one man

Alexey Ivanov

865 Reputation

14 Badges

9 years, 6 days
Russian Federation

Social Networks and Content at

Maple Application Center

MaplePrimes Activity

These are Posts that have been published by one man

The method of solving underdetermined systems of equations, and universal method for calculating link mechanisms. It is based on the Draghilev’s method for solving systems of nonlinear equations. 
When calculating link mechanisms we can use geometrical relationships to produce their mathematical models without specifying the “input link”. The new method allows us to specify the “input link”, any link of mechanism.

Three-bar mechanism.  The system of equations linkages in this mechanism is as follows:

f1 := x1^2+(x2+1)^2+(x3-.5)^2-R^2;
f2 := x1-.5*x2+.5*x3;
f3 := (x1-x4)^2+(x2-x5)^2+(x3-x6)^2-19;
f4 := sin(x4)-x5;
f5 := sin(2*x4)-x6;

Coordinates green point x'i', i = 1..3, the coordinates of red point x'i', i = 4..6.
Set of x0'i', i = 1..6 searched arbitrarily, is the solution of the system of equations and is the initial point for the solution of the ODE system. The solution of ODE system is the solution of system of equations linkages for concrete assembly linkage.
Two texts of the program for one mechanism. In one case, the “input link” is the red-green, other case the “input link” is the green-blue.
After the calculation trajectories of points, we can always find the values of other variables, for example, the angles.
Animation displays the kinematics of the mechanism.

(if to use another color instead of color = "Niagara Dark Orchid", the version of Maple <17)


       Calculation of RSCR mechanism as a  solution to underdetermined system of nonlinear equations.

RCCC mechanism

      Method for solving underdetermined systems of nonlinear equations. The idea of the method is to find a connected subset of a set of solutions of the system by moving along this subset from one point in different directions. The direction of movement can be changed in each point.

      Very simple example of  single equation with three variables:

                                   (x1 ^ 4 + x2 ^ 4 - 2) ^ 2 + x3 ^ 4 - 1 = 0;

      From the point (0, -1.31607, 0) or (0, 1., 0) or any point if it is a solution, we first move for a variety of solutions along a curve parallel to the axis Ox3, and then from each point of this curve is moving in a direction parallel to x1Ox2 or vice versa. So we get all the solutions.
      This works for any space of any number of the equations when the number of equations is less than the number of variables.




5 6 7 8 9 Page 7 of 9