mmsV

25 Reputation

One Badge

0 years, 159 days

MaplePrimes Activity


These are questions asked by mmsV

I would like to perform the following expansion up to an arbitrary order. The dots refer to higher-order terms. All the coefficients are symmetric except for the first one.

Thank you very much!

I have the following systems of ODE in hand and would like to solve them. It would be great if somebody could help me with it.

dudx := -415; dudy := 3901; dudz := -3365; dvdx := 23; dvdy := -1270; dvdz := 994; dwdx := 57; dwdy := -1665; dwdz := 1683; taup := 0.5390603100674905e-5

-415

 

3901

 

-3365

 

23

 

-1270

 

994

 

57

 

-1665

 

1683

 

0.5390603100674905e-5

(1)

u := .387; v := -.205; w := -.286; x0 := -0.979849e-2; y0 := -0.14583e-2; z0 := 0.623749e-1

.387

 

-.205

 

-.286

 

-0.979849e-2

 

-0.14583e-2

 

0.623749e-1

(2)

a__1 := dudx/taup; a__2 := dudy/taup; a__3 := dudz/taup; a__4 := 1/taup; a__5 := u/taup; b__1 := dvdx/taup; b__2 := dvdy/taup; b__3 := dvdz/taup; b__4 := 1/taup; b__5 := v/taup; c__1 := dwdx/taup; c__2 := dwdy/taup; c__3 := dwdz/taup; c__4 := 1/taup; c__5 := w/taup

-76985820.00

 

723666708.0

 

-624234420.0

 

185508.0000

 

71791.59600

 

4266684.000

 

-235595160.0

 

184394952.0

 

185508.0000

 

-38029.14000

 

10573956.00

 

-308870820.0

 

312209964.0

 

185508.0000

 

-53055.28800

(3)

sys := diff(x(t), t, t) = a__1*x(t)+a__2*y(t)+a__3*z(t)-a__4*(diff(x(t), t))+a__5, diff(y(t), t, t) = b__1*x(t)+b__2*y(t)+b__3*z(t)-b__4*(diff(y(t), t))+b__5, diff(z(t), t, t) = c__1*x(t)+c__2*y(t)+c__3*z(t)-c__4*(diff(z(t), t))+c__5

diff(diff(x(t), t), t) = -76985820.00*x(t)+723666708.0*y(t)-624234420.0*z(t)-185508.0000*(diff(x(t), t))+71791.59600, diff(diff(y(t), t), t) = 4266684.000*x(t)-235595160.0*y(t)+184394952.0*z(t)-185508.0000*(diff(y(t), t))-38029.14000, diff(diff(z(t), t), t) = 10573956.00*x(t)-308870820.0*y(t)+312209964.0*z(t)-185508.0000*(diff(z(t), t))-53055.28800

(4)

ics := x(0) = x0, y(0) = y0, z(0) = z0, (D(x))(0) = 0, (D(y))(0) = 0, (D(z))(0) = 0

x(0) = -0.979849e-2, y(0) = -0.14583e-2, z(0) = 0.623749e-1, (D(x))(0) = 0, (D(y))(0) = 0, (D(z))(0) = 0

(5)


Thank you very much!

Download m_solution.mw

Page 1 of 1