zhuxian

60 Reputation

5 Badges

8 years, 138 days

MaplePrimes Activity


These are questions asked by zhuxian


 

Download example.mw

I tried to solve some linear differential equations,

but the result is incomplete.

The complete solutions have been derived by hand.

How can I get the right result using maple?

The example is from determining symmetres of differential equations.

Thank you!

There is an example in the help of maple, that is to solve the symmetries of the equation ut=uxx using the order "Infinitesimals".

But the result i can't understand.

I solved by hand and find  _eta[u](x, t, u)=cu+b(x,t), where b(x,t) is a solution of the ut=uxx.

While in maple, b is only two exponential function which are also the solution of ut=uxx. 

why?

thanks for your help!

I know there is some code to compute the symmetry of pde, but i want to compute the symmetry of some differential expression, as f(x,t,ux,ut).

The difference is that when solve the infinitesimal, we don't have the identity f(x,t,ux,ut)=0, we just take each variable in the jet space as independent.

Is there any package to do that?

help and thanks!

i use the pdsolve to find the solutions of a system of partial differential equations,

but the result contains some indefinite integrals, how to simplify it further?

thank you

code:

eq1 := {6*(diff(_xi[t](x, t, u), u))-3*(diff(_xi[x](x, t, u), u)), 12*(diff(_xi[t](x, t, u), u, u))-6*(diff(_xi[x](x, t, u), u, u)), 2*(diff(_xi[t](x, t, u), u, u, u))-(diff(_xi[x](x, t, u), u, u, u)), diff(_eta[u](x, t, u), t)+diff(_eta[u](x, t, u), x, x, x)+(diff(_eta[u](x, t, u), x))*u, 18*(diff(_xi[t](x, t, u), x, u))+3*(diff(_eta[u](x, t, u), u, u))-9*(diff(_xi[x](x, t, u), x, u)), 6*(diff(_xi[t](x, t, u), x, x))+3*(diff(_eta[u](x, t, u), x, u))-3*(diff(_xi[x](x, t, u), x, x)), 6*(diff(_xi[t](x, t, u), x, u, u))+diff(_eta[u](x, t, u), u, u, u)-3*(diff(_xi[x](x, t, u), x, u, u)), 12*(diff(_xi[t](x, t, u), u))-6*(diff(_xi[x](x, t, u), u))+6*(diff(_xi[t](x, t, u), x, x, u))-6*(diff(_xi[t](x, t, u), u))*u+3*u*(diff(_xi[x](x, t, u), u))-3*(diff(_xi[x](x, t, u), x, x, u))+3*(diff(_eta[u](x, t, u), x, u, u)), 12*(diff(_xi[t](x, t, u), x))-6*(diff(_xi[x](x, t, u), x))+2*(diff(_xi[t](x, t, u), t))+2*(diff(_xi[t](x, t, u), x, x, x))-4*(diff(_xi[t](x, t, u), x))*u+2*(diff(_xi[x](x, t, u), x))*u+_eta[u](x, t, u)-(diff(_xi[x](x, t, u), t))+3*(diff(_eta[u](x, t, u), x, x, u))-(diff(_xi[x](x, t, u), x, x, x))};

simplify(pdsolve(eq1))

 

hi,

i want to compute the determining PDE system satisfied by the infinitesimals, such as the KdV equation.

but i have a problem, if i use the command

DeterminingPDE(PDE1, integrabilityconditions = false, split = false)

i can get the coefficients of independent objects, but u[t] exists. 

i want to replace u[t] by (-u[x]u-u[x,x,x]), then extract the coefficients.

but i can't collect the coefficients. 

 

my code:

with(PDEtools, DeterminingPDE, declare, diff_table, casesplit, InfinitesimalGenerator, Infinitesimals, SymmetryTest, ReducedForm, FromJet, ToJet);

declare(u(x, t));

U := diff_table(u(x, t));

PDE1 := U[]*U[x]+U[t]+U[x, x, x] = 0;

DetSys := DeterminingPDE(PDE1, integrabilityconditions = false, split = false);
detsys := FromJet(DetSys, u(x, t), differentiationnotation = diff);
pd1 := subs(U[t] = -U[]*U[x]-U[x, x, x], detsys); #u[t]->(-u[x]u-u[x,x,x])
pd2 := ToJet(pd1, [u(x, t)]);

how do i collect the coefficients?

help!

1 2 3 Page 3 of 3