Maple 2024 Questions and Posts

These are Posts and Questions associated with the product, Maple 2024

I'm looking for a flatten procedure for matrices (without first having to convert the matrix to a list, flatten it, and finally convert it back).
In this example, I am trying to generalize the matrix R to higher dimensions (here a 3 by 3 matrix, denoted as A, is used). I'm using a function, denoted as g, to construct a matrix. Obviously, the function applies to each cell and therefore, each cell contains a matrix in the resulting matrix. A flatten command would solve the problem. As a work-around I reconstruct the matrix In this example, but that is hard to generalize to more dimensions (or not?)

restart; kernelopts(version); interface(version); with(LinearAlgebra); with(combinat); interface(rtablesize = 16)

`Maple 2024.2, X86 64 WINDOWS, Oct 29 2024, Build ID 1872373`

 

`Standard Worksheet Interface, Maple 2024.2, Windows 11, October 29 2024 Build ID 1872373`

 

[10, 10]

(1)

Antidiagonal := proc (n) local Q, r, c; Q := Matrix(n, n); seq(seq(`if`(r+c = RowDimension(Q)+1, assign('Q[r, c]', 1), assign('Q[r, c]', 0)), r = 1 .. RowDimension(Q)), c = 1 .. ColumnDimension(Q)); return Q end proc

A := Matrix(3, 3, symbol = a)

R := `<,>`(`<|>`(Adjoint(A([2, 3], [2, 3])), -Adjoint(A([1, 3], [2, 3])), Adjoint(A([1, 2], [2, 3]))), `<|>`(-Adjoint(A([2, 3], [1, 3])), Adjoint(A([1, 3], [1, 3])), -Adjoint(A([1, 2], [1, 3]))), `<|>`(Adjoint(A([2, 3], [1, 2])), -Adjoint(A([1, 3], [1, 2])), Adjoint(A([1, 2], [1, 2]))))

Matrix(%id = 36893490582445267772)

(2)

U := choose(3, 2)

[[1, 2], [1, 3], [2, 3]]

(3)

g := proc (r, c) options operator, arrow; Adjoint((eval*A^%T)(U[c], U[r])) end proc

proc (r, c) options operator, arrow; LinearAlgebra:-Adjoint((eval(A^%T))(U[c], U[r])) end proc

(4)

Q := Matrix(3, g)

Matrix(%id = 36893490582395297788)

(5)

Q := Antidiagonal(3).Q.Antidiagonal(3)

Matrix(%id = 36893490582401641396)

(6)

U := `<,>`(`<|>`(Q[1, 1], Q[1, 2], Q[1, 3]), `<|>`(Q[2, 1], Q[2, 2], Q[2, 3]), `<|>`(Q[3, 1], Q[3, 2], Q[3, 3]))

Matrix(%id = 36893490582412939004)

(7)

R-Matrix(6, 6, [[1, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], [0, 0, -1, 0, 0, 0], [0, 0, 0, -1, 0, 0], [0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 1]]).U^%T.Matrix(6, 6, [[1, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], [0, 0, -1, 0, 0, 0], [0, 0, 0, -1, 0, 0], [0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 1]])

Matrix(%id = 36893490582417081876)

(8)


Download Flatten_a_matrix.mw

Hi everyone,

I've encountered something odd while working with Maple's pdetest function. When I manually evaluate my proposed solution using eval() followed by simplify(), I get the expected identity 0 = 0, which suggests the solution satisfies the PDE. However, when I test the same solution using pdetest, it doesn't return zero. This inconsistency has left me unsure whether my solution is actually valid or if I'm missing something.

Has anyone else experienced this kind of discrepancy? Could this be due to how pdetest handles derivatives or symbolic simplification internally?

Any insights or suggestions would be greatly appreciated!

Download pde-test.mw

Hi,

I try to creat an activity on Statistics, and I'm stuck on the bar chart, ( in the last part of my worksheet) with xi on the x-axis (Ox) and ni on the y-axis (Oy). I'm using the BarChart command, but it's not giving the expected result.

Ideas?

S4_Statistiques_Descriptives_AxeTravail_Complet.mw

Dear Power Users,

This is probably a simple question for you but I am stuck. In the attached worksheet I would like to plot (the plot is called P5) a vector with units (mm) against a vector without units. This didn't work out, so I removed the units from the vector with units, and this plotted but after the conversion the numeric values are no longer in mm but inches. How can I correct this?

Thank you in advance for your time and willingness to help.

testSheetHorseShoe.mw

in some of my function i have a big problem which i can't plot thus function even i know what is the shape of plot, i have two type of ploting directly giving parameter and using explor but for this kind of plot we can't use explor so i have to give the function directly parameter but is wasting my time a lot and i can't get my plot even spending a days by changing parameter one by one, my questions is this how i can plot this kind of function without bieng a singular i need this function to be non singular is not importan about the parameter can be any number 
thanks for any help 

plots-long_term_.mw

the shape of plot must be like this but must have two of them 

This seems rediculous to have to ask. I just want to display a plane. The plot is used in other plots so I gave it a name. I get "length of output exceed 1000000" and the plot does not display. I then have to "display" the plot name "display(plt0)" to see it. I had tried geom3d but found if infuriating, (maybe I am missing something there).

An I missing something simple here?

restart

NULL

with(plots)

pln := x-2*y+3*z

x-2*y+3*z

(1)

NULL

display(implicitplot3d(pln, x = -3 .. 3, y = -3 .. 3, z = -3 .. 3, style = patchnogrid, transparency = .6))

 

NULL

NULL

plt0 := display(implicitplot3d(pln, x = -3 .. 3, y = -3 .. 3, z = -3 .. 3, style = patchnogrid, transparency = .6))

`[Length of output exceeds limit of 1000000]`

(2)

display(plt0)

 

Intended use

NULL

Download 2025-05-18_Q_display_a_simple_plane.mw

I'm currently working on applying a specific method to solve a nonlinear equation. However, I've encountered a recurring issue: during the process, I often cannot determine certain parameters, which forces me to abandon the solution or switch to a different method. This has happened multiple times and is disrupting my goal of applying all intended methods consistently to a single equation.

In particular, I’m struggling to identify the correct parameters for U(ξ), which are essential for the solution. This challenge is not limited to one method I’ve faced similar problems in previous attempts, and I’m unsure why these parameters cannot be derived in some cases.

My question is: How can I manage this issue effectively? Is there a reliable way to predict or determine whether the necessary parameters will emerge correctly before fully applying a method?

I would greatly appreciate any insights or strategies you could share to help me handle this problem more systematically.

Thank you in advance for your support.

runing.mw

Hey guys, 

I am solving big systems of equations and doing some other stuff with the results. So now I got two diffrent ways and it turns out, that the give back the same result but they present it in diffrent ways. So my quesion now is, how can I simplify a symbolic number to its shortest form. In my example you can see, that the diffrence of y_1 and y_2 is 0, so they describe the same number. However y_2 is a way more complicated expression. So here I know the easier expression, but what if I dont. What is the right command to force maple to find a simplier expression for y_2? I read about evala but its doent do the job as you can see in the attached file. I also tryd things like simplify, normal, expand but it didint worked out too. simplify_symbolic_numbers.mw

restart; y_1 := RootOf(_Z^5-2*_Z^4+9*_Z^3-14*_Z^2+9*_Z-2, .4687 .. .4727); y_2 := 2*RootOf(2*_Z^5-9*_Z^4+14*_Z^3-9*_Z^2+2*_Z-1, 2.109 .. 2.118)^4-9*RootOf(2*_Z^5-9*_Z^4+14*_Z^3-9*_Z^2+2*_Z-1, 2.109 .. 2.118)^3+14*RootOf(2*_Z^5-9*_Z^4+14*_Z^3-9*_Z^2+2*_Z-1, 2.109 .. 2.118)^2-9*RootOf(2*_Z^5-9*_Z^4+14*_Z^3-9*_Z^2+2*_Z-1, 2.109 .. 2.118)+2; evala(Normal(y_1-y_2)); evala(y_2)

0

 

2*RootOf(2*_Z^5-9*_Z^4+14*_Z^3-9*_Z^2+2*_Z-1, 2.109 .. 2.118)^4-9*RootOf(2*_Z^5-9*_Z^4+14*_Z^3-9*_Z^2+2*_Z-1, 2.109 .. 2.118)^3+14*RootOf(2*_Z^5-9*_Z^4+14*_Z^3-9*_Z^2+2*_Z-1, 2.109 .. 2.118)^2-9*RootOf(2*_Z^5-9*_Z^4+14*_Z^3-9*_Z^2+2*_Z-1, 2.109 .. 2.118)+2

(1)
 

NULL

Download simplify_symbolic_numbers.mw

Thank you for your help. Regards, Felix

I am working on obtaining the complete set of solutions for a given ordinary differential equation (ODE). While testing various cases from the auxiliary ODE method, I derived a solution of the form U(ξ). However, I am currently unable to determine which specific case or class from the established solution set this result corresponds to.

I would appreciate any guidance or method to correctly classify each obtained solution U(ξ) according to its respective case within the set of auxiliary ODE cases.

ode.mw

 Hi,

How can I replace all the expressions diff(G(xi), xi)/G(xi) with the new variable w(xi) in the next step? (Even the ones that have powers)

NULL

eq2 := c*a0*(-lambda*diff(G(xi), xi) - mu*G(xi))/G(xi) - c*a0*diff(G(xi), xi)^2/G(xi)^2 - alpha*a0*diff(G(xi), xi)/((1 - 2*f(sqrt(lambda^2 - 4*mu)*y)*diff(G(xi), xi)/(sqrt(epsilon*lambda^2 - 4*epsilon*mu)*G(xi)) - f(sqrt(lambda^2 - 4*mu)*y)*lambda/sqrt(epsilon*lambda^2 - 4*epsilon*mu))*G(xi)) - alpha*a0*lambda/(2*(1 - 2*f(sqrt(lambda^2 - 4*mu)*y)*diff(G(xi), xi)/(sqrt(epsilon*lambda^2 - 4*epsilon*mu)*G(xi)) - f(sqrt(lambda^2 - 4*mu)*y)*lambda/sqrt(epsilon*lambda^2 - 4*epsilon*mu))) + alpha*a0*sqrt(epsilon*lambda^2 - 4*epsilon*mu)*epsilon*f(sqrt(lambda^2 - 4*mu)*y)/(2*(1 - 2*f(sqrt(lambda^2 - 4*mu)*y)*diff(G(xi), xi)/(sqrt(epsilon*lambda^2 - 4*epsilon*mu)*G(xi)) - f(sqrt(lambda^2 - 4*mu)*y)*lambda/sqrt(epsilon*lambda^2 - 4*epsilon*mu))) + alpha*a0*diff(G(xi), xi)/((1 + 2*f(sqrt(lambda^2 - 4*mu)*y)*diff(G(xi), xi)/(sqrt(epsilon*lambda^2 - 4*epsilon*mu)*G(xi)) + f(sqrt(lambda^2 - 4*mu)*y)*lambda/sqrt(epsilon*lambda^2 - 4*epsilon*mu))*G(xi)) + alpha*a0*lambda/(2*(1 + 2*f(sqrt(lambda^2 - 4*mu)*y)*diff(G(xi), xi)/(sqrt(epsilon*lambda^2 - 4*epsilon*mu)*G(xi)) + f(sqrt(lambda^2 - 4*mu)*y)*lambda/sqrt(epsilon*lambda^2 - 4*epsilon*mu))) + alpha*a0*sqrt(epsilon*lambda^2 - 4*epsilon*mu)*epsilon*f(sqrt(lambda^2 - 4*mu)*y)/(2*(1 + 2*f(sqrt(lambda^2 - 4*mu)*y)*diff(G(xi), xi)/(sqrt(epsilon*lambda^2 - 4*epsilon*mu)*G(xi)) + f(sqrt(lambda^2 - 4*mu)*y)*lambda/sqrt(epsilon*lambda^2 - 4*epsilon*mu))) - beta*a0^2*diff(G(xi), xi)^2/(G(xi)^2*(1 - 2*f(sqrt(lambda^2 - 4*mu)*y)*diff(G(xi), xi)/(sqrt(epsilon*lambda^2 - 4*epsilon*mu)*G(xi)) - f(sqrt(lambda^2 - 4*mu)*y)*lambda/sqrt(epsilon*lambda^2 - 4*epsilon*mu))) - beta*a0^2*diff(G(xi), xi)*lambda/(2*(1 - 2*f(sqrt(lambda^2 - 4*mu)*y)*diff(G(xi), xi)/(sqrt(epsilon*lambda^2 - 4*epsilon*mu)*G(xi)) - f(sqrt(lambda^2 - 4*mu)*y)*lambda/sqrt(epsilon*lambda^2 - 4*epsilon*mu))*G(xi)) + beta*a0^2*diff(G(xi), xi)*sqrt(epsilon*lambda^2 - 4*epsilon*mu)*epsilon*f(sqrt(lambda^2 - 4*mu)*y)/(2*(1 - 2*f(sqrt(lambda^2 - 4*mu)*y)*diff(G(xi), xi)/(sqrt(epsilon*lambda^2 - 4*epsilon*mu)*G(xi)) - f(sqrt(lambda^2 - 4*mu)*y)*lambda/sqrt(epsilon*lambda^2 - 4*epsilon*mu))*G(xi)) + beta*a0^2*diff(G(xi), xi)^2/(G(xi)^2*(1 + 2*f(sqrt(lambda^2 - 4*mu)*y)*diff(G(xi), xi)/(sqrt(epsilon*lambda^2 - 4*epsilon*mu)*G(xi)) + f(sqrt(lambda^2 - 4*mu)*y)*lambda/sqrt(epsilon*lambda^2 - 4*epsilon*mu))) + beta*a0^2*diff(G(xi), xi)*lambda/(2*(1 + 2*f(sqrt(lambda^2 - 4*mu)*y)*diff(G(xi), xi)/(sqrt(epsilon*lambda^2 - 4*epsilon*mu)*G(xi)) + f(sqrt(lambda^2 - 4*mu)*y)*lambda/sqrt(epsilon*lambda^2 - 4*epsilon*mu))*G(xi)) + beta*a0^2*diff(G(xi), xi)*sqrt(epsilon*lambda^2 - 4*epsilon*mu)*epsilon*f(sqrt(lambda^2 - 4*mu)*y)/(2*(1 + 2*f(sqrt(lambda^2 - 4*mu)*y)*diff(G(xi), xi)/(sqrt(epsilon*lambda^2 - 4*epsilon*mu)*G(xi)) + f(sqrt(lambda^2 - 4*mu)*y)*lambda/sqrt(epsilon*lambda^2 - 4*epsilon*mu))*G(xi)) - gamma*a0^3*diff(G(xi), xi)^3/(G(xi)^3*(1 - 2*f(sqrt(lambda^2 - 4*mu)*y)*diff(G(xi), xi)/(sqrt(epsilon*lambda^2 - 4*epsilon*mu)*G(xi)) - f(sqrt(lambda^2 - 4*mu)*y)*lambda/sqrt(epsilon*lambda^2 - 4*epsilon*mu))) - gamma*a0^3*diff(G(xi), xi)^2*lambda/(2*G(xi)^2*(1 - 2*f(sqrt(lambda^2 - 4*mu)*y)*diff(G(xi), xi)/(sqrt(epsilon*lambda^2 - 4*epsilon*mu)*G(xi)) - f(sqrt(lambda^2 - 4*mu)*y)*lambda/sqrt(epsilon*lambda^2 - 4*epsilon*mu))) + gamma*a0^3*diff(G(xi), xi)^2*sqrt(epsilon*lambda^2 - 4*epsilon*mu)*epsilon*f(sqrt(lambda^2 - 4*mu)*y)/(2*G(xi)^2*(1 - 2*f(sqrt(lambda^2 - 4*mu)*y)*diff(G(xi), xi)/(sqrt(epsilon*lambda^2 - 4*epsilon*mu)*G(xi)) - f(sqrt(lambda^2 - 4*mu)*y)*lambda/sqrt(epsilon*lambda^2 - 4*epsilon*mu))) + gamma*a0^3*diff(G(xi), xi)^3/(G(xi)^3*(1 + 2*f(sqrt(lambda^2 - 4*mu)*y)*diff(G(xi), xi)/(sqrt(epsilon*lambda^2 - 4*epsilon*mu)*G(xi)) + f(sqrt(lambda^2 - 4*mu)*y)*lambda/sqrt(epsilon*lambda^2 - 4*epsilon*mu))) + gamma*a0^3*diff(G(xi), xi)^2*lambda/(2*G(xi)^2*(1 + 2*f(sqrt(lambda^2 - 4*mu)*y)*diff(G(xi), xi)/(sqrt(epsilon*lambda^2 - 4*epsilon*mu)*G(xi)) + f(sqrt(lambda^2 - 4*mu)*y)*lambda/sqrt(epsilon*lambda^2 - 4*epsilon*mu))) + gamma*a0^3*diff(G(xi), xi)^2*sqrt(epsilon*lambda^2 - 4*epsilon*mu)*epsilon*f(sqrt(lambda^2 - 4*mu)*y)/(2*G(xi)^2*(1 + 2*f(sqrt(lambda^2 - 4*mu)*y)*diff(G(xi), xi)/(sqrt(epsilon*lambda^2 - 4*epsilon*mu)*G(xi)) + f(sqrt(lambda^2 - 4*mu)*y)*lambda/sqrt(epsilon*lambda^2 - 4*epsilon*mu)));

c*a0*(-lambda*(diff(G(xi), xi))-mu*G(xi))/G(xi)-c*a0*(diff(G(xi), xi))^2/G(xi)^2-alpha*a0*(diff(G(xi), xi))/((1-2*f((lambda^2-4*mu)^(1/2)*y)*(diff(G(xi), xi))/((epsilon*lambda^2-4*epsilon*mu)^(1/2)*G(xi))-f((lambda^2-4*mu)^(1/2)*y)*lambda/(epsilon*lambda^2-4*epsilon*mu)^(1/2))*G(xi))-alpha*a0*lambda/(2-4*f((lambda^2-4*mu)^(1/2)*y)*(diff(G(xi), xi))/((epsilon*lambda^2-4*epsilon*mu)^(1/2)*G(xi))-2*f((lambda^2-4*mu)^(1/2)*y)*lambda/(epsilon*lambda^2-4*epsilon*mu)^(1/2))+alpha*a0*(epsilon*lambda^2-4*epsilon*mu)^(1/2)*epsilon*f((lambda^2-4*mu)^(1/2)*y)/(2-4*f((lambda^2-4*mu)^(1/2)*y)*(diff(G(xi), xi))/((epsilon*lambda^2-4*epsilon*mu)^(1/2)*G(xi))-2*f((lambda^2-4*mu)^(1/2)*y)*lambda/(epsilon*lambda^2-4*epsilon*mu)^(1/2))+alpha*a0*(diff(G(xi), xi))/((1+2*f((lambda^2-4*mu)^(1/2)*y)*(diff(G(xi), xi))/((epsilon*lambda^2-4*epsilon*mu)^(1/2)*G(xi))+f((lambda^2-4*mu)^(1/2)*y)*lambda/(epsilon*lambda^2-4*epsilon*mu)^(1/2))*G(xi))+alpha*a0*lambda/(2+4*f((lambda^2-4*mu)^(1/2)*y)*(diff(G(xi), xi))/((epsilon*lambda^2-4*epsilon*mu)^(1/2)*G(xi))+2*f((lambda^2-4*mu)^(1/2)*y)*lambda/(epsilon*lambda^2-4*epsilon*mu)^(1/2))+alpha*a0*(epsilon*lambda^2-4*epsilon*mu)^(1/2)*epsilon*f((lambda^2-4*mu)^(1/2)*y)/(2+4*f((lambda^2-4*mu)^(1/2)*y)*(diff(G(xi), xi))/((epsilon*lambda^2-4*epsilon*mu)^(1/2)*G(xi))+2*f((lambda^2-4*mu)^(1/2)*y)*lambda/(epsilon*lambda^2-4*epsilon*mu)^(1/2))-beta*a0^2*(diff(G(xi), xi))^2/(G(xi)^2*(1-2*f((lambda^2-4*mu)^(1/2)*y)*(diff(G(xi), xi))/((epsilon*lambda^2-4*epsilon*mu)^(1/2)*G(xi))-f((lambda^2-4*mu)^(1/2)*y)*lambda/(epsilon*lambda^2-4*epsilon*mu)^(1/2)))-(1/2)*beta*a0^2*(diff(G(xi), xi))*lambda/((1-2*f((lambda^2-4*mu)^(1/2)*y)*(diff(G(xi), xi))/((epsilon*lambda^2-4*epsilon*mu)^(1/2)*G(xi))-f((lambda^2-4*mu)^(1/2)*y)*lambda/(epsilon*lambda^2-4*epsilon*mu)^(1/2))*G(xi))+(1/2)*beta*a0^2*(diff(G(xi), xi))*(epsilon*lambda^2-4*epsilon*mu)^(1/2)*epsilon*f((lambda^2-4*mu)^(1/2)*y)/((1-2*f((lambda^2-4*mu)^(1/2)*y)*(diff(G(xi), xi))/((epsilon*lambda^2-4*epsilon*mu)^(1/2)*G(xi))-f((lambda^2-4*mu)^(1/2)*y)*lambda/(epsilon*lambda^2-4*epsilon*mu)^(1/2))*G(xi))+beta*a0^2*(diff(G(xi), xi))^2/(G(xi)^2*(1+2*f((lambda^2-4*mu)^(1/2)*y)*(diff(G(xi), xi))/((epsilon*lambda^2-4*epsilon*mu)^(1/2)*G(xi))+f((lambda^2-4*mu)^(1/2)*y)*lambda/(epsilon*lambda^2-4*epsilon*mu)^(1/2)))+(1/2)*beta*a0^2*(diff(G(xi), xi))*lambda/((1+2*f((lambda^2-4*mu)^(1/2)*y)*(diff(G(xi), xi))/((epsilon*lambda^2-4*epsilon*mu)^(1/2)*G(xi))+f((lambda^2-4*mu)^(1/2)*y)*lambda/(epsilon*lambda^2-4*epsilon*mu)^(1/2))*G(xi))+(1/2)*beta*a0^2*(diff(G(xi), xi))*(epsilon*lambda^2-4*epsilon*mu)^(1/2)*epsilon*f((lambda^2-4*mu)^(1/2)*y)/((1+2*f((lambda^2-4*mu)^(1/2)*y)*(diff(G(xi), xi))/((epsilon*lambda^2-4*epsilon*mu)^(1/2)*G(xi))+f((lambda^2-4*mu)^(1/2)*y)*lambda/(epsilon*lambda^2-4*epsilon*mu)^(1/2))*G(xi))-gamma*a0^3*(diff(G(xi), xi))^3/(G(xi)^3*(1-2*f((lambda^2-4*mu)^(1/2)*y)*(diff(G(xi), xi))/((epsilon*lambda^2-4*epsilon*mu)^(1/2)*G(xi))-f((lambda^2-4*mu)^(1/2)*y)*lambda/(epsilon*lambda^2-4*epsilon*mu)^(1/2)))-(1/2)*gamma*a0^3*(diff(G(xi), xi))^2*lambda/(G(xi)^2*(1-2*f((lambda^2-4*mu)^(1/2)*y)*(diff(G(xi), xi))/((epsilon*lambda^2-4*epsilon*mu)^(1/2)*G(xi))-f((lambda^2-4*mu)^(1/2)*y)*lambda/(epsilon*lambda^2-4*epsilon*mu)^(1/2)))+(1/2)*gamma*a0^3*(diff(G(xi), xi))^2*(epsilon*lambda^2-4*epsilon*mu)^(1/2)*epsilon*f((lambda^2-4*mu)^(1/2)*y)/(G(xi)^2*(1-2*f((lambda^2-4*mu)^(1/2)*y)*(diff(G(xi), xi))/((epsilon*lambda^2-4*epsilon*mu)^(1/2)*G(xi))-f((lambda^2-4*mu)^(1/2)*y)*lambda/(epsilon*lambda^2-4*epsilon*mu)^(1/2)))+gamma*a0^3*(diff(G(xi), xi))^3/(G(xi)^3*(1+2*f((lambda^2-4*mu)^(1/2)*y)*(diff(G(xi), xi))/((epsilon*lambda^2-4*epsilon*mu)^(1/2)*G(xi))+f((lambda^2-4*mu)^(1/2)*y)*lambda/(epsilon*lambda^2-4*epsilon*mu)^(1/2)))+(1/2)*gamma*a0^3*(diff(G(xi), xi))^2*lambda/(G(xi)^2*(1+2*f((lambda^2-4*mu)^(1/2)*y)*(diff(G(xi), xi))/((epsilon*lambda^2-4*epsilon*mu)^(1/2)*G(xi))+f((lambda^2-4*mu)^(1/2)*y)*lambda/(epsilon*lambda^2-4*epsilon*mu)^(1/2)))+(1/2)*gamma*a0^3*(diff(G(xi), xi))^2*(epsilon*lambda^2-4*epsilon*mu)^(1/2)*epsilon*f((lambda^2-4*mu)^(1/2)*y)/(G(xi)^2*(1+2*f((lambda^2-4*mu)^(1/2)*y)*(diff(G(xi), xi))/((epsilon*lambda^2-4*epsilon*mu)^(1/2)*G(xi))+f((lambda^2-4*mu)^(1/2)*y)*lambda/(epsilon*lambda^2-4*epsilon*mu)^(1/2)))

(1)

NULL

Download 123.mw

I have a print format problem in Maple 2024.  For documents I print out, I use a special layout where all the contents are inside a table. The table is rigged to print on A4 paper. This is useful for my math notes. I havent done this for 18+ months. There appears to be a bug in Maple 2024. Only the first page is printed. Things work ok in Maple 2023. Maybe it is a setting difference or corruption in my install. Could somebody confirm this. Also if you can reproduce the problem could you let me know if it is in Maple 2025. I haven't upgraded yet.

 

2025-05-15_Q_page_print_formating.mw 
2025-05-15_Q_page_print_formating_M_2023.pdf
2025-05-15_Q_page_print_formating_M_2024.pdf

Hi! how to find posint solution of this equation?

Is factorial move fast so that cannot solve?

any advice is appreciated.

restart

NULL

eq := `assuming`([factorial(x)+1 = y^2], [x::posint, y::posint])

factorial(x)+1 = y^2

(1)

`assuming`([solve(eq, {x, y})], [x <= 100, y <= 100])

{x = RootOf(factorial(_Z)-y^2+1), y = y}

(2)
 

NULL

Download find_posint_.mw

Hello,
Can you tell me how to decompose a rational fraction into simple elements in Fp?

Thank you.

i seperate my equation of real part and imaginary part i want  after taking integrale from my real part we see the pattern betwen real and imaginary part  which they equal about variable beside coefficient , i want to determine and find parameter from real part of my equation then substitute in imaginary for solving but  the number of condition i don't know is how much and there is a little bit repeatation how i can determine the correct one and then substitute ?

restart

with(PDEtools)

undeclare(prime, quiet)

declare(u(x, t), quiet); declare(U(xi), quiet); declare(V(xi), quiet)

pde := I*(diff(u(x, t), `$`(t, 2))-s^2*(diff(u(x, t), `$`(x, 2))))+(1/24)*c[1]*(diff(u(x, t), t, `$`(x, 4)))-alpha*s*c[1]*(diff(u(x, t), `$`(x, 5)))+diff(c[2]*u(x, t)*U(-t*v+x)^2, t)-beta*s*(diff(c[2]*u(x, t)*U(-t*v+x)^2, x))

I*(diff(diff(u(x, t), t), t)-s^2*(diff(diff(u(x, t), x), x)))+(1/24)*c[1]*(diff(diff(diff(diff(diff(u(x, t), t), x), x), x), x))-alpha*s*c[1]*(diff(diff(diff(diff(diff(u(x, t), x), x), x), x), x))+c[2]*(diff(u(x, t), t))*U(-t*v+x)^2-2*c[2]*u(x, t)*U(-t*v+x)*(D(U))(-t*v+x)*v-beta*s*(c[2]*(diff(u(x, t), x))*U(-t*v+x)^2+2*c[2]*u(x, t)*U(-t*v+x)*(D(U))(-t*v+x))

(1)

G1 := U(-t*v+x) = U(xi); G2 := (D(U))(-t*v+x) = diff(U(xi), xi); G3 := ((D@@2)(U))(-t*v+x) = diff(U(xi), `$`(xi, 2)); G4 := ((D@@3)(U))(-t*v+x) = diff(U(xi), `$`(xi, 3)); G5 := ((D@@4)(U))(-t*v+x) = diff(U(xi), `$`(xi, 4)); G6 := ((D@@5)(U))(-t*v+x) = diff(U(xi), `$`(xi, 5))

T := xi = -t*v+x; T1 := u(x, t) = U(-t*v+x)*exp(I*k*(t*w+x))

xi = -t*v+x

 

u(x, t) = U(-t*v+x)*exp(I*k*(t*w+x))

(2)

P1 := I*(diff(u(x, t), `$`(t, 2))-s^2*(diff(u(x, t), `$`(x, 2))))+(1/24)*c[1]*(diff(u(x, t), t, `$`(x, 4)))-alpha*s*c[1]*(diff(u(x, t), `$`(x, 5)))+diff(c[2]*u(x, t)*U(-t*v+x)^2, t)-beta*s*(diff(c[2]*u(x, t)*U(-t*v+x)^2, x))

I*(diff(diff(u(x, t), t), t)-s^2*(diff(diff(u(x, t), x), x)))+(1/24)*c[1]*(diff(diff(diff(diff(diff(u(x, t), t), x), x), x), x))-alpha*s*c[1]*(diff(diff(diff(diff(diff(u(x, t), x), x), x), x), x))+c[2]*(diff(u(x, t), t))*U(-t*v+x)^2-2*c[2]*u(x, t)*U(-t*v+x)*(D(U))(-t*v+x)*v-beta*s*(c[2]*(diff(u(x, t), x))*U(-t*v+x)^2+2*c[2]*u(x, t)*U(-t*v+x)*(D(U))(-t*v+x))

(3)

P11 := eval(P1, {T, T1})

I*(((D@@2)(U))(-t*v+x)*v^2*exp(I*k*(t*w+x))-(2*I)*(D(U))(-t*v+x)*v*k*w*exp(I*k*(t*w+x))-U(-t*v+x)*k^2*w^2*exp(I*k*(t*w+x))-s^2*(((D@@2)(U))(-t*v+x)*exp(I*k*(t*w+x))+(2*I)*(D(U))(-t*v+x)*k*exp(I*k*(t*w+x))-U(-t*v+x)*k^2*exp(I*k*(t*w+x))))+(1/24)*c[1]*(-((D@@5)(U))(-t*v+x)*v*exp(I*k*(t*w+x))+(4*I)*((D@@2)(U))(-t*v+x)*v*k^3*exp(I*k*(t*w+x))+I*U(-t*v+x)*k^5*w*exp(I*k*(t*w+x))+6*((D@@3)(U))(-t*v+x)*v*k^2*exp(I*k*(t*w+x))-(4*I)*((D@@4)(U))(-t*v+x)*v*k*exp(I*k*(t*w+x))-(6*I)*((D@@2)(U))(-t*v+x)*k^3*w*exp(I*k*(t*w+x))-(D(U))(-t*v+x)*v*k^4*exp(I*k*(t*w+x))+I*((D@@4)(U))(-t*v+x)*k*w*exp(I*k*(t*w+x))-4*((D@@3)(U))(-t*v+x)*k^2*w*exp(I*k*(t*w+x))+4*(D(U))(-t*v+x)*k^4*w*exp(I*k*(t*w+x)))-alpha*s*c[1]*(((D@@5)(U))(-t*v+x)*exp(I*k*(t*w+x))+(5*I)*((D@@4)(U))(-t*v+x)*k*exp(I*k*(t*w+x))-10*((D@@3)(U))(-t*v+x)*k^2*exp(I*k*(t*w+x))-(10*I)*((D@@2)(U))(-t*v+x)*k^3*exp(I*k*(t*w+x))+5*(D(U))(-t*v+x)*k^4*exp(I*k*(t*w+x))+I*U(-t*v+x)*k^5*exp(I*k*(t*w+x)))+c[2]*(-(D(U))(-t*v+x)*v*exp(I*k*(t*w+x))+I*U(-t*v+x)*k*w*exp(I*k*(t*w+x)))*U(-t*v+x)^2-2*c[2]*U(-t*v+x)^2*exp(I*k*(t*w+x))*(D(U))(-t*v+x)*v-beta*s*(c[2]*((D(U))(-t*v+x)*exp(I*k*(t*w+x))+I*U(-t*v+x)*k*exp(I*k*(t*w+x)))*U(-t*v+x)^2+2*c[2]*U(-t*v+x)^2*exp(I*k*(t*w+x))*(D(U))(-t*v+x))

(4)

P111 := subs({G1, G2, G3, G4, G5, G6}, P11)

I*((diff(diff(U(xi), xi), xi))*v^2*exp(I*k*(t*w+x))-(2*I)*(diff(U(xi), xi))*v*k*w*exp(I*k*(t*w+x))-U(xi)*k^2*w^2*exp(I*k*(t*w+x))-s^2*((diff(diff(U(xi), xi), xi))*exp(I*k*(t*w+x))+(2*I)*(diff(U(xi), xi))*k*exp(I*k*(t*w+x))-U(xi)*k^2*exp(I*k*(t*w+x))))+(1/24)*c[1]*(-(diff(diff(diff(diff(diff(U(xi), xi), xi), xi), xi), xi))*v*exp(I*k*(t*w+x))+(4*I)*(diff(diff(U(xi), xi), xi))*v*k^3*exp(I*k*(t*w+x))+I*U(xi)*k^5*w*exp(I*k*(t*w+x))+6*(diff(diff(diff(U(xi), xi), xi), xi))*v*k^2*exp(I*k*(t*w+x))-(4*I)*(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*v*k*exp(I*k*(t*w+x))-(6*I)*(diff(diff(U(xi), xi), xi))*k^3*w*exp(I*k*(t*w+x))-(diff(U(xi), xi))*v*k^4*exp(I*k*(t*w+x))+I*(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*k*w*exp(I*k*(t*w+x))-4*(diff(diff(diff(U(xi), xi), xi), xi))*k^2*w*exp(I*k*(t*w+x))+4*(diff(U(xi), xi))*k^4*w*exp(I*k*(t*w+x)))-alpha*s*c[1]*((diff(diff(diff(diff(diff(U(xi), xi), xi), xi), xi), xi))*exp(I*k*(t*w+x))+(5*I)*(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*k*exp(I*k*(t*w+x))-10*(diff(diff(diff(U(xi), xi), xi), xi))*k^2*exp(I*k*(t*w+x))-(10*I)*(diff(diff(U(xi), xi), xi))*k^3*exp(I*k*(t*w+x))+5*(diff(U(xi), xi))*k^4*exp(I*k*(t*w+x))+I*U(xi)*k^5*exp(I*k*(t*w+x)))+c[2]*(-(diff(U(xi), xi))*v*exp(I*k*(t*w+x))+I*U(xi)*k*w*exp(I*k*(t*w+x)))*U(xi)^2-2*c[2]*U(xi)^2*exp(I*k*(t*w+x))*(diff(U(xi), xi))*v-beta*s*(c[2]*((diff(U(xi), xi))*exp(I*k*(t*w+x))+I*U(xi)*k*exp(I*k*(t*w+x)))*U(xi)^2+2*c[2]*U(xi)^2*exp(I*k*(t*w+x))*(diff(U(xi), xi)))

(5)

pde1 := P111 = 0

I*((diff(diff(U(xi), xi), xi))*v^2*exp(I*k*(t*w+x))-(2*I)*(diff(U(xi), xi))*v*k*w*exp(I*k*(t*w+x))-U(xi)*k^2*w^2*exp(I*k*(t*w+x))-s^2*((diff(diff(U(xi), xi), xi))*exp(I*k*(t*w+x))+(2*I)*(diff(U(xi), xi))*k*exp(I*k*(t*w+x))-U(xi)*k^2*exp(I*k*(t*w+x))))+(1/24)*c[1]*(-(diff(diff(diff(diff(diff(U(xi), xi), xi), xi), xi), xi))*v*exp(I*k*(t*w+x))+(4*I)*(diff(diff(U(xi), xi), xi))*v*k^3*exp(I*k*(t*w+x))+I*U(xi)*k^5*w*exp(I*k*(t*w+x))+6*(diff(diff(diff(U(xi), xi), xi), xi))*v*k^2*exp(I*k*(t*w+x))-(4*I)*(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*v*k*exp(I*k*(t*w+x))-(6*I)*(diff(diff(U(xi), xi), xi))*k^3*w*exp(I*k*(t*w+x))-(diff(U(xi), xi))*v*k^4*exp(I*k*(t*w+x))+I*(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*k*w*exp(I*k*(t*w+x))-4*(diff(diff(diff(U(xi), xi), xi), xi))*k^2*w*exp(I*k*(t*w+x))+4*(diff(U(xi), xi))*k^4*w*exp(I*k*(t*w+x)))-alpha*s*c[1]*((diff(diff(diff(diff(diff(U(xi), xi), xi), xi), xi), xi))*exp(I*k*(t*w+x))+(5*I)*(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*k*exp(I*k*(t*w+x))-10*(diff(diff(diff(U(xi), xi), xi), xi))*k^2*exp(I*k*(t*w+x))-(10*I)*(diff(diff(U(xi), xi), xi))*k^3*exp(I*k*(t*w+x))+5*(diff(U(xi), xi))*k^4*exp(I*k*(t*w+x))+I*U(xi)*k^5*exp(I*k*(t*w+x)))+c[2]*(-(diff(U(xi), xi))*v*exp(I*k*(t*w+x))+I*U(xi)*k*w*exp(I*k*(t*w+x)))*U(xi)^2-2*c[2]*U(xi)^2*exp(I*k*(t*w+x))*(diff(U(xi), xi))*v-beta*s*(c[2]*((diff(U(xi), xi))*exp(I*k*(t*w+x))+I*U(xi)*k*exp(I*k*(t*w+x)))*U(xi)^2+2*c[2]*U(xi)^2*exp(I*k*(t*w+x))*(diff(U(xi), xi))) = 0

(6)

numer(lhs(pde1))*denom(rhs(pde1)) = numer(rhs(pde1))*denom(lhs(pde1))

-exp(I*k*(t*w+x))*((diff(U(xi), xi))*k^4*v*c[1]-4*(diff(U(xi), xi))*k^4*w*c[1]-48*(diff(U(xi), xi))*k*v*w+72*c[2]*U(xi)^2*(diff(U(xi), xi))*v-6*(diff(diff(diff(U(xi), xi), xi), xi))*k^2*v*c[1]+4*(diff(diff(diff(U(xi), xi), xi), xi))*k^2*w*c[1]+24*(diff(diff(diff(diff(diff(U(xi), xi), xi), xi), xi), xi))*alpha*s*c[1]-(24*I)*U(xi)*k^2*s^2+(24*I)*U(xi)*k^2*w^2+(24*I)*U(xi)*alpha*k^5*s*c[1]-(240*I)*(diff(diff(U(xi), xi), xi))*alpha*k^3*s*c[1]+(24*I)*U(xi)^3*beta*k*s*c[2]+(120*I)*(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*alpha*k*s*c[1]+120*(diff(U(xi), xi))*alpha*k^4*s*c[1]+72*(diff(U(xi), xi))*U(xi)^2*beta*s*c[2]-240*(diff(diff(diff(U(xi), xi), xi), xi))*alpha*k^2*s*c[1]-I*U(xi)*k^5*w*c[1]-(4*I)*(diff(diff(U(xi), xi), xi))*k^3*v*c[1]+(6*I)*(diff(diff(U(xi), xi), xi))*k^3*w*c[1]-(24*I)*U(xi)^3*k*w*c[2]+(4*I)*(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*k*v*c[1]-I*(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*k*w*c[1]-48*(diff(U(xi), xi))*k*s^2+(diff(diff(diff(diff(diff(U(xi), xi), xi), xi), xi), xi))*v*c[1]+(24*I)*(diff(diff(U(xi), xi), xi))*s^2-(24*I)*(diff(diff(U(xi), xi), xi))*v^2) = 0

(7)

%/(-exp(I*k*(t*w+x)))

(diff(U(xi), xi))*k^4*v*c[1]-4*(diff(U(xi), xi))*k^4*w*c[1]-48*(diff(U(xi), xi))*k*v*w+72*c[2]*U(xi)^2*(diff(U(xi), xi))*v-6*(diff(diff(diff(U(xi), xi), xi), xi))*k^2*v*c[1]+4*(diff(diff(diff(U(xi), xi), xi), xi))*k^2*w*c[1]+24*(diff(diff(diff(diff(diff(U(xi), xi), xi), xi), xi), xi))*alpha*s*c[1]-(24*I)*U(xi)*k^2*s^2+(24*I)*U(xi)*k^2*w^2+(24*I)*U(xi)*alpha*k^5*s*c[1]-(240*I)*(diff(diff(U(xi), xi), xi))*alpha*k^3*s*c[1]+(24*I)*U(xi)^3*beta*k*s*c[2]+(120*I)*(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*alpha*k*s*c[1]+120*(diff(U(xi), xi))*alpha*k^4*s*c[1]+72*(diff(U(xi), xi))*U(xi)^2*beta*s*c[2]-240*(diff(diff(diff(U(xi), xi), xi), xi))*alpha*k^2*s*c[1]-I*U(xi)*k^5*w*c[1]-(4*I)*(diff(diff(U(xi), xi), xi))*k^3*v*c[1]+(6*I)*(diff(diff(U(xi), xi), xi))*k^3*w*c[1]-(24*I)*U(xi)^3*k*w*c[2]+(4*I)*(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*k*v*c[1]-I*(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*k*w*c[1]-48*(diff(U(xi), xi))*k*s^2+(diff(diff(diff(diff(diff(U(xi), xi), xi), xi), xi), xi))*v*c[1]+(24*I)*(diff(diff(U(xi), xi), xi))*s^2-(24*I)*(diff(diff(U(xi), xi), xi))*v^2 = 0

(8)

Re(%)

Re((diff(U(xi), xi))*k^4*v*c[1]-4*(diff(U(xi), xi))*k^4*w*c[1]-48*(diff(U(xi), xi))*k*v*w+72*c[2]*U(xi)^2*(diff(U(xi), xi))*v-6*(diff(diff(diff(U(xi), xi), xi), xi))*k^2*v*c[1]+4*(diff(diff(diff(U(xi), xi), xi), xi))*k^2*w*c[1]+24*(diff(diff(diff(diff(diff(U(xi), xi), xi), xi), xi), xi))*alpha*s*c[1]+120*(diff(U(xi), xi))*alpha*k^4*s*c[1]+72*(diff(U(xi), xi))*U(xi)^2*beta*s*c[2]-240*(diff(diff(diff(U(xi), xi), xi), xi))*alpha*k^2*s*c[1]-48*(diff(U(xi), xi))*k*s^2+(diff(diff(diff(diff(diff(U(xi), xi), xi), xi), xi), xi))*v*c[1])-Im(-24*U(xi)*k^2*s^2+24*U(xi)*k^2*w^2+24*U(xi)*alpha*k^5*s*c[1]-240*(diff(diff(U(xi), xi), xi))*alpha*k^3*s*c[1]+24*U(xi)^3*beta*k*s*c[2]+120*(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*alpha*k*s*c[1]-U(xi)*k^5*w*c[1]-4*(diff(diff(U(xi), xi), xi))*k^3*v*c[1]+6*(diff(diff(U(xi), xi), xi))*k^3*w*c[1]-24*U(xi)^3*k*w*c[2]+4*(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*k*v*c[1]-(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*k*w*c[1]+24*(diff(diff(U(xi), xi), xi))*s^2-24*(diff(diff(U(xi), xi), xi))*v^2) = 0

(9)

R := (diff(U(xi), xi))*k^4*v*c[1]-4*(diff(U(xi), xi))*k^4*w*c[1]-48*(diff(U(xi), xi))*k*v*w+72*c[2]*U(xi)^2*(diff(U(xi), xi))*v-6*(diff(diff(diff(U(xi), xi), xi), xi))*k^2*v*c[1]+4*(diff(diff(diff(U(xi), xi), xi), xi))*k^2*w*c[1]+24*(diff(diff(diff(diff(diff(U(xi), xi), xi), xi), xi), xi))*alpha*s*c[1]+120*(diff(U(xi), xi))*alpha*k^4*s*c[1]+72*(diff(U(xi), xi))*U(xi)^2*beta*s*c[2]-240*(diff(diff(diff(U(xi), xi), xi), xi))*alpha*k^2*s*c[1]-48*(diff(U(xi), xi))*k*s^2+(diff(diff(diff(diff(diff(U(xi), xi), xi), xi), xi), xi))*v*c[1] = 0

(diff(U(xi), xi))*k^4*v*c[1]-4*(diff(U(xi), xi))*k^4*w*c[1]-48*(diff(U(xi), xi))*k*v*w+72*c[2]*U(xi)^2*(diff(U(xi), xi))*v-6*(diff(diff(diff(U(xi), xi), xi), xi))*k^2*v*c[1]+4*(diff(diff(diff(U(xi), xi), xi), xi))*k^2*w*c[1]+24*(diff(diff(diff(diff(diff(U(xi), xi), xi), xi), xi), xi))*alpha*s*c[1]+120*(diff(U(xi), xi))*alpha*k^4*s*c[1]+72*(diff(U(xi), xi))*U(xi)^2*beta*s*c[2]-240*(diff(diff(diff(U(xi), xi), xi), xi))*alpha*k^2*s*c[1]-48*(diff(U(xi), xi))*k*s^2+(diff(diff(diff(diff(diff(U(xi), xi), xi), xi), xi), xi))*v*c[1] = 0

(10)

collect(R, {U(xi), diff(U(xi), xi), diff(U(xi), `$`(xi, 3)), diff(diff(U(xi), xi), xi), diff(diff(diff(diff(diff(U(xi), xi), xi), xi), xi), xi)})

(72*beta*s*c[2]+72*v*c[2])*(diff(U(xi), xi))*U(xi)^2+(120*alpha*k^4*s*c[1]+k^4*v*c[1]-4*k^4*w*c[1]-48*k*s^2-48*k*v*w)*(diff(U(xi), xi))+(-240*alpha*k^2*s*c[1]-6*k^2*v*c[1]+4*k^2*w*c[1])*(diff(diff(diff(U(xi), xi), xi), xi))+(24*alpha*s*c[1]+v*c[1])*(diff(diff(diff(diff(diff(U(xi), xi), xi), xi), xi), xi)) = 0

(11)

map(int, (72*beta*s*c[2]+72*v*c[2])*(diff(U(xi), xi))*U(xi)^2+(120*alpha*k^4*s*c[1]+k^4*v*c[1]-4*k^4*w*c[1]-48*k*s^2-48*k*v*w)*(diff(U(xi), xi))+(-240*alpha*k^2*s*c[1]-6*k^2*v*c[1]+4*k^2*w*c[1])*(diff(diff(diff(U(xi), xi), xi), xi))+(24*alpha*s*c[1]+v*c[1])*(diff(diff(diff(diff(diff(U(xi), xi), xi), xi), xi), xi)) = 0, xi)

(24*alpha*s*c[1]+v*c[1])*(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))+(-240*alpha*k^2*s*c[1]-6*k^2*v*c[1]+4*k^2*w*c[1])*(diff(diff(U(xi), xi), xi))+(120*alpha*k^4*s*c[1]+k^4*v*c[1]-4*k^4*w*c[1]-48*k*s^2-48*k*v*w)*U(xi)+(1/3)*(72*beta*s*c[2]+72*v*c[2])*U(xi)^3 = 0

(12)

numer(lhs((24*alpha*s*c[1]+v*c[1])*(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))+(-240*alpha*k^2*s*c[1]-6*k^2*v*c[1]+4*k^2*w*c[1])*(diff(diff(U(xi), xi), xi))+(120*alpha*k^4*s*c[1]+k^4*v*c[1]-4*k^4*w*c[1]-48*k*s^2-48*k*v*w)*U(xi)+(1/3)*(72*beta*s*c[2]+72*v*c[2])*U(xi)^3 = 0))*denom(rhs((24*alpha*s*c[1]+v*c[1])*(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))+(-240*alpha*k^2*s*c[1]-6*k^2*v*c[1]+4*k^2*w*c[1])*(diff(diff(U(xi), xi), xi))+(120*alpha*k^4*s*c[1]+k^4*v*c[1]-4*k^4*w*c[1]-48*k*s^2-48*k*v*w)*U(xi)+(1/3)*(72*beta*s*c[2]+72*v*c[2])*U(xi)^3 = 0)) = numer(rhs((24*alpha*s*c[1]+v*c[1])*(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))+(-240*alpha*k^2*s*c[1]-6*k^2*v*c[1]+4*k^2*w*c[1])*(diff(diff(U(xi), xi), xi))+(120*alpha*k^4*s*c[1]+k^4*v*c[1]-4*k^4*w*c[1]-48*k*s^2-48*k*v*w)*U(xi)+(1/3)*(72*beta*s*c[2]+72*v*c[2])*U(xi)^3 = 0))*denom(lhs((24*alpha*s*c[1]+v*c[1])*(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))+(-240*alpha*k^2*s*c[1]-6*k^2*v*c[1]+4*k^2*w*c[1])*(diff(diff(U(xi), xi), xi))+(120*alpha*k^4*s*c[1]+k^4*v*c[1]-4*k^4*w*c[1]-48*k*s^2-48*k*v*w)*U(xi)+(1/3)*(72*beta*s*c[2]+72*v*c[2])*U(xi)^3 = 0))

120*U(xi)*alpha*k^4*s*c[1]+U(xi)*k^4*v*c[1]-4*U(xi)*k^4*w*c[1]-240*(diff(diff(U(xi), xi), xi))*alpha*k^2*s*c[1]+24*U(xi)^3*beta*s*c[2]-6*(diff(diff(U(xi), xi), xi))*k^2*v*c[1]+4*(diff(diff(U(xi), xi), xi))*k^2*w*c[1]+24*U(xi)^3*v*c[2]+24*(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*alpha*s*c[1]-48*U(xi)*k*s^2-48*U(xi)*k*v*w+(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*v*c[1] = 0

(13)

RR := collect(%, {U(xi), diff(U(xi), xi), diff(U(xi), `$`(xi, 3)), diff(diff(U(xi), xi), xi), diff(diff(diff(diff(U(xi), xi), xi), xi), xi), diff(diff(diff(diff(diff(U(xi), xi), xi), xi), xi), xi)})

(24*beta*s*c[2]+24*v*c[2])*U(xi)^3+(120*alpha*k^4*s*c[1]+k^4*v*c[1]-4*k^4*w*c[1]-48*k*s^2-48*k*v*w)*U(xi)+(-240*alpha*k^2*s*c[1]-6*k^2*v*c[1]+4*k^2*w*c[1])*(diff(diff(U(xi), xi), xi))+(24*alpha*s*c[1]+v*c[1])*(diff(diff(diff(diff(U(xi), xi), xi), xi), xi)) = 0

(14)

IM := 24*U(xi)*k^2*s^2-24*U(xi)*k^2*w^2-24*U(xi)*alpha*k^5*s*c[1]+240*(diff(diff(U(xi), xi), xi))*alpha*k^3*s*c[1]-24*U(xi)^3*beta*k*s*c[2]-120*(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*alpha*k*s*c[1]+U(xi)*k^5*w*c[1]+4*(diff(diff(U(xi), xi), xi))*k^3*v*c[1]-6*(diff(diff(U(xi), xi), xi))*k^3*w*c[1]+24*U(xi)^3*k*w*c[2]-4*(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*k*v*c[1]+(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*k*w*c[1]-24*(diff(diff(U(xi), xi), xi))*s^2+24*(diff(diff(U(xi), xi), xi))*v^2 = 0

collect(IM, {U(xi), diff(U(xi), xi), diff(U(xi), `$`(xi, 3)), diff(diff(U(xi), xi), xi), diff(diff(diff(diff(U(xi), xi), xi), xi), xi), diff(diff(diff(diff(diff(U(xi), xi), xi), xi), xi), xi)})

P := %

(-24*beta*k*s*c[2]+24*k*w*c[2])*U(xi)^3+(-24*alpha*k^5*s*c[1]+k^5*w*c[1]+24*k^2*s^2-24*k^2*w^2)*U(xi)+(240*alpha*k^3*s*c[1]+4*k^3*v*c[1]-6*k^3*w*c[1]-24*s^2+24*v^2)*(diff(diff(U(xi), xi), xi))+(-120*alpha*k*s*c[1]-4*k*v*c[1]+k*w*c[1])*(diff(diff(diff(diff(U(xi), xi), xi), xi), xi)) = 0

(15)

NULL

NULL

C1 := v = solve(24*beta*s*c[2]+24*v*c[2] = 0, v)

v = -beta*s

(16)

C2 := w = solve(120*alpha*k^4*s*c[1]+k^4*v*c[1]-4*k^4*w*c[1]-48*k*s^2-48*k*v*w = 0, w)

w = (1/4)*(120*alpha*k^3*s*c[1]+k^3*v*c[1]-48*s^2)/(k^3*c[1]+12*v)

(17)

C3 := alpha = solve(-240*alpha*k^2*s*c[1]-6*k^2*v*c[1]+4*k^2*w*c[1] = 0, alpha)

alpha = -(1/120)*(3*v-2*w)/s

(18)

ode1 := subs({C1, C2, C3}, P)

(-24*beta*k*s*c[2]+6*k*(120*alpha*k^3*s*c[1]+k^3*v*c[1]-48*s^2)*c[2]/(k^3*c[1]+12*v))*U(xi)^3+((1/5)*(3*v-2*w)*k^5*c[1]+(1/4)*k^5*(120*alpha*k^3*s*c[1]+k^3*v*c[1]-48*s^2)*c[1]/(k^3*c[1]+12*v)+24*k^2*s^2-(3/2)*k^2*(120*alpha*k^3*s*c[1]+k^3*v*c[1]-48*s^2)^2/(k^3*c[1]+12*v)^2)*U(xi)+(-2*(3*v-2*w)*k^3*c[1]-4*k^3*beta*s*c[1]-(3/2)*k^3*(120*alpha*k^3*s*c[1]+k^3*v*c[1]-48*s^2)*c[1]/(k^3*c[1]+12*v)-24*s^2+24*beta^2*s^2)*(diff(diff(U(xi), xi), xi))+((3*v-2*w)*k*c[1]+4*k*beta*s*c[1]+(1/4)*k*(120*alpha*k^3*s*c[1]+k^3*v*c[1]-48*s^2)*c[1]/(k^3*c[1]+12*v))*(diff(diff(diff(diff(U(xi), xi), xi), xi), xi)) = 0

(19)

Download F-condition_and_replacing.mw

I am not sure how to use dsolve for my problem.
CQ_v1.mw

2 3 4 5 6 7 8 Last Page 4 of 43