Maple 2024 Questions and Posts

These are Posts and Questions associated with the product, Maple 2024

Hi,

I’m trying to transpose an existing animation that connects the unit circle to the graphs of cos⁡(θ)\ and sin⁡(θ)\ into a complex-numbers visualization, so that students can clearly see the link between

z=eiθ=cos⁡θ+isin⁡θ,arg⁡(z)=θ,∣z∣=1

and the corresponding real/imaginary components.

Goal: a dynamic view where a point z(θ) moves on the unit circle in the complex plane while (simultaneously)

  • the projections show ℜ(z)=cos⁡θ\  and ℑ(z)=sin⁡θ,

  •  the graphs of cos⁡θ and sin⁡θ are traced against θ\,

  • and/or the angle θ\ and argument are displayed in a clean, didactic way.

To better illustrate my objective, here is the link to the target animation I would like to transpose: 

Illustration

Thank you in advance for your insights and feedback.

Animation_Question.mw

Hello everyone
Dear experienced and expert friends
As a beginner, I would like to ask if any of my friends can guide me.
The following commands are related to Mathematica:

plots = Table[n = sValues[[i]];
   ParametricPlot[{1 - 2/n - 1.5/n^2 + (1.33 - 2/n) \[Gamma] - 
      0.0740741 (15 + 4*n) \[Gamma]^2, 
     12/n^2 + (16 \[Gamma])/n + (80 \[Gamma]^2)/9}, {\[Gamma], 0, 
     0.06}, PlotStyle -> colors[[i]], 
    PlotRange -> {{-10, 10}, {-10, 10}}], {i, Length[sValues]}];

Show[plots, Frame -> True, FrameLabel -> {"\!\(\*
StyleBox[SubscriptBox[\"n\", \"s\"],\nFontSize->16,\n\
FontColor->GrayLevel[0]]\)", "\!\(\*
StyleBox[\"r\",\nFontSize->16,\nFontColor->GrayLevel[0]]\)"}, 
 GridLinesStyle -> Black, PlotRange -> {{0.94, 1}, {0, 0.06}}, 
 PlotLegends -> 
  Placed[LineLegend[sValues, LegendLabel -> "s,w"], {0.5, 0.5}], 
 ImageSize -> 400]

I want to rewrite this process in Maple for my own functions.
I would be grateful if it is possible or if these commands are rewritten in a complete and executable form in Maple for me so that I can understand the working pattern. Or at least an equivalent command that can do this in Maple is introduced
Thank you all

Hi,
I’m taking the liberty of getting back to you once again regarding the animation of a procedure (here, for fractals). I’m able to use the Explore command correctly, but I’m having difficulty with animate.
Thank you very much for your help — it is truly invaluable.

Q_Fractales.mw

Hi,
I’d appreciate your insights on how to animate this sequence (family) of functions in order to obtain a rendering like the one shown below.


Any suggestions or best practices would be very welcome. Thank you!

AnimQ.mw

What does Error, (in dsolve/numeric/bvp) bad index into Matrix mean?
Also, I'm trying to run it, it is slow, any suggestions?

restart;
with(Student[VectorCalculus]);
with(DynamicSystems);
with(DEtools);
with(PDEtools, ReducedForm, declare, diff_table, dsubs);
NULL;
 #Digits:= trunc(evalhf(Digits)); #generally a very efficient setting

# Here we solve a 1D problem in 3 regions. In each region, we have concentration and potential (c,phi) distributions,
# We first solve the unperturbed steady-state problem and then the linearized perturbation problem (which rely on the steady state).
# Each region is defined in x = 0..1, and the regions are connected by interface conditions that 
# connect (c1(1),phi1(1)) to (c2(0),phi2(0)) and (c2(1),phi2(1)) to (c3(0),phi3(0))

Q:=10;   omega:=100;     J0:= 0.01;   # parameters
                            Q := 10

                          omega := 100

                           J0 := 0.01

# The unperturbed steady-state

c1:=1-J0/2*x: 
c3:=1-J0/2*(x-1):  
c12:= eval(c1,x=1); 
c32 := eval(c3,x=0); 
S1:=sqrt(Q^2+4*c12^2): 
S3:=sqrt(Q^2+4*c32^2):  
c21:=eval((S1-Q)/2); 
c23:=eval((S3-Q)/2);  
I0:=fsolve(Q*i0/2/J0*ln((J0*S1-Q*i0)/(J0*S3-Q*i0))=(J0-S1+S3)/2,i0);  
V:=(I0/J0+1)*ln(c32/c12)+ln((c21+Q)/(c23+Q))+(J0+2*c23-2*c21)/Q; # the potential drop across the system 
c2:=solve(y-c21+Q*I0/2/J0*ln((Q*I0-Q*J0-2*J0*y)/(Q*I0-Q*J0-2*J0*c21))=-J0/2*x,y):  
phi1:=I0/J0*ln(c1)+V: 
phi3:=I0/J0*ln(c3): 
dphi1:=diff(phi1,x); 
dphi3:=diff(phi3,x); 
phi21:=I0/J0*ln(c12)+V-0.5*ln((c21+Q)/c21); 
phi2:=(2*c21-2*c2+Q*phi21-J0*x)/Q: 
dphi2:=diff(phi2,x); 
dphi12 := eval(dphi1, x=1); 
dphi21 := eval(dphi2, x=0); 
dphi23 := eval(dphi2, x=1); 
dphi32 := eval(dphi3, x=0); 
INT1 := int(1/(2*c1), x = 0 .. 1); 
INT2 := int(1/(2*c2 + Q), x = 0 .. 1); 
INT3 := int(1/(2*c3), x = 0 .. 1); 
INT := INT1 + INT2 + INT3;
                      c12 := 0.9950000000

                       c32 := 1.005000000

                      c21 := 0.09804129000

                      c23 := 0.1000024500

                      I0 := 0.01419804328

                       V := 0.02539628566

                              0.007099021640   
                dphi1 := - --------------------
                           1 - 0.005000000000 x

                              0.007099021640        
           dphi3 := - ------------------------------
                      1.005000000 - 0.005000000000 x

                     phi21 := -2.299074561

dphi2 := (0.001000000000 LambertW(-0.2818670588 exp(-0.2818670588

   - 0.0007043224058 x)))/(1

   + LambertW(-0.2818670588 exp(-0.2818670588 - 0.0007043224058 x)

  )) - 0.001000000000


                   dphi12 := -0.007134695118

                   dphi21 := -0.001392499832

                   dphi23 := -0.001391964358

                   dphi32 := -0.007063703124

                      INT1 := 0.5012541824

                     INT2 := 0.09805801917

                      INT3 := 0.4987541511

                       INT := 1.098066353


sys1 := {
-omega*C11(x)+diff(diff(C12(x), x), x)=0,
omega*C12(x)+diff(diff(C11(x), x), x) = 0,
-omega*C21(x)+diff(diff(C22(x), x)+(c2*sigma2-C22(x)*dphi2*Q)/(2*c2+Q), x) =0,
 omega*C22(x)+diff(diff(C21(x), x)+(c2*sigma1-C21(x)*dphi2*Q)/(2*c2+Q), x) = 0,
-omega*C31(x)+diff(diff(C32(x), x), x)=0,
omega*C32(x)+diff(diff(C31(x), x), x) = 0
}:

sys2 := {
diff(FA1(x), x) = C11(x)*dphi1/c1,
diff(FA2(x), x) = C21(x)*dphi2/(c2+Q/2),
diff(FA3(x), x) = C31(x)*dphi3/c3,
diff(FB1(x), x) = C12(x)*dphi1/c1,
diff(FB2(x), x) = C22(x)*dphi2/(c2+Q/2),
diff(FB3(x), x) = C32(x)*dphi3/c3
}: 

Bc := {
C11(0) = 0, C12(0) = 0,  C31(1) = 0, C32(1) = 0,
FA1(0) = 0, FB1(0) = 0,  FA3(1) = 0, FB3(1) = 0, 

2*C11(1)/c12 = C21(0)/(c21+Q)+C21(0)/c21, 
2*C12(1)/c12 = C22(0)/(c21+Q)+C22(0)/c21,
C21(1)/(c23+Q)+C21(1)/c23 = 2*C31(0)/c32,
C22(1)/(c23+Q)+C22(1)/c23 = 2*C32(0)/c32,

D(C11)(1)+dphi12*C11(1)-sigma1/2-c12*D(FA1)(1) = D(C21)(0)+dphi21*C21(0)-(c21+Q)*sigma1/(2*c21+Q)-(c21+Q)*D(FA2)(0),
D(C12)(1)+dphi12*C12(1)-sigma2/2-c12*D(FB1)(1) = D(C22)(0)+dphi21*C22(0)-(c21+Q)*sigma2/(2*c21+Q)-(c21+Q)*D(FB2)(0),
D(C11)(1)-dphi12*C11(1)+sigma1/2+c12*D(FA1)(1) = D(C21)(0)-dphi21*C21(0)+c21*sigma1/(2*c21+Q)+c21*D(FA2)(0),
D(C12)(1)-dphi12*C12(1)+sigma2/2+c12*D(FB1)(1) = D(C22)(0)-dphi21*C22(0)+c21*sigma2/(2*c21+Q)+c21*D(FB2)(0),

D(C31)(0)+dphi32*C31(0)-sigma1/2-c32*D(FA3)(0) = D(C21)(1)+dphi23*C21(1)-(c23+Q)*sigma1/(2*c23+Q)-(c23+Q)*D(FA2)(1),
D(C32)(0)+dphi32*C32(0)-sigma2/2-c32*D(FB3)(0) = D(C22)(1)+dphi23*C22(1)-(c23+Q)*sigma2/(2*c23+Q)-(c23+Q)*D(FB2)(1),
D(C31)(0)-dphi32*C31(0)+sigma1/2+c32*D(FA3)(0) = D(C21)(1)-dphi23*C21(1)+c23*sigma1/(2*c23+Q)+c23*D(FA2)(1),
D(C32)(0)-dphi32*C32(0)+sigma2/2+c32*D(FB3)(0) = D(C22)(1)-dphi23*C22(1)+c23*sigma2/(2*c23+Q)+c23*D(FB2)(1)
}:
 
 


all_sys := sys1 union sys2 union Bc:
sol1 := dsolve(all_sys, initmesh = 100, maxmesh = 15000, numeric, method = bvp[midrich], output = listprocedure):
#(all_sys, numeric, method = bvp[midrich]);

Error, (in dsolve/numeric/bvp) bad index into Matrix

I'm looking for the general solution to the attached differential equation. Maple doesn't provide it. What am I doing wrong?

restart

ode5 := diff(y(x), x) = (8*y(x)*b-32*b^2*x/y(x)-64*b^2*x^2*y(x))/(3*y(x)^2+8*b*x-16*b^2*x^2/y(x)^2)

diff(y(x), x) = (8*y(x)*b-32*b^2*x/y(x)-64*b^2*x^2*y(x))/(3*y(x)^2+8*b*x-16*b^2*x^2/y(x)^2)

(1)

simplify(ode5)

diff(y(x), x) = ((64*b^2*x^2-8*b)*y(x)^3+32*b^2*x*y(x))/(-3*y(x)^4-8*b*x*y(x)^2+16*b^2*x^2)

(2)

dsolve(ode5, y(x))

NULLNULL

Download testdgl5.mw

this transforamtion including two function which i try to do, but my result is so different and even is not near i did like the author mention but i don't know how reach that outcome, the importan part is the equation 2.7

 

s1.mw

in here i want to apply this method for finding my parameter but is a special kind of substituion and i don't know how hundle this kind  and find the parameters i did some part but i didn't reach the target 

f-p-second.mw

almost i did all the case but some case i determined in red color are not satisfy what is problem of them and how i can apply the case 47-52, beside this i changed the ode in eq(15) i didn't write rho parameter  is make any problem?

ode-17.mw

 i wait 30 minute to  see the result of this function it will zero or not but is not give me outcome, is so importan for me which to see this function is my answer, how i can see the result, can  anyone give me the way 

T-pde.mw

Dear all,
I am trying to build an animated activity to introduce the concept of a definite integral.
My goal is to animate the graph simultaneously with a three-column table displaying the values of the upper Riemann sum, the lower Riemann sum, and the definite integral.
Any ideas or suggestions on how to implement this?
Many thanks in advance.

Riemann_Anim_table.mw

i found the same as author found but is not give me zero when i replace in my pdes can anyone see the problem?

test.mw

i try to find the parameter in this equation but some issues show up which i am not sure i can fix that or not? there is any way for finding thus parameters?

test-F-p.mw

i did my try to sketch the best shape of graph by existing code but the 3D shape in matlab is not what i am looking and is  not intresting for this kind of plot so i want use and design a better shape of 3D plot for thus contour  i need help for that 

plot-help.mw

i did try and even replace the function w(t) by anotehr thing but is not working  how i can find that and make be answer of my pde?

k1.mw

1 2 3 4 5 6 7 Last Page 1 of 47