Maple 2015 Questions and Posts

These are Posts and Questions associated with the product, Maple 2015

WC51 III
Maple 2015

With straight line selected in following plot, I right-click on plot and select Line → Line Width...  In Set line width dialog I toggle line width to 1 and click OK.

I have the changes I want, but if I choose Restart → Execute Worksheet all my changes are lost.  It is often easier to use the Plot Options Toolbar instead of hunting for Maple syntax to make changes in a plot graphic.  I'm wondering if there is a way to "lock" my plot edits so that they won't disappear as I continue working on a Maple worksheet?

restart;
with(plots);
eq1 := -y^3+x^2+x*y-7; eq2 := y = (8/9)*x-2/3;
implicitplot({eq1, eq2}, x = 0 .. 4, y = 0 .. 3, axis = [gridlines = [6, color = "MidnightBlue"]], size = [1/2, 1], axesfont = ["Roman", bold, 10], thickness = 3);





 

Using spacecurve I've created a diagram of two curves in space, they are reflections in the plane x=y (in this diagram they are labeled k[a1]=k[a2]). How can I add the plane to the diagram?

My intuition is to use 3dplot, and then combine them with display. The problem with that is that 3d plot wants a function of the form z=f(x,y) rather than x=y.

(here is the code for the diagram)

spacecurve({[(5*10^(-4)*100)/C[T], 100*10^(-3)/C[T], C[T]], [100*10^(-3)/C[T], (5*10^(-4)*100)/C[T], C[T]]}, C[T] = 10 .. 100, labelfont = [TIMES, 32], axesfont = [TIMES, 32], titlefont = [TIMES, 32], captionfont = [TIMES, 32], labels = [conjugate(k)[a1], conjugate(k)[a2], conjugate(C)[T]], tickmarks = [[0.1e-2 = k[a1], 5*10^(-3) = 5*k[a1], 10^(-2) = 10*k[a1]], [0.1e-2 = k[a1], 5*10^(-3) = 5*k[a1], 10^(-2) = 10*k[a1]], [0 = 0, 10 = (1/10)*C[T], 50 = (1/2)*C[T], 100 = C[T]]], view = [0 .. 0.1e-1, 0 .. 0.1e-1, 0 .. 100])

I have a polynomial in the variables ya[i] and yd[i] where i are integers. I want to divide each of the coefficients by the 'shortest' coeficient. What i mean by that is the coefficient that is going to cause me the least trouble when i later do things with groebner bases of on the coefficients - I expect a good proxy for that is the one that has the smallest number of terms.

For example, for the polynomial:

2*yd[0]*k[a1]*k[d1]*ya[1]+(alpha*C[T]*k[a1]*k[m]-alpha*R[b]*k[a1]*k[d1]-alpha*R[m]*k[a1]*k[d1]-alpha*k[d1]*k[m])*ya[1]-2*k[a1]*k[d1]*yd[1]*yd[0]+(-alpha*C[T]*k[a1]*k[m]+alpha*R[b]*k[a1]*k[d1]+alpha*R[m]*k[a1]*k[d1]+alpha*k[d1]*k[m])*yd[1]

2*k[a1]*k[d1] is the shortest monomial coefficient

 

I have a program that produces lists of polynomails in multiple variables; I want to remove any polynomials that have the variable x[i] where i is a number.

An example list would be:
[
y[a0]-y[d0],
k[d1]*y[a1]-k[d2]*y[d2],
k[d1]*y[a1]*x[1]-k[d2]*y[d2]*x[2],
]
 

I am calling a function (GTS2) multiple times with varying inputs, using the curry function, and i want to record how long/how much RAM the function takes with each input, and put those in seperate matrices that i can plot later
 

Sols3 := proc (H::algebraic, F::(list(algebraic)), i::posint, j::posint) options operator, arrow; GTS2(H, F, i, j) end proc;
n, m := 5, 4;
M=Matrix(n, m, curry(Sols3, H, F))


You can find all the functions required in this worksheet. The curried call to this function is in section 4.

Dear Users!

I am facing problem to compare the coefficient of x^i*y^j for i, j =1..,Equations. Please my effort and fix the problem.

H1 := 3*y^4*a[1]^5*b[1]+6*y^4*a[1]^3*b[1]^3+3*y^4*a[1]*b[1]^5+6*x*y^3*a[1]^5+6*x*y^3*a[1]^4*b[1]+12*x*y^3*a[1]^3*b[1]^2+12*x*y^3*a[1]^2*b[1]^3+6*x*y^3*a[1]*b[1]^4+6*x*y^3*b[1]^5+6*y^3*a[1]^5*b[2]+6*y^3*a[1]^4*a[2]*b[1]+12*y^3*a[1]^3*b[1]^2*b[2]+12*y^3*a[1]^2*a[2]*b[1]^3+6*y^3*a[1]*b[1]^4*b[2]+6*y^3*a[2]*b[1]^5+18*x^2*y^2*a[1]^4+36*x^2*y^2*a[1]^2*b[1]^2+18*x^2*y^2*b[1]^4+18*x*y^2*a[1]^4*a[2]+18*x*y^2*a[1]^4*b[2]+36*x*y^2*a[1]^2*a[2]*b[1]^2+36*x*y^2*a[1]^2*b[1]^2*b[2]+18*x*y^2*a[2]*b[1]^4+18*x*y^2*b[1]^4*b[2]+18*y^2*a[1]^4*a[2]*b[2]+36*y^2*a[1]^2*a[2]*b[1]^2*b[2]+18*y^2*a[2]*b[1]^4*b[2]-5*delta*y^2*a[1]^4-8*delta*y^2*a[1]^3*b[1]-10*delta*y^2*a[1]^2*b[1]^2-8*delta*y^2*a[1]*b[1]^3-5*delta*y^2*b[1]^4+12*x^3*y*a[1]^3+12*x^3*y*a[1]^2*b[1]+12*x^3*y*a[1]*b[1]^2+12*x^3*y*b[1]^3+36*x^2*y*a[1]^3*a[2]+36*x^2*y*a[1]^2*b[1]*b[2]+36*x^2*y*a[1]*a[2]*b[1]^2+36*x^2*y*b[1]^3*b[2]+18*x*y*a[1]^3*a[2]^2+36*x*y*a[1]^3*a[2]*b[2]-18*x*y*a[1]^3*b[2]^2-18*x*y*a[1]^2*a[2]^2*b[1]+36*x*y*a[1]^2*a[2]*b[1]*b[2]+18*x*y*a[1]^2*b[1]*b[2]^2+18*x*y*a[1]*a[2]^2*b[1]^2+36*x*y*a[1]*a[2]*b[1]^2*b[2]-18*x*y*a[1]*b[1]^2*b[2]^2-18*x*y*a[2]^2*b[1]^3+36*x*y*a[2]*b[1]^3*b[2]+18*x*y*b[1]^3*b[2]^2+18*y*a[1]^3*a[2]^2*b[2]-6*y*a[1]^3*b[2]^3-6*y*a[1]^2*a[2]^3*b[1]+18*y*a[1]^2*a[2]*b[1]*b[2]^2+18*y*a[1]*a[2]^2*b[1]^2*b[2]-6*y*a[1]*b[1]^2*b[2]^3-6*y*a[2]^3*b[1]^3+18*y*a[2]*b[1]^3*b[2]^2-16*delta*x*y*a[1]^3-20*delta*x*y*a[1]^2*b[1]-20*delta*x*y*a[1]*b[1]^2-16*delta*x*y*b[1]^3-10*delta*y*a[1]^3*a[2]-6*delta*y*a[1]^3*b[2]-10*delta*y*a[1]^2*a[2]*b[1]-10*delta*y*a[1]^2*b[1]*b[2]-10*delta*y*a[1]*a[2]*b[1]^2-10*delta*y*a[1]*b[1]^2*b[2]-6*delta*y*a[2]*b[1]^3-10*delta*y*b[1]^3*b[2]+12*x^4*a[1]*b[1]+12*x^3*a[1]^2*a[2]-12*x^3*a[1]^2*b[2]+24*x^3*a[1]*a[2]*b[1]+24*x^3*a[1]*b[1]*b[2]-12*x^3*a[2]*b[1]^2+12*x^3*b[1]^2*b[2]+18*x^2*a[1]^2*a[2]^2-18*x^2*a[1]^2*b[2]^2+72*x^2*a[1]*a[2]*b[1]*b[2]-18*x^2*a[2]^2*b[1]^2+18*x^2*b[1]^2*b[2]^2+6*x*a[1]^2*a[2]^3+18*x*a[1]^2*a[2]^2*b[2]-18*x*a[1]^2*a[2]*b[2]^2-6*x*a[1]^2*b[2]^3-12*x*a[1]*a[2]^3*b[1]+36*x*a[1]*a[2]^2*b[1]*b[2]+36*x*a[1]*a[2]*b[1]*b[2]^2-12*x*a[1]*b[1]*b[2]^3-6*x*a[2]^3*b[1]^2-18*x*a[2]^2*b[1]^2*b[2]+18*x*a[2]*b[1]^2*b[2]^2+6*x*b[1]^2*b[2]^3+6*a[1]^2*a[2]^3*b[2]-6*a[1]^2*a[2]*b[2]^3-3*a[1]*a[2]^4*b[1]+18*a[1]*a[2]^2*b[1]*b[2]^2-3*a[1]*b[1]*b[2]^4-6*a[2]^3*b[1]^2*b[2]+6*a[2]*b[1]^2*b[2]^3-10*delta*x^2*a[1]^2-16*delta*x^2*a[1]*b[1]-10*delta*x^2*b[1]^2-16*delta*x*a[1]^2*a[2]-4*delta*x*a[1]^2*b[2]-16*delta*x*a[1]*a[2]*b[1]-16*delta*x*a[1]*b[1]*b[2]-4*delta*x*a[2]*b[1]^2-16*delta*x*b[1]^2*b[2]-5*delta*a[1]^2*a[2]^2-6*delta*a[1]^2*a[2]*b[2]+delta*a[1]^2*b[2]^2-2*delta*a[1]*a[2]^2*b[1]-12*delta*a[1]*a[2]*b[1]*b[2]-2*delta*a[1]*b[1]*b[2]^2+delta*a[2]^2*b[1]^2-6*delta*a[2]*b[1]^2*b[2]-5*delta*b[1]^2*b[2]^2+delta^2*a[1]^2+delta^2*a[1]*b[1]+delta^2*b[1]^2+16*y^2*a[1]^2+48*y^2*a[1]*b[1]+16*y^2*b[1]^2+80*x*y*a[1]+80*x*y*b[1]+32*y*a[1]*a[2]+48*y*a[1]*b[2]+48*y*a[2]*b[1]+32*y*b[1]*b[2]+80*x^2+80*x*a[2]+80*x*b[2]+16*a[2]^2+48*a[2]*b[2]+16*b[2]^2-8*delta;

Equation := 12;

for i from 0 to Equation do;

for j from 0 to Equation do;

C[i, j] := coeff(H1, x^i*y^j) = 0;

end do;

end do;

I got this error
Error, invalid input: coeff received 1, which is not valid for its 2nd argument, x
 

Dear Users!

Hope you would be fine. I want to write an expression in sigma notation which control ny n (any constant >0);
for n =1 expression expand as

E[1]+1

for n =2 expression expand as
E[1]*E[2]*a[12]+E[1]+E[2]+1;

for n =3 expression expand as

E[1]*E[2]*E[3]*a[123]+E[1]*E[2]*a[12]+E[1]*E[3]*a[13]+E[2]*E[3]*a[23]+E[1]+E[2]+E[3]+1;

for n =4 expression expand as

E[1]*E[2]*E[3]*E[4]*c[1234]+E[1]*E[2]*E[3]*a[123]+E[1]*E[2]*E[4]*a[124]+E[1]*E[3]*E[4]*a[134]+E[2]*E[3]*E[4]*a[234]+E[1]*E[2]*a[12]+E[1]*E[3]*a[13]+E[1]*E[4]*a[14]+E[2]*E[3]*a[23]+E[2]*E[4]*a[24]+E[3]*E[4]*a[34]+E[1]+E[2]+E[3]+E[4]+1;

and so on.

I am waiting your kind respons. Thanks

 

Hi everyone, now I try to plot a graph by varying more than one variable. Is it possible to vary for more than one variable at a time (vary the two or more variable at one once) Please anybody can help in this regard?
 

``

``

``

``

w := .572433:

``

for j to nops(N) do sol1 := dsolve([diff(diff(diff(f(eta), eta), eta), eta)+w*x(f(eta)*(diff(diff(f(eta), eta), eta))-(m*m)*(diff(f(eta), eta))-(diff(f(eta), eta))^2) = 0, y*(diff(diff(theta(eta), eta), eta))/(pr*z)-b*f(eta)*(diff(f(eta), eta))*(diff(theta(eta), eta))-b*f(eta)^2*(diff(diff(theta(eta), eta), eta))+f(eta)*(diff(theta(eta), eta)) = 0, f(0) = N[j], (D(f))(0) = 1, (D(f))(20) = 0, theta(0) = 1, theta(20) = 0], numeric, method = bvp); plots[odeplot](sol1, [eta, ((D@@2)(f))(eta)], color = red); plots[odeplot](sol1, color = red); plots[odeplot](sol1, [eta, theta(eta)], color = K[j], linestyle = L[j]); fplt[j] := plots[odeplot](sol1, [eta, f(eta)], color = K[j], axes = boxed, linestyle = L[j]); tplt[j] := plots[odeplot](sol1, [[eta, theta(eta)]], color = K[j], axes = box, linestyle = L[j]) end do:

 

 

sol1(0)

[eta = 0., f(eta) = HFloat(29.999999999999986), diff(f(eta), eta) = HFloat(0.9999999999999996), diff(diff(f(eta), eta), eta) = HFloat(7.515045554999997), theta(eta) = HFloat(0.9999999999999996), diff(theta(eta), eta) = HFloat(-0.42693869190857225)]

(1)

odeplot(sol1, [x, y(x)], -4 .. 4, numpoints = 25)

odeplot(sol1, [1.32156, 5.29387], -4 .. 4, numpoints = 25)

(2)

 

 

``

``

NULL

NULL

NULL

NULL

``


 

Download MHD_cchf.mw
 

``

``

``

``

w := .572433:

``

for j to nops(N) do sol1 := dsolve([diff(diff(diff(f(eta), eta), eta), eta)+w*x(f(eta)*(diff(diff(f(eta), eta), eta))-(m*m)*(diff(f(eta), eta))-(diff(f(eta), eta))^2) = 0, y*(diff(diff(theta(eta), eta), eta))/(pr*z)-b*f(eta)*(diff(f(eta), eta))*(diff(theta(eta), eta))-b*f(eta)^2*(diff(diff(theta(eta), eta), eta))+f(eta)*(diff(theta(eta), eta)) = 0, f(0) = N[j], (D(f))(0) = 1, (D(f))(20) = 0, theta(0) = 1, theta(20) = 0], numeric, method = bvp); plots[odeplot](sol1, [eta, ((D@@2)(f))(eta)], color = red); plots[odeplot](sol1, color = red); plots[odeplot](sol1, [eta, theta(eta)], color = K[j], linestyle = L[j]); fplt[j] := plots[odeplot](sol1, [eta, f(eta)], color = K[j], axes = boxed, linestyle = L[j]); tplt[j] := plots[odeplot](sol1, [[eta, theta(eta)]], color = K[j], axes = box, linestyle = L[j]) end do:

 

 

sol1(0)

[eta = 0., f(eta) = HFloat(29.999999999999986), diff(f(eta), eta) = HFloat(0.9999999999999996), diff(diff(f(eta), eta), eta) = HFloat(7.515045554999997), theta(eta) = HFloat(0.9999999999999996), diff(theta(eta), eta) = HFloat(-0.42693869190857225)]

(1)

odeplot(sol1, [x, y(x)], -4 .. 4, numpoints = 25)

odeplot(sol1, [1.32156, 5.29387], -4 .. 4, numpoints = 25)

(2)

 

 

``

``

NULL

NULL

NULL

NULL

``


 

Download MHD_cchf.mw

 

This is a picture of what maple looks like on  my laptop with a 14 inch screen (which ahas a 3200*1800 resolution).

As you can see the icons at the top are small, I'd love to make them permanently bigger; however the larger (smaller) probelm  is the default text size on the plot. Its microscopic. Is there anyway to change it so by default the font is much bigger every time i make a plot?

 

Here is an list of  expressions

[
k[a1]*C[T]*(R-x[1]-x[2])-k[d1]*x[1],
k[a2]*C[T]*(R-x[1]-x[2])-k[d2]*x[2]
]

I would like to have a counter that counts the number of parameters and variables. In my worksheets Variables always are x or y with a subscript, parameters are anything else.

I can't think of how to do this!

Dear Users!

Hoped everyone is fine here. I am facing the problem to find the transpose of FDM[1], FDM[2] and FDM[0]. Please see the attachment and fix the mistake. I am waiting your positive respone. 
Help.mw

Dear Users!

Hope you would be fine with everthing. I am going to draw a closed figure in maple for this I defined 13 function and then plot them combine. But function 13 "F13" not plotted as I required. I need it plot vertically but it plot horizentaly. Please see the attachment and try to fix my problem. I am waiting your response. Thanks in advance.

Functions.mw

Hi

I'm using solve,and i want to quantify the dimensions of the solution spaces of the output. For example

solve([a+b, c+b])

produces a singular 1 dimensional object

solve([a+b, -b^2+d^2])

produces 2 objects with dimension 2

EDIT:
my intuition is that the simplest way of doing this is to create a counter for equations of the form
variable=variable
and to run it on each of the lists that solve might produce- so far this kind of thing is beyond me

 

Hello dear users!

Hope you would be fine. I want to fine the roots of the following cubic equation

u^3+u*d[1]+d[0];

when the discriment is zero, positive and negative. I am waiting your positive response. Thanks

 

@acer @Carl Love @Kitonum @Preben Alsholm

 Dear Sir,

I trying to merge two which are one is an actual plotted graph and another one zoomed from the same graph. I want to copy zoomed graph into an actual graph, can anyone help in this regard?

My actual graph is like as follows

and after zooming this graph I got as follows

Now I want to change (Insert the zoomed graph inside the actual graph where the text is inserted) by using these two graphs as below

Please help me to plot like this...

First 17 18 19 20 21 22 23 Last Page 19 of 72