minhthien2016

330 Reputation

6 Badges

7 years, 100 days

MaplePrimes Activity


These are replies submitted by minhthien2016

I see this question https://mathematica.stackexchange.com/questions/296690/how-can-i-tell-mathematica-create-heronian-triangles-in-2d-like-maplepost.

@acer Thank you very much.

@acer I have mylist := [(x - 7)*(x^2 + (-2*m - 30)*x + m), (x - 8)*(x^2 + (-m + 8)*x + 2*m)]

I want to write this mylist in the form
L:=[[(x - 7)*(x^2 -2 (m 15)*x + m), (x - 8)*(x^2 - (m - 8)*x + 2*m)]]
How can I writr that?
I tried
sort~(map~(normal, mylist), x)

and get 

[(x - 7)*(x^2 - 2*m*x - 30*x + m), (x - 8)*(x^2 - m*x + 8*x + 2*m)]

@acer  I use Mathematica to forming those entries. Can you find them by Maple? 

With Maple, I tried
restart;
f := x -> x^4 + (a*m + b)*x^3 + (c*m + d)*x^2 + k*m + t;
n := 0;
for a from -4 to 1 do
for b from -7 to -1 do

for c to 3 do

for d to 5 do

for k from 3 to 7 do

for t from -10 to -5 do

for m from -5 to -1 do

if eval(diff(f(x), x), x = 2) = 0 and 0 < eval(diff(f(x), x, x), x = 2) and igcd(a, b) = 1 and igcd(c, d) = 1 and igcd(k, m) = 1 then n := n + 1; L[n] := [a, b, c, d, k, t, m]; end if; end do; end do; end do; end do; end do; end do;
end do;
L := convert(L, list);
nops(L);

@acer I like this two methods and I want this form. Thanks. 

@acer With the first elemnet of the list, I tried
sort(map(normal, -3*(m - 10)*x^2 + (9*m - 6)*x + x^3), x)
I get 
x^3 - 3*(m - 10)*x^2 + 3*(3*m - 2)*x
How can I sort all the list L?

PS. I tried subs('y' = 1, collect(`*`~('y', L), x, normal)) and get what is I want

@acer This is my list
L:=[-3 (m-10) x^2+(9 m-6) x+x^3,-3 (m-9) x^2+(3 m-9) x+x^3,-3 (m-9) x^2+(6 m-9) x+x^3,-3 (m-9) x^2+(9 m+3) x+x^3,-3 (m-9) x^2+(18 m+3) x+x^3,-3 (m-8) x^2+(3 m-6) x+x^3,-3 (m-8) x^2+(6 m-3) x+x^3,-3 (m-7) x^2+(3 m-3) x+x^3,-3 (m-7) x^2+(6 m+3) x+x^3,-3 (m-7) x^2+(9 m-9) x+x^3,-3 (m-7) x^2+(15 m+3) x+x^3,-3 (m-7) x^2+(18 m-6) x+x^3,-3 (m-6) x^2+(12 m-9) x+x^3,-3 (m-6) x^2+(18 m+12) x+x^3,-3 (m-5) x^2+(3 m-9) x+x^3,-3 (m-5) x^2+(6 m-6) x+x^3,-3 (m-5) x^2+(12 m+3) x+x^3,-3 (m-5) x^2+(15 m-3) x+x^3,-3 (m-5) x^2+(18 m-9) x+x^3,-3 (m-4) x^2+(3 m-6) x+x^3,-3 (m-4) x^2+(9 m-6) x+x^3,-3 (m-4) x^2+(15 m+12) x+x^3,-3 (m-4) x^2+(18 m+9) x+x^3,-3 (m-3) x^2+(3 m-9) x+x^3,-3 (m-3) x^2+(3 m-3) x+x^3,-3 (m-3) x^2+(6 m-9) x+x^3,-3 (m-3) x^2+(9 m+3) x+x^3,-3 (m-3) x^2+(15 m-3) x+x^3,-3 (m-3) x^2+(18 m-6) x+x^3,-3 (m-2) x^2+(3 m-6) x+x^3,-3 (m-2) x^2+(6 m-3) x+x^3,-3 (m-2) x^2+(9 m-6) x+x^3,-3 (m-2) x^2+(12 m-9) x+x^3,-3 (m-1) x^2+(3 m-3) x+x^3,-3 (m-1) x^2+(6 m-6) x+x^3,-3 (m-1) x^2+(9 m-9) x+x^3,-3 (2 m-9) x^2+(12 m-9) x+x^3,-3 (2 m-7) x^2+(12 m+3) x+x^3,-3 (2 m-3) x^2+(12 m-9) x+x^3,-3 (3 m-5) x^2+(18 m-6) x+x^3,-3 (3 m-4) x^2+(9 m-6) x+x^3,-3 (5 m-7) x^2+(15 m-3) x+x^3,-2 (m-8) x^2+(4 m-8) x+x^3,-2 (m-8) x^2+(20 m+8) x+x^3,-2 (m-7) x^2+(4 m-4) x+x^3,-2 (m-5) x^2+(8 m-4) x+x^3,-2 (m-4) x^2+(8 m+4) x+x^3,-2 (m-4) x^2+(16 m-4) x+x^3,-2 (m-4) x^2+(20 m-8) x+x^3,-2 (m-2) x^2+(4 m-8) x+x^3,-2 (m-1) x^2+(4 m-4) x+x^3,-2 (m-1) x^2+(8 m-8) x+x^3,-2 (2 m-5) x^2+(16 m-4) x+x^3,-(m-10) x^2+(m-10) x+x^3,-(m-10) x^2+(m-4) x+x^3,-(m-10) x^2+(4 m-4) x+x^3,-(m-10) x^2+(5 m-8) x+x^3,-(m-10) x^2+(14 m+13) x+x^3,-(m-10) x^2+(15 m+12) x+x^3,-(m-10) x^2+(16 m+11) x+x^3,-(m-10) x^2+(17 m+10) x+x^3,-(m-10) x^2+(18 m+9) x+x^3,-(m-10) x^2+(19 m+8) x+x^3,-(m-10) x^2+(20 m+7) x+x^3,-(m-9) x^2+(m-9) x+x^3,-(m-9) x^2+(m-3) x+x^3,-(m-9) x^2+(2 m-9) x+x^3,-(m-9) x^2+(5 m-3) x+x^3,-(m-9) x^2+(6 m-6) x+x^3,-(m-9) x^2+(7 m-9) x+x^3,-(m-8) x^2+(m-8) x+x^3,-(m-8) x^2+(m-2) x+x^3,-(m-8) x^2+(2 m-7) x+x^3,-(m-8) x^2+(5 m+2) x+x^3,-(m-8) x^2+(7 m-2) x+x^3,-(m-8) x^2+(8 m-4) x+x^3,-(m-8) x^2+(9 m-6) x+x^3,-(m-8) x^2+(10 m-8) x+x^3,-(m-8) x^2+(11 m-10) x+x^3,-(m-7) x^2+(m-7) x+x^3,-(m-7) x^2+(m-1) x+x^3,-(m-7) x^2+(2 m-5) x+x^3,-(m-7) x^2+(3 m-9) x+x^3,-(m-7) x^2+(7 m+5) x+x^3,-(m-7) x^2+(8 m+4) x+x^3,-(m-7) x^2+(9 m+3) x+x^3,-(m-7) x^2+(10 m+2) x+x^3,-(m-7) x^2+(11 m+1) x+x^3,-(m-7) x^2+(13 m-1) x+x^3,-(m-7) x^2+(14 m-2) x+x^3,-(m-7) x^2+(15 m-3) x+x^3,-(m-7) x^2+(16 m-4) x+x^3,-(m-7) x^2+(17 m-5) x+x^3,-(m-7) x^2+(18 m-6) x+x^3,-(m-7) x^2+(19 m-7) x+x^3,-(m-7) x^2+(20 m-8) x+x^3,-(m-6) x^2+(m-6) x+x^3,-(m-6) x^2+(2 m-3) x+x^3,-(m-6) x^2+(3 m-6) x+x^3,-(m-6) x^2+(4 m-9) x+x^3,-(m-5) x^2+(m-5) x+x^3,-(m-5) x^2+(2 m-10) x+x^3,-(m-5) x^2+(2 m-1) x+x^3,-(m-5) x^2+(3 m-3) x+x^3,-(m-5) x^2+(4 m-5) x+x^3,-(m-5) x^2+(5 m-7) x+x^3,-(m-5) x^2+(6 m-9) x+x^3,-(m-4) x^2+(-7 m-8) x+x^3,-(m-4) x^2+(m-4) x+x^3,-(m-4) x^2+(2 m-8) x+x^3,-(m-4) x^2+(2 m+1) x+x^3,-(m-4) x^2+(4 m-1) x+x^3,-(m-4) x^2+(5 m-2) x+x^3,-(m-4) x^2+(6 m-3) x+x^3,-(m-4) x^2+(7 m-4) x+x^3,-(m-4) x^2+(8 m-5) x+x^3,-(m-4) x^2+(9 m-6) x+x^3,-(m-4) x^2+(10 m-7) x+x^3,-(m-4) x^2+(11 m-8) x+x^3,-(m-4) x^2+(12 m-9) x+x^3,-(m-4) x^2+(13 m-10) x+x^3,-(m-3) x^2+(-7 m-9) x+x^3,-(m-3) x^2+(m-3) x+x^3,-(m-3) x^2+(2 m-6) x+x^3,-(m-3) x^2+(3 m-9) x+x^3,-(m-2) x^2+(-5 m-8) x+x^3,-(m-2) x^2+(m-2) x+x^3,-(m-2) x^2+(2 m-4) x+x^3,-(m-2) x^2+(3 m-6) x+x^3,-(m-2) x^2+(4 m-8) x+x^3,-(m-2) x^2+(5 m-10) x+x^3,-(m-1) x^2+(-6 m-9) x+x^3,-(m-1) x^2+(-5 m-7) x+x^3,-(m-1) x^2+(-4 m-5) x+x^3,-(m-1) x^2+(m-1) x+x^3,-(m-1) x^2+(2 m-2) x+x^3,-(m-1) x^2+(3 m-9) x+x^3,-(m-1) x^2+(3 m-3) x+x^3,-(m-1) x^2+(4 m-4) x+x^3,-(m-1) x^2+(5 m-5) x+x^3,-(m-1) x^2+(6 m-6) x+x^3,-(m-1) x^2+(7 m-7) x+x^3,-(m-1) x^2+(8 m-8) x+x^3,-(m-1) x^2+(9 m-9) x+x^3,-(m-1) x^2+(10 m-10) x+x^3,-(2 m-10) x^2+(8 m-4) x+x^3,-(2 m-9) x^2+(4 m-9) x+x^3,-(2 m-8) x^2+(8 m+4) x+x^3,-(2 m-8) x^2+(16 m-4) x+x^3,-(2 m-8) x^2+(20 m-8) x+x^3,-(2 m-7) x^2+(4 m-5) x+x^3,-(2 m-5) x^2+(4 m-1) x+x^3,-(2 m-5) x^2+(8 m-5) x+x^3,-(2 m-5) x^2+(12 m-9) x+x^3,-(2 m-4) x^2+(4 m-8) x+x^3,-(2 m-2) x^2+(4 m-4) x+x^3,-(2 m-2) x^2+(8 m-8) x+x^3,-(2 m+1) x^2+(8 m-5) x+x^3,-(2 m+1) x^2+(12 m-9) x+x^3,-(3 m-9) x^2+(3 m-9) x+x^3,-(3 m-9) x^2+(3 m-3) x+x^3,-(3 m-9) x^2+(6 m-9) x+x^3,-(3 m-9) x^2+(9 m+3) x+x^3,-(3 m-9) x^2+(15 m-3) x+x^3,-(3 m-9) x^2+(18 m-6) x+x^3,-(3 m-6) x^2+(3 m-6) x+x^3,-(3 m-6) x^2+(6 m-3) x+x^3,-(3 m-6) x^2+(9 m-6) x+x^3,-(3 m-6) x^2+(12 m-9) x+x^3,-(3 m-3) x^2+(3 m-3) x+x^3,-(3 m-3) x^2+(6 m-6) x+x^3,-(3 m-3) x^2+(9 m-9) x+x^3,-(4 m-10) x^2+(16 m-4) x+x^3,-(4 m-7) x^2+(8 m-5) x+x^3,-(6 m-9) x^2+(12 m-9) x+x^3,(m-10) x^2+(m-10) x+x^3,(m-10) x^2+(m-4) x+x^3,(m-10) x^2+(4 m-4) x+x^3,(m-10) x^2+(5 m-8) x+x^3,(m-10) x^2+(14 m+13) x+x^3,(m-10) x^2+(15 m+12) x+x^3,(m-10) x^2+(16 m+11) x+x^3,(m-10) x^2+(17 m+10) x+x^3,(m-10) x^2+(18 m+9) x+x^3,(m-10) x^2+(19 m+8) x+x^3,(m-10) x^2+(20 m+7) x+x^3,(m-9) x^2+(m-9) x+x^3,(m-9) x^2+(m-3) x+x^3,(m-9) x^2+(2 m-9) x+x^3,(m-9) x^2+(5 m-3) x+x^3,(m-9) x^2+(6 m-6) x+x^3,(m-9) x^2+(7 m-9) x+x^3,(m-8) x^2+(m-8) x+x^3,(m-8) x^2+(m-2) x+x^3,(m-8) x^2+(2 m-7) x+x^3,(m-8) x^2+(5 m+2) x+x^3,(m-8) x^2+(7 m-2) x+x^3,(m-8) x^2+(8 m-4) x+x^3,(m-8) x^2+(9 m-6) x+x^3,(m-8) x^2+(10 m-8) x+x^3,(m-8) x^2+(11 m-10) x+x^3,(m-7) x^2+(m-7) x+x^3,(m-7) x^2+(m-1) x+x^3,(m-7) x^2+(2 m-5) x+x^3,(m-7) x^2+(3 m-9) x+x^3,(m-7) x^2+(7 m+5) x+x^3,(m-7) x^2+(8 m+4) x+x^3,(m-7) x^2+(9 m+3) x+x^3,(m-7) x^2+(10 m+2) x+x^3,(m-7) x^2+(11 m+1) x+x^3,(m-7) x^2+(13 m-1) x+x^3,(m-7) x^2+(14 m-2) x+x^3,(m-7) x^2+(15 m-3) x+x^3,(m-7) x^2+(16 m-4) x+x^3,(m-7) x^2+(17 m-5) x+x^3,(m-7) x^2+(18 m-6) x+x^3,(m-7) x^2+(19 m-7) x+x^3,(m-7) x^2+(20 m-8) x+x^3,(m-6) x^2+(m-6) x+x^3,(m-6) x^2+(2 m-3) x+x^3,(m-6) x^2+(3 m-6) x+x^3,(m-6) x^2+(4 m-9) x+x^3,(m-5) x^2+(m-5) x+x^3,(m-5) x^2+(2 m-10) x+x^3,(m-5) x^2+(2 m-1) x+x^3,(m-5) x^2+(3 m-3) x+x^3,(m-5) x^2+(4 m-5) x+x^3,(m-5) x^2+(5 m-7) x+x^3,(m-5) x^2+(6 m-9) x+x^3,(m-4) x^2+(-7 m-8) x+x^3,(m-4) x^2+(m-4) x+x^3,(m-4) x^2+(2 m-8) x+x^3,(m-4) x^2+(2 m+1) x+x^3,(m-4) x^2+(4 m-1) x+x^3,(m-4) x^2+(5 m-2) x+x^3,(m-4) x^2+(6 m-3) x+x^3,(m-4) x^2+(7 m-4) x+x^3,(m-4) x^2+(8 m-5) x+x^3,(m-4) x^2+(9 m-6) x+x^3,(m-4) x^2+(10 m-7) x+x^3,(m-4) x^2+(11 m-8) x+x^3,(m-4) x^2+(12 m-9) x+x^3,(m-4) x^2+(13 m-10) x+x^3,(m-3) x^2+(-7 m-9) x+x^3,(m-3) x^2+(m-3) x+x^3,(m-3) x^2+(2 m-6) x+x^3,(m-3) x^2+(3 m-9) x+x^3,(m-2) x^2+(-5 m-8) x+x^3,(m-2) x^2+(m-2) x+x^3,(m-2) x^2+(2 m-4) x+x^3,(m-2) x^2+(3 m-6) x+x^3,(m-2) x^2+(4 m-8) x+x^3,(m-2) x^2+(5 m-10) x+x^3,(m-1) x^2+(-6 m-9) x+x^3,(m-1) x^2+(-5 m-7) x+x^3,(m-1) x^2+(-4 m-5) x+x^3,(m-1) x^2+(m-1) x+x^3,(m-1) x^2+(2 m-2) x+x^3,(m-1) x^2+(3 m-9) x+x^3,(m-1) x^2+(3 m-3) x+x^3,(m-1) x^2+(4 m-4) x+x^3,(m-1) x^2+(5 m-5) x+x^3,(m-1) x^2+(6 m-6) x+x^3,(m-1) x^2+(7 m-7) x+x^3,(m-1) x^2+(8 m-8) x+x^3,(m-1) x^2+(9 m-9) x+x^3,(m-1) x^2+(10 m-10) x+x^3,(2 m-10) x^2+(8 m-4) x+x^3,(2 m-9) x^2+(4 m-9) x+x^3,(2 m-8) x^2+(8 m+4) x+x^3,(2 m-8) x^2+(16 m-4) x+x^3,(2 m-8) x^2+(20 m-8) x+x^3,(2 m-7) x^2+(4 m-5) x+x^3,(2 m-5) x^2+(4 m-1) x+x^3,(2 m-5) x^2+(8 m-5) x+x^3,(2 m-5) x^2+(12 m-9) x+x^3,(2 m-4) x^2+(4 m-8) x+x^3,(2 m-2) x^2+(4 m-4) x+x^3,(2 m-2) x^2+(8 m-8) x+x^3,(2 m+1) x^2+(8 m-5) x+x^3,(2 m+1) x^2+(12 m-9) x+x^3,(3 m-9) x^2+(3 m-9) x+x^3,(3 m-9) x^2+(3 m-3) x+x^3,(3 m-9) x^2+(6 m-9) x+x^3,(3 m-9) x^2+(9 m+3) x+x^3,(3 m-9) x^2+(15 m-3) x+x^3,(3 m-9) x^2+(18 m-6) x+x^3,(3 m-6) x^2+(3 m-6) x+x^3,(3 m-6) x^2+(6 m-3) x+x^3,(3 m-6) x^2+(9 m-6) x+x^3,(3 m-6) x^2+(12 m-9) x+x^3,(3 m-3) x^2+(3 m-3) x+x^3,(3 m-3) x^2+(6 m-6) x+x^3,(3 m-3) x^2+(9 m-9) x+x^3,(4 m-10) x^2+(16 m-4) x+x^3,(4 m-7) x^2+(8 m-5) x+x^3,(6 m-9) x^2+(12 m-9) x+x^3,2 (m-8) x^2+(4 m-8) x+x^3,2 (m-8) x^2+(20 m+8) x+x^3,2 (m-7) x^2+(4 m-4) x+x^3,2 (m-5) x^2+(8 m-4) x+x^3,2 (m-4) x^2+(8 m+4) x+x^3,2 (m-4) x^2+(16 m-4) x+x^3,2 (m-4) x^2+(20 m-8) x+x^3,2 (m-2) x^2+(4 m-8) x+x^3,2 (m-1) x^2+(4 m-4) x+x^3,2 (m-1) x^2+(8 m-8) x+x^3,2 (2 m-5) x^2+(16 m-4) x+x^3,3 (m-10) x^2+(9 m-6) x+x^3,3 (m-9) x^2+(3 m-9) x+x^3,3 (m-9) x^2+(6 m-9) x+x^3,3 (m-9) x^2+(9 m+3) x+x^3,3 (m-9) x^2+(18 m+3) x+x^3,3 (m-8) x^2+(3 m-6) x+x^3,3 (m-8) x^2+(6 m-3) x+x^3,3 (m-7) x^2+(3 m-3) x+x^3,3 (m-7) x^2+(6 m+3) x+x^3,3 (m-7) x^2+(9 m-9) x+x^3,3 (m-7) x^2+(15 m+3) x+x^3,3 (m-7) x^2+(18 m-6) x+x^3,3 (m-6) x^2+(12 m-9) x+x^3,3 (m-6) x^2+(18 m+12) x+x^3,3 (m-5) x^2+(3 m-9) x+x^3,3 (m-5) x^2+(6 m-6) x+x^3,3 (m-5) x^2+(12 m+3) x+x^3,3 (m-5) x^2+(15 m-3) x+x^3,3 (m-5) x^2+(18 m-9) x+x^3,3 (m-4) x^2+(3 m-6) x+x^3,3 (m-4) x^2+(9 m-6) x+x^3,3 (m-4) x^2+(15 m+12) x+x^3,3 (m-4) x^2+(18 m+9) x+x^3,3 (m-3) x^2+(3 m-9) x+x^3,3 (m-3) x^2+(3 m-3) x+x^3,3 (m-3) x^2+(6 m-9) x+x^3,3 (m-3) x^2+(9 m+3) x+x^3,3 (m-3) x^2+(15 m-3) x+x^3,3 (m-3) x^2+(18 m-6) x+x^3,3 (m-2) x^2+(3 m-6) x+x^3,3 (m-2) x^2+(6 m-3) x+x^3,3 (m-2) x^2+(9 m-6) x+x^3,3 (m-2) x^2+(12 m-9) x+x^3,3 (m-1) x^2+(3 m-3) x+x^3,3 (m-1) x^2+(6 m-6) x+x^3,3 (m-1) x^2+(9 m-9) x+x^3,3 (2 m-9) x^2+(12 m-9) x+x^3,3 (2 m-7) x^2+(12 m+3) x+x^3,3 (2 m-3) x^2+(12 m-9) x+x^3,3 (3 m-5) x^2+(18 m-6) x+x^3,3 (3 m-4) x^2+(9 m-6) x+x^3,3 (5 m-7) x^2+(15 m-3) x+x^3]

@acer please wait for me. I am using my smart phone. When I go home, I will post them. Thanks.

@acer If I have 100 expressios, it is dificult for me to name exp1, exp2, ..., exp100. I only put them in a list with name L without using namne exp1, exp2, ..., exp100. E.x L:= [x^3, ...].

@acer Can I put the expressions in a list like this L := [x^3-(-m+3)x^2 - (4m+12)x, x^3 + (- 2m - 12)x^2 - (-2m+4)x]?

@acer Thank you very much. If I have a list of expressions, 
exp1: =  x^3 - (-3*m + 1)*x^2 + (-4*m - 3)*x;

exp2: = x^3 - (-m - 1)*x^2 - (-4*m - 3)*x;
How can I use your code?

@vv Mathematica out put 130 results. How can I get it with Maple?
{{{-57, -3, -3}, {15, 39, 39}, {21, -51, 15}, {21, 
   15, -51}}, {{-57, -3, -3}, {17, -13, 53}, {17, 
   53, -13}, {23, -37, -37}}, {{-57, -3, 3}, {15, 
   39, -39}, {21, -51, -15}, {21, 15, 51}}, {{-57, -3, 
   3}, {17, -13, -53}, {17, 53, 13}, {23, -37, 37}}, {{-57, 
   3, -3}, {15, -39, 39}, {21, -15, -51}, {21, 51, 15}}, {{-57, 
   3, -3}, {17, -53, -13}, {17, 13, 53}, {23, 37, -37}}, {{-57, 3, 
   3}, {15, -39, -39}, {21, -15, 51}, {21, 51, -15}}, {{-57, 3, 
   3}, {17, -53, 13}, {17, 13, -53}, {23, 37, 
   37}}, {{-55, -11, -11}, {11, -11, 55}, {11, 
   55, -11}, {33, -33, -33}}, {{-55, -11, 11}, {11, -11, -55}, {11, 
   55, 11}, {33, -33, 33}}, {{-55, 11, -11}, {11, -55, -11}, {11, 11, 
   55}, {33, 33, -33}}, {{-55, 11, 11}, {11, -55, 11}, {11, 
   11, -55}, {33, 33, 33}}, {{-53, -17, -13}, {3, 57, -3}, {13, -17, 
   53}, {37, -23, -37}}, {{-53, -17, 13}, {3, 57, 
   3}, {13, -17, -53}, {37, -23, 37}}, {{-53, -13, -17}, {3, -3, 
   57}, {13, 53, -17}, {37, -37, -23}}, {{-53, -13, 
   17}, {3, -3, -57}, {13, 53, 17}, {37, -37, 23}}, {{-53, 
   13, -17}, {3, 3, 57}, {13, -53, -17}, {37, 37, -23}}, {{-53, 13, 
   17}, {3, 3, -57}, {13, -53, 17}, {37, 37, 23}}, {{-53, 
   17, -13}, {3, -57, -3}, {13, 17, 53}, {37, 23, -37}}, {{-53, 17, 
   13}, {3, -57, 3}, {13, 17, -53}, {37, 23, 
   37}}, {{-51, -21, -15}, {-5, 29, 49}, {19, 35, -41}, {37, -43, 
   7}}, {{-51, -21, -15}, {-3, 57, 3}, {15, -21, 
   51}, {39, -15, -39}}, {{-51, -21, 15}, {-5, 29, -49}, {19, 35, 
   41}, {37, -43, -7}}, {{-51, -21, 15}, {-3, 
   57, -3}, {15, -21, -51}, {39, -15, 39}}, {{-51, -15, -21}, {-5, 49,
    29}, {19, -41, 35}, {37, 7, -43}}, {{-51, -15, -21}, {-3, 3, 
   57}, {15, 51, -21}, {39, -39, -15}}, {{-51, -15, 21}, {-5, 
   49, -29}, {19, -41, -35}, {37, 7, 43}}, {{-51, -15, 21}, {-3, 
   3, -57}, {15, 51, 21}, {39, -39, 15}}, {{-51, 15, -21}, {-5, -49, 
   29}, {19, 41, 35}, {37, -7, -43}}, {{-51, 15, -21}, {-3, -3, 
   57}, {15, -51, -21}, {39, 39, -15}}, {{-51, 15, 
   21}, {-5, -49, -29}, {19, 41, -35}, {37, -7, 43}}, {{-51, 15, 
   21}, {-3, -3, -57}, {15, -51, 21}, {39, 39, 15}}, {{-51, 
   21, -15}, {-5, -29, 49}, {19, -35, -41}, {37, 43, 7}}, {{-51, 
   21, -15}, {-3, -57, 3}, {15, 21, 51}, {39, 15, -39}}, {{-51, 21, 
   15}, {-5, -29, -49}, {19, -35, 41}, {37, 43, -7}}, {{-51, 21, 
   15}, {-3, -57, -3}, {15, 21, -51}, {39, 15, 
   39}}, {{-49, -29, -5}, {-7, 43, 37}, {15, 21, -51}, {41, -35, 
   19}}, {{-49, -29, 5}, {-7, 43, -37}, {15, 21, 
   51}, {41, -35, -19}}, {{-49, -5, -29}, {-7, 37, 43}, {15, -51, 
   21}, {41, 19, -35}}, {{-49, -5, 29}, {-7, 
   37, -43}, {15, -51, -21}, {41, 19, 35}}, {{-49, 5, -29}, {-7, -37, 
   43}, {15, 51, 21}, {41, -19, -35}}, {{-49, 5, 
   29}, {-7, -37, -43}, {15, 51, -21}, {41, -19, 35}}, {{-49, 
   29, -5}, {-7, -43, 37}, {15, -21, -51}, {41, 35, 19}}, {{-49, 29, 
   5}, {-7, -43, -37}, {15, -21, 51}, {41, 
   35, -19}}, {{-47, -23, -23}, {-15, 39, 39}, {31, -41, 25}, {31, 
   25, -41}}, {{-47, -23, 23}, {-15, 39, -39}, {31, -41, -25}, {31, 
   25, 41}}, {{-47, 23, -23}, {-15, -39, 39}, {31, -25, -41}, {31, 41,
    25}}, {{-47, 23, 23}, {-15, -39, -39}, {31, -25, 41}, {31, 
   41, -25}}, {{-43, -37, -7}, {-21, 51, 15}, {29, 5, -49}, {35, -19, 
   41}}, {{-43, -37, 7}, {-21, 51, -15}, {29, 5, 
   49}, {35, -19, -41}}, {{-43, -7, -37}, {-21, 15, 51}, {29, -49, 
   5}, {35, 41, -19}}, {{-43, -7, 37}, {-21, 
   15, -51}, {29, -49, -5}, {35, 41, 19}}, {{-43, 7, -37}, {-21, -15, 
   51}, {29, 49, 5}, {35, -41, -19}}, {{-43, 7, 
   37}, {-21, -15, -51}, {29, 49, -5}, {35, -41, 19}}, {{-43, 
   37, -7}, {-21, -51, 15}, {29, -5, -49}, {35, 19, 41}}, {{-43, 37, 
   7}, {-21, -51, -15}, {29, -5, 49}, {35, 
   19, -41}}, {{-41, -35, -19}, {-15, 21, 51}, {7, 43, -37}, {49, -29,
    5}}, {{-41, -35, 19}, {-15, 21, -51}, {7, 43, 
   37}, {49, -29, -5}}, {{-41, -31, -25}, {-23, 47, 23}, {25, -31, 
   41}, {39, 15, -39}}, {{-41, -31, 25}, {-23, 
   47, -23}, {25, -31, -41}, {39, 15, 39}}, {{-41, -25, -31}, {-23, 
   23, 47}, {25, 41, -31}, {39, -39, 15}}, {{-41, -25, 31}, {-23, 
   23, -47}, {25, 41, 31}, {39, -39, -15}}, {{-41, -19, -35}, {-15, 
   51, 21}, {7, -37, 43}, {49, 5, -29}}, {{-41, -19, 35}, {-15, 
   51, -21}, {7, -37, -43}, {49, 5, 29}}, {{-41, 19, -35}, {-15, -51, 
   21}, {7, 37, 43}, {49, -5, -29}}, {{-41, 19, 
   35}, {-15, -51, -21}, {7, 37, -43}, {49, -5, 29}}, {{-41, 
   25, -31}, {-23, -23, 47}, {25, -41, -31}, {39, 39, 15}}, {{-41, 25,
    31}, {-23, -23, -47}, {25, -41, 31}, {39, 39, -15}}, {{-41, 
   31, -25}, {-23, -47, 23}, {25, 31, 41}, {39, -15, -39}}, {{-41, 31,
    25}, {-23, -47, -23}, {25, 31, -41}, {39, -15, 39}}, {{-41, 
   35, -19}, {-15, -21, 51}, {7, -43, -37}, {49, 29, 5}}, {{-41, 35, 
   19}, {-15, -21, -51}, {7, -43, 37}, {49, 
   29, -5}}, {{-39, -39, -15}, {-25, 41, 31}, {23, 23, -47}, {41, -25,
    31}}, {{-39, -39, -15}, {-15, 51, -21}, {3, 3, 
   57}, {51, -15, -21}}, {{-39, -39, 15}, {-25, 41, -31}, {23, 23, 
   47}, {41, -25, -31}}, {{-39, -39, 15}, {-15, 51, 21}, {3, 
   3, -57}, {51, -15, 21}}, {{-39, -15, -39}, {-25, 31, 41}, {23, -47,
    23}, {41, 31, -25}}, {{-39, -15, -39}, {-15, -21, 51}, {3, 57, 
   3}, {51, -21, -15}}, {{-39, -15, 39}, {-25, 
   31, -41}, {23, -47, -23}, {41, 31, 25}}, {{-39, -15, 
   39}, {-15, -21, -51}, {3, 57, -3}, {51, -21, 15}}, {{-39, 
   15, -39}, {-25, -31, 41}, {23, 47, 23}, {41, -31, -25}}, {{-39, 
   15, -39}, {-15, 21, 51}, {3, -57, 3}, {51, 21, -15}}, {{-39, 15, 
   39}, {-25, -31, -41}, {23, 47, -23}, {41, -31, 25}}, {{-39, 15, 
   39}, {-15, 21, -51}, {3, -57, -3}, {51, 21, 15}}, {{-39, 
   39, -15}, {-25, -41, 31}, {23, -23, -47}, {41, 25, 31}}, {{-39, 
   39, -15}, {-15, -51, -21}, {3, -3, 57}, {51, 15, -21}}, {{-39, 39, 
   15}, {-25, -41, -31}, {23, -23, 47}, {41, 25, -31}}, {{-39, 39, 
   15}, {-15, -51, 21}, {3, -3, -57}, {51, 15, 
   21}}, {{-37, -43, -7}, {-19, 35, 41}, {5, 29, -49}, {51, -21, 
   15}}, {{-37, -43, 7}, {-19, 35, -41}, {5, 29, 
   49}, {51, -21, -15}}, {{-37, -37, -23}, {-13, 53, -17}, {-3, -3, 
   57}, {53, -13, -17}}, {{-37, -37, 23}, {-13, 53, 
   17}, {-3, -3, -57}, {53, -13, 17}}, {{-37, -23, -37}, {-13, -17, 
   53}, {-3, 57, -3}, {53, -17, -13}}, {{-37, -23, 
   37}, {-13, -17, -53}, {-3, 57, 3}, {53, -17, 
   13}}, {{-37, -7, -43}, {-19, 41, 35}, {5, -49, 29}, {51, 
   15, -21}}, {{-37, -7, 43}, {-19, 41, -35}, {5, -49, -29}, {51, 15, 
   21}}, {{-37, 7, -43}, {-19, -41, 35}, {5, 49, 
   29}, {51, -15, -21}}, {{-37, 7, 43}, {-19, -41, -35}, {5, 
   49, -29}, {51, -15, 21}}, {{-37, 23, -37}, {-13, 17, 
   53}, {-3, -57, -3}, {53, 17, -13}}, {{-37, 23, 37}, {-13, 
   17, -53}, {-3, -57, 3}, {53, 17, 13}}, {{-37, 
   37, -23}, {-13, -53, -17}, {-3, 3, 57}, {53, 13, -17}}, {{-37, 37, 
   23}, {-13, -53, 17}, {-3, 3, -57}, {53, 13, 17}}, {{-37, 
   43, -7}, {-19, -35, 41}, {5, -29, -49}, {51, 21, 15}}, {{-37, 43, 
   7}, {-19, -35, -41}, {5, -29, 49}, {51, 
   21, -15}}, {{-35, -41, -19}, {-29, 49, 5}, {21, -15, 51}, {43, 
   7, -37}}, {{-35, -41, 19}, {-29, 49, -5}, {21, -15, -51}, {43, 7, 
   37}}, {{-35, -19, -41}, {-29, 5, 49}, {21, 51, -15}, {43, -37, 
   7}}, {{-35, -19, 41}, {-29, 5, -49}, {21, 51, 
   15}, {43, -37, -7}}, {{-35, 19, -41}, {-29, -5, 
   49}, {21, -51, -15}, {43, 37, 7}}, {{-35, 19, 
   41}, {-29, -5, -49}, {21, -51, 15}, {43, 37, -7}}, {{-35, 
   41, -19}, {-29, -49, 5}, {21, 15, 51}, {43, -7, -37}}, {{-35, 41, 
   19}, {-29, -49, -5}, {21, 15, -51}, {43, -7, 
   37}}, {{-33, -33, -33}, {-33, 33, 33}, {33, -33, 33}, {33, 
   33, -33}}, {{-33, -33, -33}, {-11, -11, 55}, {-11, 
   55, -11}, {55, -11, -11}}, {{-33, -33, 33}, {-33, 
   33, -33}, {33, -33, -33}, {33, 33, 33}}, {{-33, -33, 
   33}, {-11, -11, -55}, {-11, 55, 11}, {55, -11, 11}}, {{-33, 
   33, -33}, {-11, -55, -11}, {-11, 11, 55}, {55, 11, -11}}, {{-33, 
   33, 33}, {-11, -55, 11}, {-11, 11, -55}, {55, 11, 
   11}}, {{-31, -41, -25}, {-31, 25, 41}, {15, 39, -39}, {47, -23, 
   23}}, {{-31, -41, 25}, {-31, 25, -41}, {15, 39, 
   39}, {47, -23, -23}}, {{-31, -25, -41}, {-31, 41, 25}, {15, -39, 
   39}, {47, 23, -23}}, {{-31, -25, 41}, {-31, 
   41, -25}, {15, -39, -39}, {47, 23, 
   23}}, {{-23, -37, -37}, {-17, -13, 53}, {-17, 
   53, -13}, {57, -3, -3}}, {{-23, -37, 37}, {-17, -13, -53}, {-17, 
   53, 13}, {57, -3, 3}}, {{-23, 37, -37}, {-17, -53, -13}, {-17, 13, 
   53}, {57, 3, -3}}, {{-23, 37, 37}, {-17, -53, 13}, {-17, 
   13, -53}, {57, 3, 3}}, {{-21, -51, -15}, {-21, 15, 51}, {-15, 
   39, -39}, {57, -3, 3}}, {{-21, -51, 15}, {-21, 15, -51}, {-15, 39, 
   39}, {57, -3, -3}}, {{-21, -15, -51}, {-21, 51, 15}, {-15, -39, 
   39}, {57, 3, -3}}, {{-21, -15, 51}, {-21, 
   51, -15}, {-15, -39, -39}, {57, 3, 3}}}

@Carl Love Yes,  Iwant all pairs of perpendicular diameters with integer endpoints. I think, If I have pairs of perpendicular diameters with integer endpoints, then a square is maken by this two perpendicular diameters.

How can I tell Maple out put like this?
sqrt(8) + sqrt(32) = sqrt(2*2^2) + sqrt(2*4^2) = 2*sqrt(2) + 4*sqrt(2) = 6*sqrt(2)?

@acer I use @Carl Love'code very nice
restart;
F := proc(ee, LL) Typesetting:-mrow(InertForm:-Typeset(InertForm:-Display(eval(eval(InertForm:-MakeInert(factor(ee)), [`%*` = `*`]) = InertForm:-MakeInert(map(sort, algsubs(a*x = InertForm:-MakeInert(a*x), ee), order = plex(b))), `=`~([a, b], LL)), inert = false)), Typesetting:-mo("="), InertForm:-Typeset(eval(ee, `=`~([a, b], LL)))); end proc;
p := a^5*x^5 + 5*a^4*b*x^4 + 10*a^3*b^2*x^3 + 10*a^2*b^3*x^2 + 5*a*b^4*x + b^5;
L := [[2, -y], [3, -2], [1/3, -sqrt(2)]];
ans := F~(p, L);
print~(ans);