Maple Questions and Posts

These are Posts and Questions associated with the product, Maple

I have several maple worksheets (from the web) that have discussion blocks mixed within executable blocks.

All the executable blocks are delineated with a single '[' at the left while the discussion blocks do not.

How do I do this?

Tom Dean

I wish to apply several i-j constraints to an optimization problem that involves minimizing a function x[i,j]. 

Does anyone know of a simple way to exclude values for i and j? For instance, how do we specify the conditions, i not equal to j, i is not equal to 1, etc.?

Thanks in advance!

 

 

Hi all, i wan to write getCoeff() function get coefficient general.

Example

f := a^2*b^2*c^2 + 2*a^2*b^2 + 2*a^2*c^2 + 2*b^2*c^2 + a^2 - 6*a*b - 6*a*c + b^2 - 6*b*c + c^2 + 8

getCoeff(f,a^2*b^2*c^2) return 1.

getCoeff(f,a^2*b^2) return 2.

getCoeff(f,a*b) return -6.

getCoeff(f,a^2) return 1, ...

and how to get coefficients freedom ?

Thank you very much.

can anyone run my code?
please do it and send it for me.
thanks.

restart;
with(plottools): with(LinearAlgebra): with(plots):
ode := `assuming`([diff(Y(X), `$`(X, 2))+2*alpha*(diff(Y(X), X))+beta^2*Y(X) = 0], [alpha >= 0, beta >= 0, alpha+beta > 0]):
F := unapply(solve(subs({X = x, Y(X) = y, diff(Y(X), X) = yp, diff(Y(X), `$`(X, 2)) = yz}, ode), yz), x, y, yp):
Fp := unapply(solve(subs({X = x, Y(X) = y, diff(Y(X), X) = yp, diff(Y(X), `$`(X, 2)) = yz, diff(Y(X), `$`(X, 3)) = yt}, diff(ode, X)), yt), x, y, yp, yz):
Ni := seq(i, i = 0 .. 9), 15, 20:
for i in Ni do
print(ni);
st := time[real]();
f[0, ni] := F(x[0], y[0, ni], yp[0, ni]);
fp[0, ni] := Fp(x[0], y[0, ni], yp[0, ni], f[0, ni]);
f[1, ni] := F(x[1], y[1, ni], yp[1, ni]);
fp[1, ni] := Fp(x[1], y[1, ni], yp[1, ni], f[1, ni]);
y[2, 0] := y[0, ni]+2*h*yp[0, ni]+(6/5)*f[0, ni]*h^2+(4/15)*fp[0, ni]*h^3+(4/5)*f[1, ni]*h^2+(4/15)*fp[1, ni]*h^3;
yp[2, 0] := yp[0, ni]+2*f[0, ni]*h+(2/3)*fp[0, ni]*h^2+(4/3)*fp[1, ni]*h^2;
for j to ni do
f[2, j-1] := F(x[2], y[2, j-1], yp[2, j-1]);
fp[2, j-1] := Fp(x[2], y[2, j-1], yp[2, j-1], f[2, j-1]);
y[2, j] := y[1, ni]+h*yp[1, ni]+(7/20)*f[1, ni]*h^2+(1/20)*fp[1, ni]*h^3+(3/20)*f[2, j-1]*h^2-(1/30)*fp[2, j-1]*h^3;
yp[2, j] := yp[1, ni]+(1/2)*f[1, ni]*h+(1/12)*fp[1, ni]*h^2+(1/2)*f[2, j-1]*h-(1/12)*fp[2, j-1]*h^2;
end do:
Ms := Matrix(4, 4); Ms[1, 3] := 1; Ms[2, 4] := 1;
y[2, ni] := collect(algsubs(h*alpha = H1, expand(algsubs(h*beta = H2, expand(y[2, ni])))), {y[0, ni], y[1, ni], yp[0, ni], yp[1, ni]});
Ms[3, 1] := coeff(y[2, ni], y[0, ni]);
Ms[3, 2] := coeff(y[2, ni], yp[0, ni])/h;
Ms[3, 3] := coeff(y[2, ni], y[1, ni]);
Ms[3, 4] := coeff(y[2, ni], yp[1, ni])/h;
hyp[2, ni] := collect(algsubs(h*alpha = H1, expand(algsubs(h*beta = H2, expand(h*yp[2, ni])))), {y[0, ni], y[1, ni], yp[0, ni], yp[1, ni]});
Ms[4, 1] := coeff(hyp[2, ni], y[0, ni]);
Ms[4, 2] := coeff(hyp[2, ni], yp[0, ni])/h;
Ms[4, 3] := coeff(hyp[2, ni], y[1, ni]);
Ms[4, 4] := coeff(hyp[2, ni], yp[1, ni])/h;
sol := Eigenvalues(Ms);
print(time[real]()-st);
st := time[real]();
SR[ni, 1] := implicitplot(max(seq(abs(sol[ii]), ii = 1 .. numelems(sol))) <= 1, H1 = 0 .. 3, H2 = 0 .. 3, filledregions, gridrefine = 3, axes = Boxed, view = [-2 .. 3, -3 .. 3], labels = [H[1], H[2]], labeldirections = ["horizontal", "vertical"]);
SR[ni, 2] := implicitplot(max(seq(abs(sol[ii]), ii = 1 .. numelems(sol))) <= 1, H1 = -2 .. 3, H2 = -2 .. 3, gridrefine = 3, axes = Boxed, view = [-2 .. 3, -3 .. 3], labels = [H[1], H[2]], labeldirections = ["horizontal", "vertical"]);
print(time[real]()-st);
end do;
for i in Ni do
i;
display({SR[i, 1], SR[i, 2], line([-1, 0], [3, 0], color = red, linestyle = dash), line([0, -3], [0, 3], color = red, linestyle = dash)});
end do;
display({seq(SR[i, 2], i = 0 .. Ni)});

This is my code

restart; L := [];
for a from -10 to 10 do
for b from -10 to 10 do
for c from -10 to 10 do
k := (-a*b*c+a*b*z+a*c*y+b*c*x)/igcd(a*b, b*c, c*a, a*b*c); if a*b*c <> 0 then L := [op(L), [[a, 0, 0], [0, b, 0], [0, 0, c]], k*signum(lcoeff(k)) = 0] end if end do end do end do; nops(L); L

I think my code was error, because  a from -10 to 10. 

[Delta][4*4]*{b}[4*1]={0}

Which {b} is an eigenvector

When I try the example from Maple Help for LPSolve (I use Windows)

with(Optimization);
LPSolve(-4*x-5*y, {0 <= x, 0 <= y, x+2*y <= 6, 5*x+4*y <= 20});

I do not get the same solution like in the example: [-19., [x = 2.66666666666667, y = 1.66666666666667]]
Instead I get

Warning, problem appears to be unbounded
            [0., [x = HFloat(0.0), y = HFloat(0.0)]]


My Professor uses the same version, but with Linux and do not have such problems. Why my installation does not solve the standart Help example?

Thank you

Hi

Let D={ Z=x+I*y,    -Pi*(n+1/2) <= x, y <= Pi*(n+1/2)}  

z belong the boundary of the previous square.

I would like to compute the modul of this function  f (z) =  coth(z) using the usual function  cos(x) cos(y), sinh(x) or cosh(y)  and show that | f(z)|  is less than one

Many thanks for any help

 

 

Hello, im a total begineer with maple and i need help defining a matrix, i need to get this into a matrix

 anyone knows how could i put this in a matriz of n x 1?   (the one thats only a column)

any help would be greatly appreciated

 

Thanks in advance!

Hello I was trying to manipulate maple to write a procedure checking a matrix , say A with n rows and n columns. That matrix A given any row/column the sum of the entries for every row and column are equal. For example matrix [(-1,2)(2,-1)], every row and column in this matrix sums to 1. The entries in the matrix can be any real number.

Put x=f1(t1,t2,t3), y=f2(t1,t2,t3), z=f3(t1,t2,t3).  

The question is that: How to plot all points of form [x,y,z] with t1 in [a1,b1], t2 in [a2,b2], t3 in [a3,b3].

Thank you.

hi.

please help me for remover this problem.

''''

-Float(infinity)*signum((5.*A3*A1-24.*A2^2)*A1/A2^2)''''

ReducedCantiler.mw
 

restart

f := -(2/3)*eta^3+(1/2)*eta^2+eta; -1; g := -eta^2+1; -1; h := -eta^2+1; 1; F := proc (eta) options operator, arrow; A1*f end proc; 1; G := proc (eta) options operator, arrow; A2*g end proc; 1; H := proc (eta) options operator, arrow; A3*h end proc

proc (eta) options operator, arrow; A3*h end proc

(1)

Q1 := diff(F(eta), eta, eta, eta)+.5*H(eta)*((diff(F(eta), eta))^2+F(eta)*(diff(F(eta), eta, eta)))/G(eta)^2+2*(diff(G(eta), eta))*(diff(F(eta), eta, eta))/G(eta)-(diff(H(eta), eta))*(diff(F(eta), eta, eta))/H(eta); 1; Q2 := diff(G(eta), eta, eta)+H(eta)*((diff(F(eta), eta))*G(eta)+.5*F(eta)*(diff(eta, eta)))/G(eta)^2+2*(diff(G(eta), eta))^2/G(eta)-((diff(H(eta), eta))*(diff(H(eta), eta)))/H(eta)+(diff(F(eta), eta, eta))^2-(H(eta)/G(eta))^2; 1; Q3 := diff(H(eta), eta, eta)+(.5*1.3)*H(eta)*(5*(diff(F(eta), eta))*H(eta)+F(eta)*(diff(H(eta), eta)))/G(eta)^2+2*(diff(G(eta), eta))*(diff(H(eta), eta))/G(eta)-(diff(H(eta), eta))^2/H(eta)+(1.3*1.44)*H(eta)*(diff(F(eta), eta, eta))/G(eta)-(1.3*1.92)*(H(eta)/G(eta))^3

-2*A3+.65*A3*(5*A1*(-2*eta^2+eta+1)*A3*(-eta^2+1)-2*A1*(-(2/3)*eta^3+(1/2)*eta^2+eta)*A3*eta)/((-eta^2+1)*A2^2)+4*A3*eta^2/(-eta^2+1)+1.872*A3*A1*(-4*eta+1)/A2-2.496*A3^3/A2^3

(2)

Eq1 := int(Q1*f, eta = 0 .. 1);

-0.2600000000e-1*A3*(24.*A1*A2^2-65.*A1*A2*A3+64.*A3^2)/A2^3

(3)

sol := solve({Eq1 = 0, Eq2 = 0, Eq3 = 0}, {A1, A2, A3}); J := min(select(`>`, sol, 0))

Error, invalid input: `>` expects 2 arguments, but received 1

 

A11 := evalf(simplify(sol[1, 1])); A22 := evalf(simplify(sol[1, 2])); A33 := evalf(simplify(sol[1, 3]))

Error, invalid subscript selector

 

``


 

Download ReducedCantiler.mw

 

Hello.

I've just installed Maple 2015 and when I started it, this happened

It seemed that something was wrong with the graphics or java. But I really don't know what to do next.

Please help me, thank you.

Say I define the following variables.

These are all nineth roots of unity. An equivalent definition would be:

 

In fact, the following code shows that aa[i] /a[i] =1 for all i, so one would concluse aa[i]=a[i]:

for i to 9 do 
simplify(a[i]/aa[i])
end do

But when I try to check via "Equal":

I get as output

                              true
                             false
                             false
                             false
                             false
                             false
                              true
                             false
                             false
The problem goes even further since one representation is accepted as a solution of a linear equation system while the other is not.

 

Another curiosity:

gives just the same expression, whereas simplifying the same expression to the third power gives 0.

Guys,

I am not very familiar with Maple and have to solve quite a complex equation.

I have an equation which is complex ,containing I . I split this equation up in Re=0 an Im=0 . I have to get an answer in function of other parameters, in order to plot these... Maybe it s easier if you look at the work sheet


 

restart

with(LinearAlgebra):

Student(NumericalAnalysis)

(module Student () description "a package to assist with the teaching and learning of standard undergraduate mathematics"; local ModuleLoad, localColors, GetColor, SelectColor, UpdateColor, GetCaption, colorNum, colorDefaults, Defaults, PlotOptionsWindow, InitAnimation, EndAnimation, DoPlayPause, IncrSpd, DecrSpd, Colours, CheckPoint, CheckRange, CheckTextField, CleanFloat, CombineRanges, EvaluateFunction, FindHRange, FindHRange3d, FindVRange, FindVRange3d, GetSpecPoints, EvaluateFunctionNumeric, EvaluateFunctionNumeric3d, VRangeCmp, MaximizePointList, MinimizePointList, FindHRange3dCrossSections, FindVRangeSymbolic, SymEvalFunc, SymLimits, FindAllSpecialPoints, FindHRangeRatPoly, GetRealDomain, GetTextField, GetVariable, IsColour, MapletGenericError, MapletNoInputError, MapletTypeError, ProcessCharacter, ProcessVisual, RequiredError, RemovePlotOptions, mapletColor, mapletDarkColor, mapletLightColor, mapletHelpColor, IsMac, ProcessColorNames; export _pexports, SetColors, SetDefault, SetDefaults, Precalculus, MultivariateCalculus, VectorCalculus, LinearAlgebra, Statistics, Calculus1, NumericalAnalysis, Basics; global x, y, z, r, t, p; option package, `Copyright (c) Maplesoft, a division of Waterloo Maple Inc. 2005`; end module)(NumericalAnalysis)

(1)

wn := 50

50

(2)

Np := 2

2

(3)

``

``

w0 := v0*wn

50*v0

(4)

V0 := 230*sqrt(2)

230*2^(1/2)

(5)

Ep0 := 1.5*V0

345.0*2^(1/2)

(6)

NULL

delta := 0

0

(7)

phi[q0] := 0

0

(8)

Iq0 := 0

0

(9)

L := proc (p) options operator, arrow; Ls*(p*tau[r]+1)/(p*tau[r]/sigma+1) end proc

proc (p) options operator, arrow; Ls*(p*tau[r]+1)/(p*tau[r]/sigma+1) end proc

(10)

Rs := 2.43

2.43

(11)

Rr := 2.43

2.43

(12)

Lr := 0.12e-1+.237

.249

(13)

Ls := Lr

.249

(14)

M := sqrt(.92*Ls^2)

.2388324099

(15)

sigma := 1-M^2/(Ls*Lr)

0.799999996e-1

(16)

``

tau[r] := sigma*Lr*wn/Rr

.4098765412

(17)

tau[s] := sigma*Ls*wn/Rs

.4098765412

(18)

alpha := tau[r]/tau[s]

1.000000000

(19)

``

``

``

``

assume(v0, 'real', nu, 'real')

``

345.0*2^(1/2)

(20)

phi[d0] := Ls*Id0-Ep0/w0

.249*Id0-6.900000000*2^(1/2)/v0

(21)

Vd0 := V0*sin(delta)

0

(22)

Vq0 := V0*cos(delta)

230*2^(1/2)

(23)

Id0 := (Rs*Vd0-wn*v0*Ls*(Vq0-Ep0))/(Ls^2*w0^2+Rs^2)

1431.7500*v0*2^(1/2)/(155.002500*v0^2+5.9049)

(24)

Dp := (Rs+p*wn*L(p))^2+v0*wn^2*L(p)^2

(2.43+12.450*p*(.4098765412*p+1)/(5.123456791*p+1))^2+155.002500*v0*(.4098765412*p+1)^2/(5.123456791*p+1)^2

(25)

simplify(Dp)

(26.04023075*p^4+254.1275544*p^3+(644.8103998+26.04023074*v0)*p^2+(121.014+127.0637772*v0)*p+5.9049+155.0025*v0)/(5.123456791*p+1.)^2

(26)

N := -(3/2)*Np*[[L(p)^2*(Id0*phi[d0]+Iq0*phi[q0])-L(p)*(phi[d0]^2-phi[q0]^2)]*(p^2+v0^2)*wn^2+Rs*[p*L(p)^2*(Id0^2+Iq0^2)-p*(phi[d0]^2+phi[q0]^2)]*wn+Rs^2*[L(p)*Iq0^2+L(p)*Id0^2-Id0*phi[d0]-Iq0*phi[q0]]]

[-7500*[88.76993175*(.4098765412*p+1)^2*v0*2^(1/2)*(356.5057500*v0*2^(1/2)/(155.002500*v0^2+5.9049)-6.900000000*2^(1/2)/v0)/((5.123456791*p+1)^2*(155.002500*v0^2+5.9049))-.249*(.4098765412*p+1)*(356.5057500*v0*2^(1/2)/(155.002500*v0^2+5.9049)-6.900000000*2^(1/2)/v0)^2/(5.123456791*p+1)]*(p^2+v0^2)+[-18084126.16*(.4098765412*p+1)*v0^2/((5.123456791*p+1)*(155.002500*v0^2+5.9049)^2)+25363.02172*v0*2^(1/2)*(356.5057500*v0*2^(1/2)/(155.002500*v0^2+5.9049)-6.900000000*2^(1/2)/v0)/(155.002500*v0^2+5.9049)-92653238.97*p*(.4098765412*p+1)^2*v0^2/((5.123456791*p+1)^2*(155.002500*v0^2+5.9049)^2)+364.5000000*p*(356.5057500*v0*2^(1/2)/(155.002500*v0^2+5.9049)-6.900000000*2^(1/2)/v0)^2]]

(27)

char := (p*J*wn^2/Np*p)*Dp+N

1250*p^2*J*((2.43+12.450*p*(.4098765412*p+1)/(5.123456791*p+1))^2+155.002500*v0*(.4098765412*p+1)^2/(5.123456791*p+1)^2)+[-7500*[88.76993175*(.4098765412*p+1)^2*v0*2^(1/2)*(356.5057500*v0*2^(1/2)/(155.002500*v0^2+5.9049)-6.900000000*2^(1/2)/v0)/((5.123456791*p+1)^2*(155.002500*v0^2+5.9049))-.249*(.4098765412*p+1)*(356.5057500*v0*2^(1/2)/(155.002500*v0^2+5.9049)-6.900000000*2^(1/2)/v0)^2/(5.123456791*p+1)]*(p^2+v0^2)+[-18084126.16*(.4098765412*p+1)*v0^2/((5.123456791*p+1)*(155.002500*v0^2+5.9049)^2)+25363.02172*v0*2^(1/2)*(356.5057500*v0*2^(1/2)/(155.002500*v0^2+5.9049)-6.900000000*2^(1/2)/v0)/(155.002500*v0^2+5.9049)-92653238.97*p*(.4098765412*p+1)^2*v0^2/((5.123456791*p+1)^2*(155.002500*v0^2+5.9049)^2)+364.5000000*p*(356.5057500*v0*2^(1/2)/(155.002500*v0^2+5.9049)-6.900000000*2^(1/2)/v0)^2]]

(28)

eval(char)

1250*p^2*J*((2.43+12.450*p*(.4098765412*p+1)/(5.123456791*p+1))^2+155.002500*v0*(.4098765412*p+1)^2/(5.123456791*p+1)^2)+[-7500*[88.76993175*(.4098765412*p+1)^2*v0*2^(1/2)*(356.5057500*v0*2^(1/2)/(155.002500*v0^2+5.9049)-6.900000000*2^(1/2)/v0)/((5.123456791*p+1)^2*(155.002500*v0^2+5.9049))-.249*(.4098765412*p+1)*(356.5057500*v0*2^(1/2)/(155.002500*v0^2+5.9049)-6.900000000*2^(1/2)/v0)^2/(5.123456791*p+1)]*(p^2+v0^2)+[-18084126.16*(.4098765412*p+1)*v0^2/((5.123456791*p+1)*(155.002500*v0^2+5.9049)^2)+25363.02172*v0*2^(1/2)*(356.5057500*v0*2^(1/2)/(155.002500*v0^2+5.9049)-6.900000000*2^(1/2)/v0)/(155.002500*v0^2+5.9049)-92653238.97*p*(.4098765412*p+1)^2*v0^2/((5.123456791*p+1)^2*(155.002500*v0^2+5.9049)^2)+364.5000000*p*(356.5057500*v0*2^(1/2)/(155.002500*v0^2+5.9049)-6.900000000*2^(1/2)/v0)^2]]

(29)

p := I*nu

I*nu

(30)

R := Re(char)

Re(-1250*nu^2*J*((2.43+(12.450*I)*nu*((.4098765412*I)*nu+1)/((5.123456791*I)*nu+1))^2+155.002500*v0*((.4098765412*I)*nu+1)^2/((5.123456791*I)*nu+1)^2)+[-7500*[88.76993175*((.4098765412*I)*nu+1)^2*v0*2^(1/2)*(356.5057500*v0*2^(1/2)/(155.002500*v0^2+5.9049)-6.900000000*2^(1/2)/v0)/(((5.123456791*I)*nu+1)^2*(155.002500*v0^2+5.9049))-.249*((.4098765412*I)*nu+1)*(356.5057500*v0*2^(1/2)/(155.002500*v0^2+5.9049)-6.900000000*2^(1/2)/v0)^2/((5.123456791*I)*nu+1)]*(-nu^2+v0^2)+[-18084126.16*((.4098765412*I)*nu+1)*v0^2/(((5.123456791*I)*nu+1)*(155.002500*v0^2+5.9049)^2)+25363.02172*v0*2^(1/2)*(356.5057500*v0*2^(1/2)/(155.002500*v0^2+5.9049)-6.900000000*2^(1/2)/v0)/(155.002500*v0^2+5.9049)-(92653238.97*I)*nu*((.4098765412*I)*nu+1)^2*v0^2/(((5.123456791*I)*nu+1)^2*(155.002500*v0^2+5.9049)^2)+(364.5000000*I)*nu*(356.5057500*v0*2^(1/2)/(155.002500*v0^2+5.9049)-6.900000000*2^(1/2)/v0)^2]])

(31)

im := Im(char)

Im(-1250*nu^2*J*((2.43+(12.450*I)*nu*((.4098765412*I)*nu+1)/((5.123456791*I)*nu+1))^2+155.002500*v0*((.4098765412*I)*nu+1)^2/((5.123456791*I)*nu+1)^2)+[-7500*[88.76993175*((.4098765412*I)*nu+1)^2*v0*2^(1/2)*(356.5057500*v0*2^(1/2)/(155.002500*v0^2+5.9049)-6.900000000*2^(1/2)/v0)/(((5.123456791*I)*nu+1)^2*(155.002500*v0^2+5.9049))-.249*((.4098765412*I)*nu+1)*(356.5057500*v0*2^(1/2)/(155.002500*v0^2+5.9049)-6.900000000*2^(1/2)/v0)^2/((5.123456791*I)*nu+1)]*(-nu^2+v0^2)+[-18084126.16*((.4098765412*I)*nu+1)*v0^2/(((5.123456791*I)*nu+1)*(155.002500*v0^2+5.9049)^2)+25363.02172*v0*2^(1/2)*(356.5057500*v0*2^(1/2)/(155.002500*v0^2+5.9049)-6.900000000*2^(1/2)/v0)/(155.002500*v0^2+5.9049)-(92653238.97*I)*nu*((.4098765412*I)*nu+1)^2*v0^2/(((5.123456791*I)*nu+1)^2*(155.002500*v0^2+5.9049)^2)+(364.5000000*I)*nu*(356.5057500*v0*2^(1/2)/(155.002500*v0^2+5.9049)-6.900000000*2^(1/2)/v0)^2]])

(32)

``

simplify(im)

Im(((32550.28842*nu^4*J-(158829.7215*I)*nu^3*J-193753.125*nu^2*J)*v0-32550.28844*nu^6*J+(317659.4430*I)*nu^5*J+806012.9998*nu^4*J-(151267.5000*I)*nu^3*J+(-7381.125*J+[196873.5712*[-177.5398635*((.4098765412*I)*nu+1.)^2*(713.0115000*v0^2+40.74381000)/(((5.123456791*I)*nu+1.)^2*(155.002500*v0^2+5.9049)*(155.0025000*v0^2+5.904900000))-.4979999998*((.4098765412*I)*nu+1)*(713.0115*v0^2+40.74381)^2/(((5.123456791*I)*nu+1.)*v0^2*(155.0025*v0^2+5.9049)^2)]*(-nu^2+v0^2)+[474704866.5*((.4098765412*I)*nu+1)*v0^2/(((5.123456791*I)*nu+1.)*(155.002500*v0^2+5.9049)^2)-26.24980949*(-36168252.32*v0^2-2066772.276)/(155.0025*v0^2+5.9049)^2+(2432129872.*I)*nu*((.4098765412*I)*nu+1.)^2*v0^2/(((5.123456791*I)*nu+1.)^2*(155.002500*v0^2+5.9049)^2)-(19136.11111*I)*nu*(713.0115*v0^2+40.74381)^2/(v0^2*(155.0025*v0^2+5.9049)^2)]])*nu^2+(10.24691358*I)*[-7500*[-177.5398635*((.4098765412*I)*nu+1.)^2*(713.0115000*v0^2+40.74381000)/(((5.123456791*I)*nu+1.)^2*(155.002500*v0^2+5.9049)*(155.0025000*v0^2+5.904900000))-.4979999998*((.4098765412*I)*nu+1)*(713.0115*v0^2+40.74381)^2/(((5.123456791*I)*nu+1.)*v0^2*(155.0025*v0^2+5.9049)^2)]*(-nu^2+v0^2)+[-18084126.16*((.4098765412*I)*nu+1)*v0^2/(((5.123456791*I)*nu+1.)*(155.002500*v0^2+5.9049)^2)+(-36168252.32*v0^2-2066772.276)/(155.0025*v0^2+5.9049)^2-(92653238.97*I)*nu*((.4098765412*I)*nu+1.)^2*v0^2/(((5.123456791*I)*nu+1.)^2*(155.002500*v0^2+5.9049)^2)+(728.9999996*I)*nu*(713.0115*v0^2+40.74381)^2/(v0^2*(155.0025*v0^2+5.9049)^2)]]*nu+[-7500*[-177.5398635*((.4098765412*I)*nu+1.)^2*(713.0115000*v0^2+40.74381000)/(((5.123456791*I)*nu+1.)^2*(155.002500*v0^2+5.9049)*(155.0025000*v0^2+5.904900000))-.4979999998*((.4098765412*I)*nu+1)*(713.0115*v0^2+40.74381)^2/(((5.123456791*I)*nu+1.)*v0^2*(155.0025*v0^2+5.9049)^2)]*(-nu^2+v0^2)+[-18084126.16*((.4098765412*I)*nu+1)*v0^2/(((5.123456791*I)*nu+1.)*(155.002500*v0^2+5.9049)^2)+(-36168252.32*v0^2-2066772.276)/(155.0025*v0^2+5.9049)^2-(92653238.97*I)*nu*((.4098765412*I)*nu+1.)^2*v0^2/(((5.123456791*I)*nu+1.)^2*(155.002500*v0^2+5.9049)^2)+(728.9999996*I)*nu*(713.0115*v0^2+40.74381)^2/(v0^2*(155.0025*v0^2+5.9049)^2)]])/((5.123456791*I)*nu+1.)^2)

(33)

solve(im = 0)

Warning, solve may be ignoring assumptions on the input variables.

 

Error, (in Engine:-Dispatch) badly formed input to solve: not fully algebraic

 

``

``

Error, (in fsolve) b is in the equation, and is not solved for

 

-I*b/l

(34)

``


 

Download operationele_inductanties.mwoperationele_inductanties.mw
 

1 2 3 4 5 6 7 Last Page 1 of 1218