z:=[[1,2],[3,4],[5,6]] . Write simply by words without any codes. 

First 41 42 43 44 45 46 47 Last Page 43 of 124