ijuptilk

100 Reputation

3 Badges

1 years, 203 days

MaplePrimes Activity


These are questions asked by ijuptilk

Please I need your assistance. I want to solve for c__4, c__5, c__6, and c__8  from 4 systems of the equation: See my code below:

Since there 4 equations and 4 unknowns, is it possible to get the result explicitly without setting c__6=c__8 as maple did? The solution is at the end of the maple file.

LSA.mw
 

``

## "Note that I use I(t) = X(t)""  and S^(*),E^(*), I^(*), H^(*), B^(*), D^(*), R^(*), P^(*) = (`S__1`,`E__1`,`I__1`,`H__1`,`B__1`,`D__1`,`R__1`,`P__1`,) thorought the work."

###

###

restart:

f__1 := Delta -(psi + mu)*S(t);

Delta-(psi+mu)*S(t)

(1)

f__2 := psi*S(t) -(delta + mu)*E(t);

psi*S(t)-(delta+mu)*E(t)

(2)

f__3 := Delta*E(t) -(gamma+gamma__1 + mu)*X(t);

Delta*E(t)-(gamma+gamma__1+mu)*X(t)

(3)

f__4 := gamma__1*X(t)-(eta + xi + mu)*H(t);

gamma__1*X(t)-(eta+xi+mu)*H(t)

(4)

f__5 := xi*H(t) - mu*R(t);

xi*H(t)-mu*R(t)

(5)

f__6 := gamma*X(t)-eta*H(t) - d*D(t);

gamma*X(t)-eta*H(t)-d*D(t)

(6)

f__7 := b*D(t) - b*B(t);

b*D(t)-b*B(t)

(7)

f__8 := phi__p + sigma*X(t)+eta__1*H(t) +d__1*D(t)+ b__1*B(t) - alpha*P(t);

phi__p+sigma*X(t)+eta__1*H(t)+d__1*D(t)+b__1*B(t)-alpha*P(t)

(8)

S__1 := Delta/mu - a__1*E__1/mu: X__1:= delta*E__1/a__2: H__1 := delta*gamma__1*E__1/a__2*a__3: R__1 := delta*gamma__1*xi*E__1/a__2*a__3*mu: B__1 := 1/b*(gamma*delta/a__2 + delta*eta*gamma__1/a__2*a__3)*E__1: D__1 := 1/d*(gamma*delta/a__2 + delta*eta*gamma__1/a__2*a__3)*E__1: P__1 := (1/alpha)*(delta*sigma/a__2 + delta*eta*gamma__1/a__2*a__3 + (d__1/d - b__1/b)*(delta*gamma/a__2 + delta*eta*gamma__1/a__2*a__3))*E__1 + phi__p/alpha:

M__1 := c__1*f__1*(1-S__1/S(t));

c__1*(Delta-(psi+mu)*S(t))*(1-(Delta/mu-a__1*E__1/mu)/S(t))

(9)

M__2 := c__2*f__2*(1-E__1/E(t));

c__2*(psi*S(t)-(delta+mu)*E(t))*(1-E__1/E(t))

(10)

M__3 := c__3*f__3*(1-X__1/X(t));

0

(11)

M__4 :=c__4*f__4*(1-H__1/H(t));

c__4*(gamma__1*X(t)-(eta+xi+mu)*H(t))*(1-delta*gamma__1*E__1*a__3/(a__2*H(t)))

(12)

M__5 := c__5*f__5*(1-R__1/R(t));

c__5*(xi*H(t)-mu*R(t))*(1-delta*gamma__1*xi*E__1*a__3*mu/(a__2*R(t)))

(13)

M__6 := c__6*f__6*(1-D__1/D(t));

c__6*(gamma*X(t)-eta*H(t)-d*D(t))*(1-(gamma*delta/a__2+delta*eta*gamma__1*a__3/a__2)*E__1/(d*D(t)))

(14)

M__7 := c__7*f__7*(1-B__1/B(t));

0

(15)

M__8 := c__8*f__8*(1-P__1/P(t));

0

(16)

restart:

u__1 := (psi+mu)*S__1;

(psi+mu)*S__1

(17)

u__2 := psi*S__1;

psi*S__1

(18)

u__3 := delta*E__1;

delta*E__1

(19)

u__4 := gamma__1*X__1;

gamma__1*X__1

(20)

u__5 := xi*H__1;

xi*H__1

(21)

u__6 := gamma*X__1 + eta*H__1;

H__1*eta+X__1*gamma

(22)

u__7 := b*D__1;

b*D__1

(23)

u__8 := phi__p + sigma*X__1+eta__1*H__1 +d__1*D__1+ b__1*B__1;

B__1*b__1+D__1*d__1+H__1*eta__1+X__1*sigma+phi__p

(24)

M__1 := c__1*(Delta-(psi+mu)*S(t))*(1-(Delta/mu-a__1*E__1/mu)/S(t));

c__1*(Delta-(psi+mu)*S(t))*(1-(Delta/mu-a__1*E__1/mu)/S(t))

(25)

M__2 := c__2*(psi*S(t)-(delta+mu)*E(t))*(1-E__1/E(t));

c__2*(psi*S(t)-(delta+mu)*E(t))*(1-E__1/E(t))

(26)

M__3 := c__3*(Delta*E(t)-(gamma+gamma__1+mu)*X(t))*(1-delta*E__1/(a__2*X(t)));

c__3*(Delta*E(t)-(gamma+gamma__1+mu)*X(t))*(1-delta*E__1/(a__2*X(t)))

(27)

M__4 := c__4*(gamma__1*X(t)-(eta+xi+mu)*H(t))*(1-delta*gamma__1*E__1*a__3/(a__2*H(t)));

c__4*(gamma__1*X(t)-(eta+xi+mu)*H(t))*(1-delta*gamma__1*E__1*a__3/(a__2*H(t)))

(28)

M__5 := c__5*(xi*H(t)-mu*R(t))*(1-delta*gamma__1*xi*E__1*a__3*mu/(a__2*R(t)));

c__5*(xi*H(t)-mu*R(t))*(1-delta*gamma__1*xi*E__1*a__3*mu/(a__2*R(t)))

(29)

M__6 := c__6*(gamma*X(t)-eta*H(t)-d*D(t))*(1-(gamma*delta/a__2+delta*eta*gamma__1*a__3/a__2)*E__1/(d*D(t)));

c__6*(gamma*X(t)-eta*H(t)-d*D(t))*(1-(gamma*delta/a__2+delta*eta*gamma__1*a__3/a__2)*E__1/(d*D(t)))

(30)

M__7 := c__7*(b*D(t)-b*B(t))*(1-(gamma*delta/a__2+delta*eta*gamma__1*a__3/a__2)*E__1/(b*B(t)));

c__7*(b*D(t)-b*B(t))*(1-(gamma*delta/a__2+delta*eta*gamma__1*a__3/a__2)*E__1/(b*B(t)))

(31)

M__8 := c__8*(phi__p+sigma*X(t)+eta__1*H(t)+d__1*D(t)+b__1*B(t)-alpha*P(t))*(1-((delta*sigma/a__2+delta*eta*gamma__1*a__3/a__2+(d__1/d-b__1/b)*(gamma*delta/a__2+delta*eta*gamma__1*a__3/a__2))*E__1/alpha+phi__p/alpha)/P(t));

c__8*(phi__p+sigma*X(t)+eta__1*H(t)+d__1*D(t)+b__1*B(t)-alpha*P(t))*(1-((delta*sigma/a__2+delta*eta*gamma__1*a__3/a__2+(d__1/d-b__1/b)*(gamma*delta/a__2+delta*eta*gamma__1*a__3/a__2))*E__1/alpha+phi__p/alpha)/P(t))

(32)

J := M__1 + M__2 + M__3 + M__4 + M__5 + M__6 + M__7 + M__8;

c__1*(Delta-(psi+mu)*S(t))*(1-(Delta/mu-a__1*E__1/mu)/S(t))+c__2*(psi*S(t)-(delta+mu)*E(t))*(1-E__1/E(t))+c__3*(Delta*E(t)-(gamma+gamma__1+mu)*X(t))*(1-delta*E__1/(a__2*X(t)))+c__4*(gamma__1*X(t)-(eta+xi+mu)*H(t))*(1-delta*gamma__1*E__1*a__3/(a__2*H(t)))+c__5*(xi*H(t)-mu*R(t))*(1-delta*gamma__1*xi*E__1*a__3*mu/(a__2*R(t)))+c__6*(gamma*X(t)-eta*H(t)-d*D(t))*(1-(gamma*delta/a__2+delta*eta*gamma__1*a__3/a__2)*E__1/(d*D(t)))+c__7*(b*D(t)-b*B(t))*(1-(gamma*delta/a__2+delta*eta*gamma__1*a__3/a__2)*E__1/(b*B(t)))+c__8*(phi__p+sigma*X(t)+eta__1*H(t)+d__1*D(t)+b__1*B(t)-alpha*P(t))*(1-((delta*sigma/a__2+delta*eta*gamma__1*a__3/a__2+(d__1/d-b__1/b)*(gamma*delta/a__2+delta*eta*gamma__1*a__3/a__2))*E__1/alpha+phi__p/alpha)/P(t))

(33)

##

L__1 := factor(expand(subs(Delta=u__1, M__1)));

-c__1*(psi+mu)*(S(t)-S__1)*(a__1*E__1+S(t)*mu-S__1*mu-psi*S__1)/(S(t)*mu)

(34)

L__2 := expand(subs((delta+mu)*E(t)=u__2, M__2));

c__2*psi*S(t)-c__2*psi*S(t)*E__1/E(t)-c__2*psi*S__1+c__2*psi*S__1*E__1/E(t)

(35)

L__3 := expand(subs((gamma+gamma__1+mu)*X(t)=u__3, M__3));

c__3*Delta*E(t)-c__3*Delta*E(t)*delta*E__1/(a__2*X(t))-c__3*delta*E__1+c__3*delta^2*E__1^2/(a__2*X(t))

(36)

L__4 := expand(subs((eta+xi+mu)*H(t)=u__4, M__4));

c__4*gamma__1*X(t)-c__4*gamma__1^2*X(t)*delta*E__1*a__3/(a__2*H(t))-c__4*gamma__1*X__1+c__4*gamma__1^2*X__1*delta*E__1*a__3/(a__2*H(t))

(37)

L__5 := expand(subs(mu*R(t)=u__5, M__5));

c__5*xi*H(t)-c__5*xi^2*H(t)*delta*gamma__1*E__1*a__3*mu/(a__2*R(t))-c__5*xi*H__1+c__5*xi^2*H__1*delta*gamma__1*E__1*a__3*mu/(a__2*R(t))

(38)

L__6 := expand(subs(d*D(t)=u__6, M__6));

c__6*gamma*X(t)-c__6*gamma^2*X(t)*E__1*delta/(d*D(t)*a__2)-c__6*gamma*X(t)*E__1*delta*eta*gamma__1*a__3/(d*D(t)*a__2)-c__6*eta*H(t)+c__6*eta*H(t)*E__1*gamma*delta/(d*D(t)*a__2)+c__6*eta^2*H(t)*E__1*delta*gamma__1*a__3/(d*D(t)*a__2)-c__6*eta*H__1+c__6*eta*H__1*E__1*gamma*delta/(d*D(t)*a__2)+c__6*eta^2*H__1*E__1*delta*gamma__1*a__3/(d*D(t)*a__2)-c__6*gamma*X__1+c__6*gamma^2*X__1*E__1*delta/(d*D(t)*a__2)+c__6*gamma*X__1*E__1*delta*eta*gamma__1*a__3/(d*D(t)*a__2)

(39)

L__7 := expand(subs(b*B(t)=u__7, M__7));

c__7*b*D(t)-c__7*D(t)*E__1*gamma*delta/(B(t)*a__2)-c__7*D(t)*E__1*delta*eta*gamma__1*a__3/(B(t)*a__2)-c__7*b*D__1+c__7*D__1*E__1*gamma*delta/(B(t)*a__2)+c__7*D__1*E__1*delta*eta*gamma__1*a__3/(B(t)*a__2)

(40)

L__8 := expand(subs(alpha*P(t)=u__8, M__8));

-c__8*sigma*X(t)*phi__p/(P(t)*alpha)-c__8*eta__1*H(t)*phi__p/(P(t)*alpha)-c__8*d__1*D(t)*phi__p/(P(t)*alpha)-c__8*b__1*B(t)*phi__p/(P(t)*alpha)+c__8*b__1*B__1*phi__p/(P(t)*alpha)-c__8*eta__1*H(t)*E__1*delta*sigma/(P(t)*alpha*a__2)-c__8*d__1*D(t)*E__1*delta*sigma/(P(t)*alpha*a__2)-c__8*b__1*B(t)*E__1*delta*sigma/(P(t)*alpha*a__2)+c__8*b__1*B__1*E__1*delta*sigma/(P(t)*alpha*a__2)+c__8*d__1*D__1*E__1*delta*sigma/(P(t)*alpha*a__2)+c__8*eta__1*H__1*E__1*delta*sigma/(P(t)*alpha*a__2)-c__8*sigma*X(t)*E__1*delta*eta*gamma__1*a__3/(P(t)*alpha*a__2)-c__8*sigma*X(t)*E__1*d__1*gamma*delta/(P(t)*alpha*d*a__2)+c__8*sigma*X(t)*E__1*b__1*gamma*delta/(P(t)*alpha*b*a__2)-c__8*eta__1*H(t)*E__1*delta*eta*gamma__1*a__3/(P(t)*alpha*a__2)-c__8*eta__1*H(t)*E__1*d__1*gamma*delta/(P(t)*alpha*d*a__2)+c__8*eta__1*H(t)*E__1*b__1*gamma*delta/(P(t)*alpha*b*a__2)-c__8*d__1*D(t)*E__1*delta*eta*gamma__1*a__3/(P(t)*alpha*a__2)+c__8*d__1*D(t)*E__1*b__1*gamma*delta/(P(t)*alpha*b*a__2)-c__8*b__1*B(t)*E__1*delta*eta*gamma__1*a__3/(P(t)*alpha*a__2)-c__8*b__1*B(t)*E__1*d__1*gamma*delta/(P(t)*alpha*d*a__2)+c__8*b__1*B__1*E__1*delta*eta*gamma__1*a__3/(P(t)*alpha*a__2)+c__8*b__1*B__1*E__1*d__1*gamma*delta/(P(t)*alpha*d*a__2)+c__8*d__1*D__1*E__1*delta*eta*gamma__1*a__3/(P(t)*alpha*a__2)-c__8*d__1*D__1*E__1*b__1*gamma*delta/(P(t)*alpha*b*a__2)+c__8*eta__1*H__1*E__1*delta*eta*gamma__1*a__3/(P(t)*alpha*a__2)+c__8*eta__1*H__1*E__1*d__1*gamma*delta/(P(t)*alpha*d*a__2)-c__8*sigma*X(t)*E__1*d__1*delta*eta*gamma__1*a__3/(P(t)*alpha*d*a__2)+c__8*sigma*X(t)*E__1*b__1*delta*eta*gamma__1*a__3/(P(t)*alpha*b*a__2)-c__8*eta__1*H(t)*E__1*d__1*delta*eta*gamma__1*a__3/(P(t)*alpha*d*a__2)+c__8*eta__1*H(t)*E__1*b__1*delta*eta*gamma__1*a__3/(P(t)*alpha*b*a__2)+c__8*d__1*D(t)*E__1*b__1*delta*eta*gamma__1*a__3/(P(t)*alpha*b*a__2)-c__8*b__1*B(t)*E__1*d__1*delta*eta*gamma__1*a__3/(P(t)*alpha*d*a__2)+c__8*b__1*B__1*E__1*d__1*delta*eta*gamma__1*a__3/(P(t)*alpha*d*a__2)-c__8*d__1*D__1*E__1*b__1*delta*eta*gamma__1*a__3/(P(t)*alpha*b*a__2)+c__8*eta__1*H__1*E__1*d__1*delta*eta*gamma__1*a__3/(P(t)*alpha*d*a__2)-c__8*eta__1*H__1*E__1*b__1*delta*eta*gamma__1*a__3/(P(t)*alpha*b*a__2)+c__8*sigma*X__1*E__1*d__1*delta*eta*gamma__1*a__3/(P(t)*alpha*d*a__2)-c__8*sigma*X__1*E__1*b__1*delta*eta*gamma__1*a__3/(P(t)*alpha*b*a__2)-c__8*sigma^2*X(t)*E__1*delta/(P(t)*alpha*a__2)+c__8*sigma^2*X__1*E__1*delta/(P(t)*alpha*a__2)-c__8*sigma*X__1-c__8*d__1*D__1-c__8*eta__1*H__1-c__8*b__1*B__1+c__8*sigma*X(t)+c__8*d__1*D(t)+c__8*eta__1*H(t)+c__8*b__1*B(t)-c__8*d__1^2*D(t)*E__1*delta*eta*gamma__1*a__3/(P(t)*alpha*d*a__2)+c__8*b__1^2*B(t)*E__1*delta*eta*gamma__1*a__3/(P(t)*alpha*b*a__2)-c__8*b__1^2*B__1*E__1*delta*eta*gamma__1*a__3/(P(t)*alpha*b*a__2)+c__8*d__1^2*D__1*E__1*delta*eta*gamma__1*a__3/(P(t)*alpha*d*a__2)-c__8*d__1^2*D(t)*E__1*gamma*delta/(P(t)*alpha*d*a__2)+c__8*b__1^2*B(t)*E__1*gamma*delta/(P(t)*alpha*b*a__2)-c__8*b__1^2*B__1*E__1*gamma*delta/(P(t)*alpha*b*a__2)+c__8*d__1^2*D__1*E__1*gamma*delta/(P(t)*alpha*d*a__2)+c__8*d__1*D__1*phi__p/(P(t)*alpha)+c__8*eta__1*H__1*phi__p/(P(t)*alpha)+c__8*sigma*X__1*phi__p/(P(t)*alpha)-c__8*eta__1*H__1*E__1*b__1*gamma*delta/(P(t)*alpha*b*a__2)+c__8*sigma*X__1*E__1*delta*eta*gamma__1*a__3/(P(t)*alpha*a__2)+c__8*sigma*X__1*E__1*d__1*gamma*delta/(P(t)*alpha*d*a__2)-c__8*sigma*X__1*E__1*b__1*gamma*delta/(P(t)*alpha*b*a__2)

(41)

L := L__1 + L__2 + L__3 + L__4 + L__5 + L__6 + L__7 + L__8;

-c__1*(psi+mu)*(S(t)-S__1)*(a__1*E__1+S(t)*mu-S__1*mu-psi*S__1)/(S(t)*mu)-c__8*sigma*X(t)*phi__p/(P(t)*alpha)-c__8*eta__1*H(t)*phi__p/(P(t)*alpha)-c__8*d__1*D(t)*phi__p/(P(t)*alpha)-c__8*b__1*B(t)*phi__p/(P(t)*alpha)+c__8*b__1*B__1*phi__p/(P(t)*alpha)-c__3*Delta*E(t)*delta*E__1/(a__2*X(t))-c__7*D(t)*E__1*gamma*delta/(B(t)*a__2)+c__7*D__1*E__1*gamma*delta/(B(t)*a__2)+c__6*eta*H(t)*E__1*gamma*delta/(d*D(t)*a__2)+c__6*eta*H__1*E__1*gamma*delta/(d*D(t)*a__2)-c__7*D(t)*E__1*delta*eta*gamma__1*a__3/(B(t)*a__2)+c__7*D__1*E__1*delta*eta*gamma__1*a__3/(B(t)*a__2)-c__8*eta__1*H(t)*E__1*delta*sigma/(P(t)*alpha*a__2)-c__8*d__1*D(t)*E__1*delta*sigma/(P(t)*alpha*a__2)-c__8*b__1*B(t)*E__1*delta*sigma/(P(t)*alpha*a__2)+c__8*b__1*B__1*E__1*delta*sigma/(P(t)*alpha*a__2)+c__8*d__1*D__1*E__1*delta*sigma/(P(t)*alpha*a__2)+c__8*eta__1*H__1*E__1*delta*sigma/(P(t)*alpha*a__2)-c__5*xi^2*H(t)*delta*gamma__1*E__1*a__3*mu/(a__2*R(t))+c__5*xi^2*H__1*delta*gamma__1*E__1*a__3*mu/(a__2*R(t))+c__6*eta^2*H(t)*E__1*delta*gamma__1*a__3/(d*D(t)*a__2)+c__6*eta^2*H__1*E__1*delta*gamma__1*a__3/(d*D(t)*a__2)-c__6*gamma*X(t)*E__1*delta*eta*gamma__1*a__3/(d*D(t)*a__2)+c__6*gamma*X__1*E__1*delta*eta*gamma__1*a__3/(d*D(t)*a__2)-c__8*sigma*X(t)*E__1*delta*eta*gamma__1*a__3/(P(t)*alpha*a__2)-c__8*sigma*X(t)*E__1*d__1*gamma*delta/(P(t)*alpha*d*a__2)+c__8*sigma*X(t)*E__1*b__1*gamma*delta/(P(t)*alpha*b*a__2)-c__8*eta__1*H(t)*E__1*delta*eta*gamma__1*a__3/(P(t)*alpha*a__2)-c__8*eta__1*H(t)*E__1*d__1*gamma*delta/(P(t)*alpha*d*a__2)+c__8*eta__1*H(t)*E__1*b__1*gamma*delta/(P(t)*alpha*b*a__2)-c__8*d__1*D(t)*E__1*delta*eta*gamma__1*a__3/(P(t)*alpha*a__2)+c__8*d__1*D(t)*E__1*b__1*gamma*delta/(P(t)*alpha*b*a__2)-c__8*b__1*B(t)*E__1*delta*eta*gamma__1*a__3/(P(t)*alpha*a__2)-c__8*b__1*B(t)*E__1*d__1*gamma*delta/(P(t)*alpha*d*a__2)+c__8*b__1*B__1*E__1*delta*eta*gamma__1*a__3/(P(t)*alpha*a__2)+c__8*b__1*B__1*E__1*d__1*gamma*delta/(P(t)*alpha*d*a__2)+c__8*d__1*D__1*E__1*delta*eta*gamma__1*a__3/(P(t)*alpha*a__2)-c__8*d__1*D__1*E__1*b__1*gamma*delta/(P(t)*alpha*b*a__2)+c__8*eta__1*H__1*E__1*delta*eta*gamma__1*a__3/(P(t)*alpha*a__2)+c__8*eta__1*H__1*E__1*d__1*gamma*delta/(P(t)*alpha*d*a__2)-c__8*sigma*X(t)*E__1*d__1*delta*eta*gamma__1*a__3/(P(t)*alpha*d*a__2)+c__8*sigma*X(t)*E__1*b__1*delta*eta*gamma__1*a__3/(P(t)*alpha*b*a__2)-c__8*eta__1*H(t)*E__1*d__1*delta*eta*gamma__1*a__3/(P(t)*alpha*d*a__2)+c__8*eta__1*H(t)*E__1*b__1*delta*eta*gamma__1*a__3/(P(t)*alpha*b*a__2)+c__8*d__1*D(t)*E__1*b__1*delta*eta*gamma__1*a__3/(P(t)*alpha*b*a__2)-c__8*b__1*B(t)*E__1*d__1*delta*eta*gamma__1*a__3/(P(t)*alpha*d*a__2)+c__8*b__1*B__1*E__1*d__1*delta*eta*gamma__1*a__3/(P(t)*alpha*d*a__2)-c__8*d__1*D__1*E__1*b__1*delta*eta*gamma__1*a__3/(P(t)*alpha*b*a__2)+c__8*eta__1*H__1*E__1*d__1*delta*eta*gamma__1*a__3/(P(t)*alpha*d*a__2)-c__8*eta__1*H__1*E__1*b__1*delta*eta*gamma__1*a__3/(P(t)*alpha*b*a__2)+c__8*sigma*X__1*E__1*d__1*delta*eta*gamma__1*a__3/(P(t)*alpha*d*a__2)-c__8*sigma*X__1*E__1*b__1*delta*eta*gamma__1*a__3/(P(t)*alpha*b*a__2)-c__4*gamma__1^2*X(t)*delta*E__1*a__3/(a__2*H(t))+c__4*gamma__1^2*X__1*delta*E__1*a__3/(a__2*H(t))-c__6*gamma^2*X(t)*E__1*delta/(d*D(t)*a__2)+c__6*gamma^2*X__1*E__1*delta/(d*D(t)*a__2)-c__8*sigma^2*X(t)*E__1*delta/(P(t)*alpha*a__2)+c__8*sigma^2*X__1*E__1*delta/(P(t)*alpha*a__2)-c__2*psi*S(t)*E__1/E(t)+c__2*psi*S__1*E__1/E(t)+c__3*delta^2*E__1^2/(a__2*X(t))+c__2*psi*S(t)-c__2*psi*S__1+c__3*Delta*E(t)-c__3*delta*E__1-c__4*gamma__1*X__1+c__4*gamma__1*X(t)+c__5*xi*H(t)-c__5*xi*H__1+c__6*gamma*X(t)-c__6*eta*H(t)-c__6*eta*H__1-c__6*gamma*X__1-c__7*b*D__1+c__7*b*D(t)-c__8*sigma*X__1-c__8*d__1*D__1-c__8*eta__1*H__1-c__8*b__1*B__1+c__8*sigma*X(t)+c__8*d__1*D(t)+c__8*eta__1*H(t)+c__8*b__1*B(t)-c__8*d__1^2*D(t)*E__1*delta*eta*gamma__1*a__3/(P(t)*alpha*d*a__2)+c__8*b__1^2*B(t)*E__1*delta*eta*gamma__1*a__3/(P(t)*alpha*b*a__2)-c__8*b__1^2*B__1*E__1*delta*eta*gamma__1*a__3/(P(t)*alpha*b*a__2)+c__8*d__1^2*D__1*E__1*delta*eta*gamma__1*a__3/(P(t)*alpha*d*a__2)-c__8*d__1^2*D(t)*E__1*gamma*delta/(P(t)*alpha*d*a__2)+c__8*b__1^2*B(t)*E__1*gamma*delta/(P(t)*alpha*b*a__2)-c__8*b__1^2*B__1*E__1*gamma*delta/(P(t)*alpha*b*a__2)+c__8*d__1^2*D__1*E__1*gamma*delta/(P(t)*alpha*d*a__2)+c__8*d__1*D__1*phi__p/(P(t)*alpha)+c__8*eta__1*H__1*phi__p/(P(t)*alpha)+c__8*sigma*X__1*phi__p/(P(t)*alpha)-c__8*eta__1*H__1*E__1*b__1*gamma*delta/(P(t)*alpha*b*a__2)+c__8*sigma*X__1*E__1*delta*eta*gamma__1*a__3/(P(t)*alpha*a__2)+c__8*sigma*X__1*E__1*d__1*gamma*delta/(P(t)*alpha*d*a__2)-c__8*sigma*X__1*E__1*b__1*gamma*delta/(P(t)*alpha*b*a__2)

(42)

## Collecting the coefficients of X, H, D, B and E

k__1 := coeff(L,X(t));

-c__8*sigma*E__1*d__1*delta*eta*gamma__1*a__3/(P(t)*alpha*d*a__2)+c__8*sigma*E__1*b__1*delta*eta*gamma__1*a__3/(P(t)*alpha*b*a__2)-c__6*gamma^2*E__1*delta/(d*D(t)*a__2)-c__8*sigma^2*E__1*delta/(P(t)*alpha*a__2)-c__4*gamma__1^2*delta*E__1*a__3/(a__2*H(t))-c__8*sigma*phi__p/(P(t)*alpha)-c__6*gamma*E__1*delta*eta*gamma__1*a__3/(d*D(t)*a__2)-c__8*sigma*E__1*delta*eta*gamma__1*a__3/(P(t)*alpha*a__2)-c__8*sigma*E__1*d__1*gamma*delta/(P(t)*alpha*d*a__2)+c__8*sigma*E__1*b__1*gamma*delta/(P(t)*alpha*b*a__2)+c__8*sigma+c__4*gamma__1+c__6*gamma

(43)

k__2 := coeff(L,H(t));

-c__5*xi^2*delta*gamma__1*E__1*a__3*mu/(a__2*R(t))+c__6*eta^2*E__1*delta*gamma__1*a__3/(d*D(t)*a__2)-c__8*eta__1*phi__p/(P(t)*alpha)-c__8*eta__1*E__1*delta*eta*gamma__1*a__3/(P(t)*alpha*a__2)-c__8*eta__1*E__1*d__1*gamma*delta/(P(t)*alpha*d*a__2)+c__8*eta__1*E__1*b__1*gamma*delta/(P(t)*alpha*b*a__2)-c__6*eta+c__5*xi+c__8*eta__1+c__6*eta*E__1*gamma*delta/(d*D(t)*a__2)-c__8*eta__1*E__1*delta*sigma/(P(t)*alpha*a__2)-c__8*eta__1*E__1*d__1*delta*eta*gamma__1*a__3/(P(t)*alpha*d*a__2)+c__8*eta__1*E__1*b__1*delta*eta*gamma__1*a__3/(P(t)*alpha*b*a__2)

(44)

k__3 := coeff(L, D(t));

-c__7*E__1*gamma*delta/(B(t)*a__2)-c__8*d__1^2*E__1*delta*eta*gamma__1*a__3/(P(t)*alpha*d*a__2)-c__8*d__1^2*E__1*gamma*delta/(P(t)*alpha*d*a__2)-c__8*d__1*phi__p/(P(t)*alpha)-c__8*d__1*E__1*delta*eta*gamma__1*a__3/(P(t)*alpha*a__2)+c__8*d__1*E__1*b__1*gamma*delta/(P(t)*alpha*b*a__2)+c__8*d__1+c__7*b-c__7*E__1*delta*eta*gamma__1*a__3/(B(t)*a__2)-c__8*d__1*E__1*delta*sigma/(P(t)*alpha*a__2)+c__8*d__1*E__1*b__1*delta*eta*gamma__1*a__3/(P(t)*alpha*b*a__2)

(45)

k__4 := coeff(L, B(t));

c__8*b__1^2*E__1*delta*eta*gamma__1*a__3/(P(t)*alpha*b*a__2)+c__8*b__1^2*E__1*gamma*delta/(P(t)*alpha*b*a__2)-c__8*b__1*phi__p/(P(t)*alpha)-c__8*b__1*E__1*delta*eta*gamma__1*a__3/(P(t)*alpha*a__2)-c__8*b__1*E__1*d__1*gamma*delta/(P(t)*alpha*d*a__2)+c__8*b__1-c__8*b__1*E__1*delta*sigma/(P(t)*alpha*a__2)-c__8*b__1*E__1*d__1*delta*eta*gamma__1*a__3/(P(t)*alpha*d*a__2)

(46)

k__5 := coeff(L, E(t));

-c__3*Delta*delta*E__1/(a__2*X(t))+c__3*Delta

(47)

##

## L terms that not coeffiecient X, H, D, B and E

W__12 := coeff(L, X(t), 0):

W__1 := coeff(W__12, H(t), 0):

W__11 := coeff(W__1, D(t), 0):

W__12 := coeff(W__11, B(t), 0):

k__6 := coeff(W__12, E(t), 0);

-c__1*(psi+mu)*(S(t)-S__1)*(a__1*E__1+S(t)*mu-S__1*mu-psi*S__1)/(S(t)*mu)+c__8*b__1*B__1*phi__p/(P(t)*alpha)+c__8*b__1*B__1*E__1*delta*sigma/(P(t)*alpha*a__2)+c__8*d__1*D__1*E__1*delta*sigma/(P(t)*alpha*a__2)+c__8*eta__1*H__1*E__1*delta*sigma/(P(t)*alpha*a__2)+c__5*xi^2*H__1*delta*gamma__1*E__1*a__3*mu/(a__2*R(t))+c__8*b__1*B__1*E__1*delta*eta*gamma__1*a__3/(P(t)*alpha*a__2)+c__8*b__1*B__1*E__1*d__1*gamma*delta/(P(t)*alpha*d*a__2)+c__8*d__1*D__1*E__1*delta*eta*gamma__1*a__3/(P(t)*alpha*a__2)-c__8*d__1*D__1*E__1*b__1*gamma*delta/(P(t)*alpha*b*a__2)+c__8*eta__1*H__1*E__1*delta*eta*gamma__1*a__3/(P(t)*alpha*a__2)+c__8*eta__1*H__1*E__1*d__1*gamma*delta/(P(t)*alpha*d*a__2)+c__8*b__1*B__1*E__1*d__1*delta*eta*gamma__1*a__3/(P(t)*alpha*d*a__2)-c__8*d__1*D__1*E__1*b__1*delta*eta*gamma__1*a__3/(P(t)*alpha*b*a__2)+c__8*eta__1*H__1*E__1*d__1*delta*eta*gamma__1*a__3/(P(t)*alpha*d*a__2)-c__8*eta__1*H__1*E__1*b__1*delta*eta*gamma__1*a__3/(P(t)*alpha*b*a__2)+c__8*sigma*X__1*E__1*d__1*delta*eta*gamma__1*a__3/(P(t)*alpha*d*a__2)-c__8*sigma*X__1*E__1*b__1*delta*eta*gamma__1*a__3/(P(t)*alpha*b*a__2)+c__8*sigma^2*X__1*E__1*delta/(P(t)*alpha*a__2)+c__2*psi*S(t)-c__2*psi*S__1-c__3*delta*E__1-c__4*gamma__1*X__1-c__5*xi*H__1-c__6*eta*H__1-c__6*gamma*X__1-c__7*b*D__1-c__8*sigma*X__1-c__8*d__1*D__1-c__8*eta__1*H__1-c__8*b__1*B__1-c__8*b__1^2*B__1*E__1*delta*eta*gamma__1*a__3/(P(t)*alpha*b*a__2)+c__8*d__1^2*D__1*E__1*delta*eta*gamma__1*a__3/(P(t)*alpha*d*a__2)-c__8*b__1^2*B__1*E__1*gamma*delta/(P(t)*alpha*b*a__2)+c__8*d__1^2*D__1*E__1*gamma*delta/(P(t)*alpha*d*a__2)+c__8*d__1*D__1*phi__p/(P(t)*alpha)+c__8*eta__1*H__1*phi__p/(P(t)*alpha)+c__8*sigma*X__1*phi__p/(P(t)*alpha)-c__8*eta__1*H__1*E__1*b__1*gamma*delta/(P(t)*alpha*b*a__2)+c__8*sigma*X__1*E__1*delta*eta*gamma__1*a__3/(P(t)*alpha*a__2)+c__8*sigma*X__1*E__1*d__1*gamma*delta/(P(t)*alpha*d*a__2)-c__8*sigma*X__1*E__1*b__1*gamma*delta/(P(t)*alpha*b*a__2)

(48)

## from k__5, c__3 = 0 and choose c__1 = c__2 and c__3 =c__7

c__3 := 0:  c__7:=0:

k__1;

-c__8*sigma*E__1*d__1*delta*eta*gamma__1*a__3/(P(t)*alpha*d*a__2)+c__8*sigma*E__1*b__1*delta*eta*gamma__1*a__3/(P(t)*alpha*b*a__2)-c__6*gamma^2*E__1*delta/(d*D(t)*a__2)-c__8*sigma^2*E__1*delta/(P(t)*alpha*a__2)-c__4*gamma__1^2*delta*E__1*a__3/(a__2*H(t))-c__8*sigma*phi__p/(P(t)*alpha)-c__6*gamma*E__1*delta*eta*gamma__1*a__3/(d*D(t)*a__2)-c__8*sigma*E__1*delta*eta*gamma__1*a__3/(P(t)*alpha*a__2)-c__8*sigma*E__1*d__1*gamma*delta/(P(t)*alpha*d*a__2)+c__8*sigma*E__1*b__1*gamma*delta/(P(t)*alpha*b*a__2)+c__8*sigma+c__4*gamma__1+c__6*gamma

(49)

k__2;

-c__5*xi^2*delta*gamma__1*E__1*a__3*mu/(a__2*R(t))+c__6*eta^2*E__1*delta*gamma__1*a__3/(d*D(t)*a__2)-c__8*eta__1*phi__p/(P(t)*alpha)-c__8*eta__1*E__1*delta*eta*gamma__1*a__3/(P(t)*alpha*a__2)-c__8*eta__1*E__1*d__1*gamma*delta/(P(t)*alpha*d*a__2)+c__8*eta__1*E__1*b__1*gamma*delta/(P(t)*alpha*b*a__2)-c__6*eta+c__5*xi+c__8*eta__1+c__6*eta*E__1*gamma*delta/(d*D(t)*a__2)-c__8*eta__1*E__1*delta*sigma/(P(t)*alpha*a__2)-c__8*eta__1*E__1*d__1*delta*eta*gamma__1*a__3/(P(t)*alpha*d*a__2)+c__8*eta__1*E__1*b__1*delta*eta*gamma__1*a__3/(P(t)*alpha*b*a__2)

(50)

k__3;

-c__8*d__1^2*E__1*delta*eta*gamma__1*a__3/(P(t)*alpha*d*a__2)-c__8*d__1^2*E__1*gamma*delta/(P(t)*alpha*d*a__2)-c__8*d__1*phi__p/(P(t)*alpha)-c__8*d__1*E__1*delta*eta*gamma__1*a__3/(P(t)*alpha*a__2)+c__8*d__1*E__1*b__1*gamma*delta/(P(t)*alpha*b*a__2)+c__8*d__1-c__8*d__1*E__1*delta*sigma/(P(t)*alpha*a__2)+c__8*d__1*E__1*b__1*delta*eta*gamma__1*a__3/(P(t)*alpha*b*a__2)

(51)

k__4;

c__8*b__1^2*E__1*delta*eta*gamma__1*a__3/(P(t)*alpha*b*a__2)+c__8*b__1^2*E__1*gamma*delta/(P(t)*alpha*b*a__2)-c__8*b__1*phi__p/(P(t)*alpha)-c__8*b__1*E__1*delta*eta*gamma__1*a__3/(P(t)*alpha*a__2)-c__8*b__1*E__1*d__1*gamma*delta/(P(t)*alpha*d*a__2)+c__8*b__1-c__8*b__1*E__1*delta*sigma/(P(t)*alpha*a__2)-c__8*b__1*E__1*d__1*delta*eta*gamma__1*a__3/(P(t)*alpha*d*a__2)

(52)

## Also choose

sys := solve({k__1=0, k__2 =0, k__3=0, k__4=0}, [c__4,c__5, c__6, c__8]);

[[c__4 = -H(t)*gamma*(E__1*a__3*delta*eta*gamma__1+E__1*gamma*delta-D(t)*a__2*d)*c__6/(D(t)*d*gamma__1*(E__1*a__3*delta*gamma__1-H(t)*a__2)), c__5 = R(t)*eta*(E__1*a__3*delta*eta*gamma__1+E__1*gamma*delta-D(t)*a__2*d)*c__6/(D(t)*d*xi*(E__1*a__3*delta*mu*xi*gamma__1-R(t)*a__2)), c__6 = c__6, c__8 = 0]]

(53)

#

#

``


 

Download LSA.mw

 

Hi please, how can I pair two lists and form another list? 

P := [.6286420119, -.6286420119, 0., 0., 0., 0., 0., 0., 0., 0., 0.]

Q = [2.106333379, 2.106333379, 4.654463885, 7.843624703, 10.99193295, 14.13546782, 17.27782732, 20.41978346, 23.56157073, 26.70327712, 29.84494078]

I want to pair them into something like this:

W := [ [.6286420119,2.106333379], [-.6286420119,  2.106333379] ... ]

Then use pointplot(W) and  display(seq(pointplot(W[j], j = 1 .. 20), insequence = true):

Please how can I define two sequences in a procedure with two arguments?

  ans:= Array([seq( [j, doCalc(j, u)], j=-2..0, 0.006, u=1..334)]):

The procedure is doCalc(j,u)  and I received this error: invalid input: seq expects between 1 and 3 arguments, but received 4

Find attached my complete code.Seq_Proc.mw

Please, how do I find the minimum of the real part of a complex function? I tried min ( ) function it didn't work. 

Find attached the fileFinding_min_zero.mw
 

Import packages

 

restart: with(ArrayTools): with(Student:-Calculus1): with(LinearAlgebra): with(ListTools):with(RootFinding):with(ListTools):

Parameters

 

gamma1 := .1093:
alpha3 := -0.1104e-2:
k[1] := 6*10^(-12):
d:= 0.2e-3:
xi:= -0.01:
theta0:= 0.1e-3:
eta[1]:= 0.240e-1:
alpha:= 1-alpha3^2/(gamma1*eta[1]):
c:= alpha3*xi*alpha/(eta[1]*(4*k[1]*q^2/d^2-alpha3*xi/eta[1])):
theta_init:= theta0*sin(Pi*z/d):
n:= 10:

``

``

Assign g for q and plot g

 

g := q-(1-alpha)*tan(q)-c*tan(q):
plot(g, q = 0 .. 3*Pi, view = [DEFAULT, -30.. 10]);

 

Set q as a complex

 

Assume q = x+I*y and subsitute the result into g and equate the real and complex part to zero, and solve for x and y.

f := subs(q = x+I*y, g):
b1 := evalc(Re(f)) = 0:
b2 := evalc(Im(f)) = 0:

Compute the Special Asymptotes

 

This asymptote is coming from the c from the definition of "q."

``

qstar := (fsolve(1/c = 0, q = 0 .. infinity)):NULLNULL``

``

``

Compute Odd asymptote

 

First, Since tan*q = sin*q*(1/(cos*q)), then an asymptote occurs at cos*q = 0. In general, we have
"q= ((2 k+1)Pi)/(2). "
Next, we compute the entry of the Oddasymptotes that is close to qstar (special asymptote) as assign it to
ModifiedOaddAsym, and then find the minimum of the ModifiedOaddAsym. Searchall Function returns

the index of an entry in a list.

OddAsymptotes := Vector[row]([seq(evalf((1/2*(2*j+1))*Pi), j = 0 .. n)]);
ModifiedOddAsym := abs(`~`[`-`](OddAsymptotes, qstar));
qstarTemporary := min(ModifiedOddAsym);
indexOfqstar2 := SearchAll(qstarTemporary, ModifiedOddAsym);
qstar2 := OddAsymptotes(indexOfqstar2);

OddAsymptotes := Vector(4, {(1) = ` 1 .. 11 `*Vector[row], (2) = `Data Type: `*anything, (3) = `Storage: `*rectangular, (4) = `Order: `*Fortran_order})

 

ModifiedOddAsym := Vector(4, {(1) = ` 1 .. 11 `*Vector[row], (2) = `Data Type: `*anything, (3) = `Storage: `*rectangular, (4) = `Order: `*Fortran_order})

 

.6952012913

 

1

 

1.570796327

(4.2.1)

Compute x and y

 

Here, we solve for xand y within the min. and max. of qstar2 and qstar, and substitute the results into q.

AreThereComplexRoots := type(true, 'truefalse');
try
   soln1:= fsolve({b1, b2}, {x = min(qstar2, qstar) .. max(qstar2, qstar), y = 0 .. infinity});
   soln2:= fsolve({b1, b2}, {x = min(qstar2, qstar) .. max(qstar2, qstar), y = -infinity .. 0});
   qcomplex1 := subs(soln1, x+I*y);
   qcomplex2 := subs(soln2, x+I*y);
catch:
   AreThereComplexRoots := type(FAIL, 'truefalse');
end try;

 

true

 

{x = 1.348928550, y = .3589396337}

 

{x = 1.348928550, y = -.3589396337}

 

1.348928550+.3589396337*I

 

1.348928550-.3589396337*I

(4.3.1)

Compute the rest of the Roots

 

In this section we compute the roots between each asymptotes.

OddAsymptotes := Vector[row]([seq(evalf((1/2)*(2*j+1)*Pi), j = 0 .. n)]);
AllAsymptotes := sort(Vector[row]([OddAsymptotes, qstar]));
if AreThereComplexRoots then
gg := [qcomplex1, qcomplex2, op(Roots(g, q = 0.1e-3 .. AllAsymptotes[1])), seq(op(Roots(g, q = AllAsymptotes[i] .. AllAsymptotes[i+1])), i = 1 .. n)];
elif not AreThereComplexRoots then
gg := [op(Roots(g, q = 0.1e-3 .. AllAsymptotes[1])), seq(op(Roots(g, q = AllAsymptotes[i] .. AllAsymptotes[i+1])), i = 1 .. n)];
end if:

OddAsymptotes := Vector(4, {(1) = ` 1 .. 11 `*Vector[row], (2) = `Data Type: `*anything, (3) = `Storage: `*rectangular, (4) = `Order: `*Fortran_order})

 

AllAsymptotes := Vector(4, {(1) = ` 1 .. 12 `*Vector[row], (2) = `Data Type: `*anything, (3) = `Storage: `*rectangular, (4) = `Order: `*Fortran_order})

(4.4.1)

``

Remove the repeated roots if any

 

qq := MakeUnique(gg):

``

Redefine n

 

m := numelems(qq):

``

Compute the `τ_n`time constants

 

for i to m do
p[i] := gamma1*alpha/(4*k[1]*qq[i]^2/d^2-alpha3*xi/eta[1]);
end do;

93.91209918-98.41042341*I

 

93.91209918+98.41042341*I

 

8.521555786

 

2.990232721

 

1.515805379

 

.9145981009

 

.6114591994

 

.4374663448

 

.3284338129

 

.2556221851

 

.2045951722

(4.7.1)

``

Minimum of the Re(`τ_n`)

 

for i to m do
p[i] := min(Re(gamma1*alpha/(4*k[1]*qq[i]^2/d^2-alpha3*xi/eta[1])));
end do;

93.91209918

 

93.91209918

 

8.521555786

 

2.990232721

 

1.515805379

 

.9145981009

 

.6114591994

 

.4374663448

 

.3284338129

 

.2556221851

 

.2045951722

(4.7.1.1)

## I expected 0.20459 but return all the entries in the list.

``

Download Finding_min_zero.mw

I have tried a code in python for Francis QR algorithm but didn't desire the result. I don't know if it is possible to code in maple.

Given that A^0 = [[3.0, 1.0, 4.0], [1.0, 2.0, 2.0], [0., 13.0, 2]].

1. Write a little program that computes 1 step of Francis QR and test your program by starting from

A^0 = [[3.0, 1.0, 4.0], [1.0, 2.0, 2.0], [0., 13.0, 2]]  and compute A^1, A^2 ...A^6.

I expected to get:

A^0 = [[3.0, 1.0, 4.0], [1.0, 2.0, 2.0], [0., 13.0, 2]], 

A^1 = [[3.5,  -4.264, 0.2688], [-9.206, 1.577, 9.197], [0., -1.41, 1.923]], 

... A^6 = [[8.056,  1.596, 8.584], [0.3596, -2.01, -7.86], [0., 2.576*10^(-16), 0.9542]]. 

But didn't get the same results.

Here is my python code:

# Import packages
import numpy as np
from numpy.linalg import qr # QR from Linear Algebra Library
import scipy.linalg   # SciPy Linear Algebra Library
 

A = np.array([[3.0, 1.0, 4.0], [1.0, 2.0, 2.0], [0., 13.0, 2]])
p = [1, 2, 3, 4, 5, 6]
for i in range(30):
    q, r = qr(A)
    a = np.dot(r, q)
    if i+1 in p:
        print("Iteration {i+1}")
        print(A)

I would really appreciate your help.

Thank you.

1 2 3 4 5 6 Page 5 of 6