130 Reputation

5 Badges

11 years, 324 days

MaplePrimes Activity

These are questions asked by Teep

I was looking to see if anyone has come across a Maple routine for a savings algorithm - specifically, Clarke and Wright. In fact, any classical savings heuristic would also be interesting.

Any guidance would be truly appreciated.

If binary constraints are imposed on an optimization problem and LPSolve presents a solution, is it possible to extract the variables that have zero or one assigned to them? This would be most useful if there are many variables, for example...

If a solution is returned that looks like ...

[x[001]=0, x[101]=1, x[201]=0, x[301]=1, ....], how can I filter those solutions that equal zero?

Thanks for reading!

I was curious to know if one can extract a specific solution from a LPSolve routine. 

As an example, consider the following output to a constrained linear problem. The objective value is 8 and the decision variable values (binary) are given.

Sol := [8, [w[1, 1] = 1., x[0, 0, 1] = 0, x[0, 1, 1] = 1, x[0, 2, 1] = 0, x[1, 0, 1] = 0, x[1, 1, 1] = 0, x[1, 2, 1] = 1, x[2, 0, 1] = 0, x[2, 1, 1] = 0, x[2, 2, 1] = 0, y[0, 0] = 0., y[0, 1] = 0., y[1, 1] = 2.]]

I am interested to know if we can isolate any variable value from this solution. I know that Sol[1] will return 8, and Sol[2] will return the remaining terms. But what if I wanted, say, x[1,2,1] alone?

Thanks for reading!

Can somebody please expand the following double sum to produce a list of sequences?

(Sum(f[i], i = 0 .. 1))*(Sum(g[i, j, k], j = 0 .. 1)) for k = {1,2}

I need to make sure the operation order is correct, so I would like to verify my workings.


I wish to apply several i-j constraints to an optimization problem that involves minimizing a function x[i,j]. 

Does anyone know of a simple way to exclude values for i and j? For instance, how do we specify the conditions, i not equal to j, i is not equal to 1, etc.?

Thanks in advance!



5 6 7 8 Page 7 of 8