MaplePrimes Questions

Search Questions:

Latest Questions Latest Questions Feed

i have 2 questions:

Question 1. suppose we have generated a random weighted graph with 100 vertices and 2300 edges and found shortest path frome node 1 to node 100 using function ShortestPath(G,1,100). this function returns a path like [1 3 8 2 9 100] but don't get us value of shortest path!

in other words if weights are costs of travelling on edges,we want to find minimum cost of travelling from node 1 to node 100.

how can i find value of shortest path (minimum weight/cost) ?

Question 2. i want to create a sub graph of G by removing the edge that has maximum weight on shortest path found in Question 1. how can i find such edge and how to create such sub graph?

thanks

The answer should be around 15.7, i.e., function h is maximized at around x=15.7, I don't know why my computer/maple is having a hard time with it.

f := proc (a, b, k) options operator, arrow; (sum(exp(-x)*x^m/(m!), m = a .. b))^k end proc;


h := f(0,0,82)*f(1,3,49)*f(4,6,47)*f(7,10,47)*f(11,15,57)*f(16,20,40)*f(21,25,38)*f(26,35,52)*(1-f(0,35,1))^91;


fsolve(diff(h,x),x);

 

thanks in advance!

Hi all

 

I am having a very complicated equation that has the form of 

x*y^2/(x+1)+x*(1/(x-2y)^2)=0

 

Of course, the actual equation is more complicate than above. It is just an example. I want to solve the equation in terms of x. And I know that both x and y are real, and they are positive (greater than 0). My question is, how should I specify this when solving the equation?

 

 

PS: I try to run the program to the solve the equation (without specifying that they are real and positive), and at the output, it gave me something like:

"RootOf(y^2+2y+.......)".   What is that "RootOf" means? Square-root or what?

I have a set, R consisting of 9 elements:

R = {A_1, A_2, A_3, A_4, B_1, B_2, B_3, B_4, C_1}

where
B_1 = A_1 + A_2,
B_2 = A_1 + A_3,
B_3 = A_3 + A_4,
B_4 = A_2 + A_4,
C_1 = A_1 + A_2 + A_3 + A_4.

I want to know how to do 2 things:
1) For each element x in R I want x to become x_1, x_2, and x_3 (where x_3 = x_2 + x_1). So for example:
A_1 will become A_11, A_12, A_13 (where A_13 = A_11 + A_12). This should create a total of 27 elements (since each of the 9 elements splits into 3). I want all 27 elements to go into a new set called S_1.
2) The second thing I want is a procedure that takes x in S_1 and y in S_1 and computes z=(x+y)mod2. If z is not already an element of S_1 then put it into a new set S_2. This procedure should terminate when all the possible additions of x and y have been computed. I know that S_2 will contain 162 elements (all of which are different from the 27 elements in S_1). Then I want the procedure to take x in S_1 and y in S_2 and do the same thing: z=(x+y)mod2, where new elements not in S_1 or S_2 will be placed in S_3. Then again repeat this: x in S_1 and y in S_r until no new sets S_{r+1} can be created (i.e. S_{r+1} is empty because no new possible elements exist).

How to solve limits...

July 10 2014 vhha1972 10
0 3

I am evaluating the following integral:

Int(5*exp(t)*exp(-2*j*pi*f*t), t = -infinity .. 0)+Int(5*exp(-t)*exp(-2*j*pi*f*t), t = 0 .. infinity)

Maple gives the answer:

limit((5*(exp(-2*Pi*f*j*t+t)-1))/(2*Pi*f*j-1), t = -infinity)+limit(-(5*(exp(-2*Pi*f*j*t-t)-1))/(2*Pi*f*j+1), t = infinity)

How do I solve for the limits?

The answer is:

10/[1+(2*Pi*f)^2]

 

Vhha

I am trying to evaluate the following INTEGRAL:

Int(2*e^(-(2/7)*j*Pi*n*t), t = 4 .. 5)

Maple gives me the following ANSWER:

-(7*(-e^(-(8/7)*j*Pi*n)+e^(-(10/7)*j*Pi*n)))/(j*Pi*n*ln(e))

Everything is correct but there is a ln(e) in the denominator of the answer. And we know that ln(e) = 1. 

Why does Maple not simplify this and get rid of the ln(e) from the answer?

 

 

 

 

Suppose i have an mx3 matrix M containing a 3D data where 1,2,3 columns are x,y,z coordinates.

Here is what i tried,

Statistics:-SurfacePlot(M[..,1],M[..,2],M[..,3]) does not produce what i want.

plots:-surfdata(M) plots what i want but only works when i use subset of the data for all the data it just hangs.

Statistics:-ScatterPlot3D(M, lowess, fitorder = 2) produces a smoothened version but i want the interpolated plot.

Please help. Here is one sample of the data i want to plot, Mdata.xlsxMdata.xlsx

 

Pleaz i nees help i have probleme withe singularity

restart; with(plots)

Paramétres

 

NULL

``

mb := 5;

5

 

2

 

(1/3)*a*b^3

 

0.4906250000e-1*d

 

.2

 

.4

 

1.2

 

.43

 

9.81

 

1

 

5

 

.5

 

1

(1.1)

``

``

Equation suivant x :

 

``

eq1 := (mp+mb)*(diff(x(t), `$`(t, 2)))+mp*(d+l)*(diff(theta(t), `$`(t, 2)))+mp*l*(diff(alpha(t), `$`(t, 2)))+mp*(d*(diff(theta(t), t))^2*theta(t)+l*(diff(theta(t), t)+diff(alpha(t), t))^2*(alpha(t)+theta(t)))+1000*Am*g*sin(omega*t-k*x(t))*(1+theta(t))*(sinh(k*(h+z(t)-(1/2)*a*theta(t)+(1/2)*b))-sinh(k*(h+z(t)+(1/2)*a*theta(t)+(1/2)*b)))/cosh(k*h) = 0;

7*(diff(diff(x(t), t), t))+1.2*(diff(diff(theta(t), t), t))+.4*(diff(diff(alpha(t), t), t))+.8*(diff(theta(t), t))^2*theta(t)+.4*(diff(theta(t), t)+diff(alpha(t), t))^2*(alpha(t)+theta(t))+11772.000*sin(.43*t-x(t))*(1+theta(t))*(-sinh(-11/2-z(t)+.2500000000*theta(t))-sinh(11/2+z(t)+.2500000000*theta(t)))/cosh(5) = 0

(2.1)

``

Equation suivant z :

 

``

eq2 := (mp+mb)*(diff(z(t), `$`(t, 2)))-mp*(l*(alpha(t)+theta(t))+d*theta(t))*(diff(theta(t), `$`(t, 2)))-mp*l*(alpha(t)+theta(t))*(diff(alpha(t), `$`(t, 2)))+mp*(d*(diff(theta(t), t))^2+l*(diff(theta(t), t)+diff(alpha(t), t))^2)-g*(mp+mb)+1000*g*a*z(t)+1000*g*a*b*(1/2)+1000*Am*g*sin(omega*t-k*x(t))*(1-theta(t))*(sinh(k*(h+z(t)-(1/2)*a*theta(t)+(1/2)*b))-sin(k*(h+z(t)+(1/2)*a*theta(t)+(1/2)*b)))/cosh(k*h) = 0;

7*(diff(diff(z(t), t), t))-2*(.2*alpha(t)+.6*theta(t))*(diff(diff(theta(t), t), t))-.4*(alpha(t)+theta(t))*(diff(diff(alpha(t), t), t))+.8*(diff(theta(t), t))^2+.4*(diff(theta(t), t)+diff(alpha(t), t))^2+2383.830+4905.000*z(t)+11772.000*sin(.43*t-x(t))*(1-theta(t))*(-sinh(-11/2-z(t)+.2500000000*theta(t))-sin(11/2+z(t)+.2500000000*theta(t)))/cosh(5) = 0

(3.1)

``

Equation suivant y :

 

``

eq3 := mp*(d+l)*(diff(x(t), `$`(t, 2)))-mp*(l*(alpha(t)+theta(t))+d*theta(t))*(diff(z(t), `$`(t, 2)))+(Ip+Ib+mp*(d^2+l^2)+2*mp*d*l)*(diff(theta(t), `$`(t, 2)))+(Ip+mp*l^2+mp*d*l*cos(alpha(t)))*(diff(alpha(t), `$`(t, 2)))-mp*alpha(t)*(l*d*(diff(theta(t), t))^2-l*d*(diff(theta(t), t)+diff(alpha(t), t))^2)+mp*g*l*(alpha(t)+theta(t))+mp*g*d*theta(t)+1000*g*a*theta(t)*z(t)^2+1000*g*a*b*theta(t)*z(t)+1000*g*a(theta(t))^9*(1/12)+(1000*g*a*b^2*(1/4))*theta(t)-1000*Am*g*sin(omega*t-k*x(t))*((z(t)-(1/2)*a*theta(t)+(1/2)*b)*sinh(k*(h+z(t)-(1/2)*a*theta(t)+(1/2)*b))/k-cosh(k*(h+z(t)-(1/2)*a*theta(t)+(1/2)*b))/k^2)/cosh(k*h)+1000*Am*g*sin(omega*t-k*x(t))*((z(t)+(1/2)*a*theta(t)+(1/2)*b)*sinh(k*(h+z(t)+(1/2)*a*theta(t)+(1/2)*b))/k-cosh(k*(h+z(t)+(1/2)*a*theta(t)+(1/2)*b))/k^2)/cosh(k*h)-(1000*g*z(t)*(1/2)+1000*g*b*(1/4))*(2*a*x(t)+a*b*theta(t))+1000*g*a*theta(t)*z(t)^2+1000*g*a*b*theta(t)^2*z(t)+(1000*g*a^3*(1/12))*theta(t)+(1000*g*a*b^2*(1/4))*theta(t)^3+(k*theta(t)*(x(t)-(1/2)*a+(1/2)*b*theta(t))*sinh(k*(h+z(t)+(1/2)*b-theta(t)*(x(t)-(1/2)*a+(1/2)*b*theta(t))))-k*theta(t)*(x(t)+(1/2)*a+(1/2)*b*theta(t))*sinh(k*(h+z(t)+(1/2)*b-theta(t)*(x(t)+(1/2)*a+(1/2)*b*theta(t))))-cosh(k*(h+z(t)+(1/2)*b-theta(t)*(x(t)+(1/2)*a+(1/2)*b*theta(t))))+cosh(k*(h+z(t)+(1/2)*b-theta(t)*(x(t)-(1/2)*a+(1/2)*b*theta(t)))))/k^2 = 0;

1.2*(diff(diff(x(t), t), t))-2*(.2*alpha(t)+.6*theta(t))*(diff(diff(z(t), t), t))+.9062916667*(diff(diff(theta(t), t), t))+(0.9962500000e-1+.16*cos(alpha(t)))*(diff(diff(alpha(t), t), t))-2*alpha(t)*(0.8e-1*(diff(theta(t), t))^2-0.8e-1*(diff(theta(t), t)+diff(alpha(t), t))^2)+3.924*alpha(t)+1340.209500*theta(t)+9810.000*theta(t)*z(t)^2+4905.000*theta(t)*z(t)+1.596679687-11772.000*sin(.43*t-x(t))*(-(z(t)-.2500000000*theta(t)+1/2)*sinh(-11/2-z(t)+.2500000000*theta(t))-cosh(-11/2-z(t)+.2500000000*theta(t)))/cosh(5)+11772.000*sin(.43*t-x(t))*((z(t)+.2500000000*theta(t)+1/2)*sinh(11/2+z(t)+.2500000000*theta(t))-cosh(11/2+z(t)+.2500000000*theta(t)))/cosh(5)-(4905.00*z(t)+2452.50)*(1.0*x(t)+.5*theta(t))+4905.000*theta(t)^2*z(t)+1226.250*theta(t)^3-theta(t)*(x(t)-.2500000000+(1/2)*theta(t))*sinh(-11/2-z(t)+theta(t)*(x(t)-.2500000000+(1/2)*theta(t)))+theta(t)*(x(t)+.2500000000+(1/2)*theta(t))*sinh(-11/2-z(t)+theta(t)*(x(t)+.2500000000+(1/2)*theta(t)))-cosh(-11/2-z(t)+theta(t)*(x(t)+.2500000000+(1/2)*theta(t)))+cosh(-11/2-z(t)+theta(t)*(x(t)-.2500000000+(1/2)*theta(t))) = 0

(4.1)

NULL

``

Equation suivant y

 

``

eq4 := mp*l*(diff(x(t), `$`(t, 2)))-mp*l*(alpha(t)+theta(t))*(diff(z(t), `$`(t, 2)))+(d*l*mp+l^2*mp+Ip)*(diff(theta(t), `$`(t, 2)))+(l^2*mp+Ip)*(diff(alpha(t), `$`(t, 2)))-9.81*mp*l*(alpha(t)+theta(t))-l*d*mp*(diff(theta(t), `$`(t, 1)))^2*alpha(t) = 0;

.4*(diff(diff(x(t), t), t))-.4*(alpha(t)+theta(t))*(diff(diff(z(t), t), t))+.2596250000*(diff(diff(theta(t), t), t))+0.9962500000e-1*(diff(diff(alpha(t), t), t))-3.924*alpha(t)-3.924*theta(t)-.16*(diff(theta(t), t))^2*alpha(t) = 0

(5.1)

``

Résolution :

 

NULL

CI:= x(0)=0,z(0)=0,theta(0)=0,alpha(0)=0,D(x)(0)=0,D(alpha)(0)=0,D(z)(0)=0,D(theta)(0)=0;

x(0) = 0, z(0) = 0, theta(0) = 0, alpha(0) = 0, (D(x))(0) = 0, (D(alpha))(0) = 0, (D(z))(0) = 0, (D(theta))(0) = 0

(6.1)

if theta(t) <> 0 then
 solution:=dsolve([eq1,eq2,eq3,eq4,CI],numeric,maxfun=0):
 odeplot(solution, [[t, x(t)]], t = 0 .. 100, thickness = 2);
 odeplot(solution, [[t, z(t)]], t = 0 .. 100, thickness = 2);
 odeplot(solution, [[t, theta(t)]], t = 0 .. 100, thickness = 2);
 odeplot(solution, [[t, alpha(t)]], t = 0 .. 100, thickness = 2);
 #odeplot(solution,[[t,x(t)],[t,alpha(t)],[t,z(t)],[t,theta(t)]], t=0..100, thickness=2);
 end ;

proc (x_rkf45) local _res, _dat, _vars, _solnproc, _xout, _ndsol, _pars, _n, _i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; if 1 < nargs then error "invalid input: too many arguments" end if; _EnvDSNumericSaveDigits := Digits; Digits := 15; if _EnvInFsolve = true then _xout := evalf[_EnvDSNumericSaveDigits](x_rkf45) else _xout := evalf(x_rkf45) end if; _dat := Array(1..4, {(1) = proc (_xin) local _xout, _dtbl, _dat, _vmap, _x0, _y0, _val, _dig, _n, _ne, _nd, _nv, _pars, _ini, _par, _i, _j, _k, _src; option `Copyright (c) 2002 by Waterloo Maple Inc. All rights reserved.`; table( [( "complex" ) = false ] ) _xout := _xin; _pars := []; _dtbl := array( 1 .. 4, [( 1 ) = (array( 1 .. 20, [( 1 ) = (datatype = float[8], order = C_order, storage = rectangular), ( 2 ) = (datatype = float[8], order = C_order, storage = rectangular), ( 3 ) = ([0, 0, 0, Array(1..0, 1..2, {}, datatype = float[8], order = C_order)]), ( 5 ) = (Array(1..28, {(1) = .0, (2) = 0.10e-5, (3) = .0, (4) = 0.500001e-14, (5) = .0, (6) = 0.14822202628077855e-4, (7) = .0, (8) = 0.10e-5, (9) = .0, (10) = .0, (11) = .0, (12) = .0, (13) = 1.0, (14) = .0, (15) = .49999999999999, (16) = .0, (17) = 1.0, (18) = 1.0, (19) = .0, (20) = .0, (21) = 1.0, (22) = 1.0, (23) = .0, (24) = .0, (25) = 0.10e-14, (26) = .0, (27) = .0, (28) = .0}, datatype = float[8], order = C_order)), ( 4 ) = (Array(1..53, {(1) = 8, (2) = 8, (3) = 0, (4) = 0, (5) = 0, (6) = 0, (7) = 1, (8) = 0, (9) = 0, (10) = 0, (11) = 0, (12) = 0, (13) = 0, (14) = 0, (15) = 0, (16) = 0, (17) = 0, (18) = 1, (19) = 0, (20) = 0, (21) = 0, (22) = 1, (23) = 4, (24) = 0, (25) = 1, (26) = 15, (27) = 1, (28) = 0, (29) = 1, (30) = 3, (31) = 3, (32) = 0, (33) = 1, (34) = 0, (35) = 0, (36) = 0, (37) = 0, (38) = 0, (39) = 0, (40) = 0, (41) = 0, (42) = 0, (43) = 1, (44) = 0, (45) = 0, (46) = 0, (47) = 0, (48) = 0, (49) = 0, (50) = 50, (51) = 1, (52) = 0, (53) = 0}, datatype = integer[4])), ( 7 ) = ([Array(1..4, 1..7, {(1, 1) = .0, (1, 2) = .203125, (1, 3) = .3046875, (1, 4) = .75, (1, 5) = .8125, (1, 6) = .40625, (1, 7) = .8125, (2, 1) = 0.6378173828125e-1, (2, 2) = .0, (2, 3) = .279296875, (2, 4) = .27237892150878906, (2, 5) = -0.9686851501464844e-1, (2, 6) = 0.1956939697265625e-1, (2, 7) = .5381584167480469, (3, 1) = 0.31890869140625e-1, (3, 2) = .0, (3, 3) = -.34375, (3, 4) = -.335235595703125, (3, 5) = .2296142578125, (3, 6) = .41748046875, (3, 7) = 11.480712890625, (4, 1) = 0.9710520505905151e-1, (4, 2) = .0, (4, 3) = .40350341796875, (4, 4) = 0.20297467708587646e-1, (4, 5) = -0.6054282188415527e-2, (4, 6) = -0.4770040512084961e-1, (4, 7) = .77858567237854}, datatype = float[8], order = C_order), Array(1..6, 1..6, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = 1.0, (2, 1) = .25, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = 1.0, (3, 1) = .1875, (3, 2) = .5625, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = 2.0, (4, 1) = .23583984375, (4, 2) = -.87890625, (4, 3) = .890625, (4, 4) = .0, (4, 5) = .0, (4, 6) = .2681884765625, (5, 1) = .1272735595703125, (5, 2) = -.5009765625, (5, 3) = .44921875, (5, 4) = -0.128936767578125e-1, (5, 5) = .0, (5, 6) = 0.626220703125e-1, (6, 1) = -0.927734375e-1, (6, 2) = .626220703125, (6, 3) = -.4326171875, (6, 4) = .1418304443359375, (6, 5) = -0.861053466796875e-1, (6, 6) = .3131103515625}, datatype = float[8], order = C_order), Array(1..6, {(1) = .0, (2) = .386, (3) = .21, (4) = .63, (5) = 1.0, (6) = 1.0}, datatype = float[8], order = C_order), Array(1..6, {(1) = .25, (2) = -.1043, (3) = .1035, (4) = -0.362e-1, (5) = .0, (6) = .0}, datatype = float[8], order = C_order), Array(1..6, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = 1.544, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (3, 1) = .9466785280815533, (3, 2) = .25570116989825814, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (4, 1) = 3.3148251870684886, (4, 2) = 2.896124015972123, (4, 3) = .9986419139977808, (4, 4) = .0, (4, 5) = .0, (5, 1) = 1.2212245092262748, (5, 2) = 6.019134481287752, (5, 3) = 12.537083329320874, (5, 4) = -.687886036105895, (5, 5) = .0, (6, 1) = 1.2212245092262748, (6, 2) = 6.019134481287752, (6, 3) = 12.537083329320874, (6, 4) = -.687886036105895, (6, 5) = 1.0}, datatype = float[8], order = C_order), Array(1..6, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = -5.6688, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (3, 1) = -2.4300933568337584, (3, 2) = -.20635991570891224, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (4, 1) = -.10735290581452621, (4, 2) = -9.594562251021896, (4, 3) = -20.470286148096154, (4, 4) = .0, (4, 5) = .0, (5, 1) = 7.496443313968615, (5, 2) = -10.246804314641219, (5, 3) = -33.99990352819906, (5, 4) = 11.708908932061595, (5, 5) = .0, (6, 1) = 8.083246795922411, (6, 2) = -7.981132988062785, (6, 3) = -31.52159432874373, (6, 4) = 16.319305431231363, (6, 5) = -6.0588182388340535}, datatype = float[8], order = C_order), Array(1..3, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = 10.126235083446911, (2, 2) = -7.487995877607633, (2, 3) = -34.800918615557414, (2, 4) = -7.9927717075687275, (2, 5) = 1.0251377232956207, (3, 1) = -.6762803392806898, (3, 2) = 6.087714651678606, (3, 3) = 16.43084320892463, (3, 4) = 24.767225114183653, (3, 5) = -6.5943891257167815}, datatype = float[8], order = C_order)]), ( 6 ) = (Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order)), ( 10 ) = ([proc (N, X, Y, YP) option `[Y[1] = alpha(t), Y[2] = diff(alpha(t),t), Y[3] = theta(t), Y[4] = diff(theta(t),t), Y[5] = x(t), Y[6] = diff(x(t),t), Y[7] = z(t), Y[8] = diff(z(t),t)]`; YP[2] := -(-14.947516474811375000+9.3616250000*cosh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))-9.3616250000*cosh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3]))-12681.242976943909200*Y[3]-171.4392330064092*Y[1]-11479.6926562500000*Y[3]^3+9.3616250000*Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3]))-9.3616250000*Y[3]*(Y[5]+.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))+7*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])*(-2*Y[1]*(0.8e-1*Y[4]^2-0.8e-1*(Y[4]+Y[2])^2)+3.924*Y[1]+1340.209500*Y[3]+9810.000*Y[3]*Y[7]^2+4905.000*Y[3]*Y[7]+1.596679687-158.631022309198*sin(.43*X-Y[5])*(-(Y[7]-.2500000000*Y[3]+1/2)*sinh(-11/2-Y[7]+.2500000000*Y[3])-cosh(-11/2-Y[7]+.2500000000*Y[3]))+158.631022309198*sin(.43*X-Y[5])*((Y[7]+.2500000000*Y[3]+1/2)*sinh(11/2+Y[7]+.2500000000*Y[3])-cosh(11/2+Y[7]+.2500000000*Y[3]))-(4905.00*Y[7]+2452.50)*(1.0*Y[5]+.5*Y[3])+4905.000*Y[3]^2*Y[7]+1226.250*Y[3]^3-Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3]))+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))-cosh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))+cosh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])))-56.5942610739837*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3]))-1.2*(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])-4.9040416669*(-.4*Y[1]-.4*Y[3])*(.8*Y[4]^2+.4*(Y[4]+Y[2])^2+2383.830+4905.000*Y[7]+158.631022309198*sin(.43*X-Y[5])*(1-Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sin(11/2+Y[7]+.2500000000*Y[3])))+1.3373750000*(.8*Y[4]^2+.4*(Y[4]+Y[2])^2+2383.830+4905.000*Y[7]+158.631022309198*sin(.43*X-Y[5])*(1-Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sin(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-1.2*Y[3])-.285413333408*Y[4]^2*Y[3]-.142706666704*(Y[4]+Y[2])^2*(Y[1]+Y[3])+.4*(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-1.2*Y[3])^2-1485.04414422534*sin(.43*X-Y[5])*((Y[7]+.2500000000*Y[3]+1/2)*sinh(11/2+Y[7]+.2500000000*Y[3])-cosh(11/2+Y[7]+.2500000000*Y[3]))+1485.04414422534*sin(.43*X-Y[5])*(-(Y[7]-.2500000000*Y[3]+1/2)*sinh(-11/2-Y[7]+.2500000000*Y[3])-cosh(-11/2-Y[7]+.2500000000*Y[3]))-5.492526666928*Y[4]^2*Y[1]-7*(-3.924*Y[1]-3.924*Y[3]-.16*Y[4]^2*Y[1])*(-.4*Y[1]-1.2*Y[3])^2+18.7232500000*Y[1]*(0.8e-1*Y[4]^2-0.8e-1*(Y[4]+Y[2])^2)-91837.5412500000000*Y[3]*Y[7]^2-45918.7706250000000*Y[3]*Y[7]+9.3616250000*(4905.00*Y[7]+2452.50)*(1.0*Y[5]+.5*Y[3])-45918.7706250000000*Y[3]^2*Y[7])/(2.3445975001253875000-.53737500000*(-.4*Y[1]-1.2*Y[3])^2+.8573750000*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])-1.497860000000*cos(Y[1])-4.9040416669*(-.4*Y[1]-.4*Y[3])^2+7*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])*(0.9962500000e-1+.16*cos(Y[1]))); YP[4] := (-6.0061102276113750000+3.76162500000*cosh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))-3.76162500000*cosh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3]))-5028.1809204375000000*Y[3]-1.57597650000000*Y[1]-4612.69265625000000*Y[3]^3+3.76162500000*Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3]))-3.76162500000*Y[3]*(Y[5]+.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))-7*(-.4*Y[1]-.4*Y[3])*(.8*Y[4]^2+.4*(Y[4]+Y[2])^2+2383.830+4905.000*Y[7]+158.631022309198*sin(.43*X-Y[5])*(1-Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sin(11/2+Y[7]+.2500000000*Y[3])))*(0.9962500000e-1+.16*cos(Y[1]))-7*(-3.924*Y[1]-3.924*Y[3]-.16*Y[4]^2*Y[1])*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])+132.750371019452*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3]))+.4*(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])+.48*(-.4*Y[1]-.4*Y[3])*(.8*Y[4]^2+.4*(Y[4]+Y[2])^2+2383.830+4905.000*Y[7]+158.631022309198*sin(.43*X-Y[5])*(1-Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sin(11/2+Y[7]+.2500000000*Y[3])))+7*(-.4*Y[1]-.4*Y[3])^2*(-2*Y[1]*(0.8e-1*Y[4]^2-0.8e-1*(Y[4]+Y[2])^2)+3.924*Y[1]+1340.209500*Y[3]+9810.000*Y[3]*Y[7]^2+4905.000*Y[3]*Y[7]+1.596679687-158.631022309198*sin(.43*X-Y[5])*(-(Y[7]-.2500000000*Y[3]+1/2)*sinh(-11/2-Y[7]+.2500000000*Y[3])-cosh(-11/2-Y[7]+.2500000000*Y[3]))+158.631022309198*sin(.43*X-Y[5])*((Y[7]+.2500000000*Y[3]+1/2)*sinh(11/2+Y[7]+.2500000000*Y[3])-cosh(11/2+Y[7]+.2500000000*Y[3]))-(4905.00*Y[7]+2452.50)*(1.0*Y[5]+.5*Y[3])+4905.000*Y[3]^2*Y[7]+1226.250*Y[3]^3-Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3]))+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))-cosh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))+cosh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])))-2.8*(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(0.9962500000e-1+.16*cos(Y[1]))+49*(-3.924*Y[1]-3.924*Y[3]-.16*Y[4]^2*Y[1])*(0.9962500000e-1+.16*cos(Y[1]))-1.2*(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-.4*Y[3])^2+.53737500000*(.8*Y[4]^2+.4*(Y[4]+Y[2])^2+2383.830+4905.000*Y[7]+158.631022309198*sin(.43*X-Y[5])*(1-Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sin(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-1.2*Y[3])+.6694800000000*Y[4]^2*Y[3]+.3347400000000*(Y[4]+Y[2])^2*(Y[1]+Y[3])-596.710419293836*sin(.43*X-Y[5])*((Y[7]+.2500000000*Y[3]+1/2)*sinh(11/2+Y[7]+.2500000000*Y[3])-cosh(11/2+Y[7]+.2500000000*Y[3]))+596.710419293836*sin(.43*X-Y[5])*(-(Y[7]-.2500000000*Y[3]+1/2)*sinh(-11/2-Y[7]+.2500000000*Y[3])-cosh(-11/2-Y[7]+.2500000000*Y[3]))+.5376*Y[4]^2*Y[1]+7.52325000000*Y[1]*(0.8e-1*Y[4]^2-0.8e-1*(Y[4]+Y[2])^2)-36901.54125000000000*Y[3]*Y[7]^2-18450.77062500000000*Y[3]*Y[7]+3.76162500000*(4905.00*Y[7]+2452.50)*(1.0*Y[5]+.5*Y[3])-18450.77062500000000*Y[3]^2*Y[7])/(2.3445975001253875000-.53737500000*(-.4*Y[1]-1.2*Y[3])^2+.8573750000*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])-1.497860000000*cos(Y[1])-4.9040416669*(-.4*Y[1]-.4*Y[3])^2+7*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])*(0.9962500000e-1+.16*cos(Y[1]))); YP[6] := -(-.1754750976013000000+.109900000000*cosh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))-.109900000000*cosh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3]))-137.33141624963376000*Y[3]+9.526360200366240*Y[1]-134.764875000000000*Y[3]^3+.109900000000*Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3]))-.109900000000*Y[3]*(Y[5]+.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))-.4*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])*(-2*Y[1]*(0.8e-1*Y[4]^2-0.8e-1*(Y[4]+Y[2])^2)+3.924*Y[1]+1340.209500*Y[3]+9810.000*Y[3]*Y[7]^2+4905.000*Y[3]*Y[7]+1.596679687-158.631022309198*sin(.43*X-Y[5])*(-(Y[7]-.2500000000*Y[3]+1/2)*sinh(-11/2-Y[7]+.2500000000*Y[3])-cosh(-11/2-Y[7]+.2500000000*Y[3]))+158.631022309198*sin(.43*X-Y[5])*((Y[7]+.2500000000*Y[3]+1/2)*sinh(11/2+Y[7]+.2500000000*Y[3])-cosh(11/2+Y[7]+.2500000000*Y[3]))-(4905.00*Y[7]+2452.50)*(1.0*Y[5]+.5*Y[3])+4905.000*Y[3]^2*Y[7]+1226.250*Y[3]^3-Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3]))+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))-cosh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))+cosh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])))-1.2*(-.4*Y[1]-.4*Y[3])*(.8*Y[4]^2+.4*(Y[4]+Y[2])^2+2383.830+4905.000*Y[7]+158.631022309198*sin(.43*X-Y[5])*(1-Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sin(11/2+Y[7]+.2500000000*Y[3])))*(0.9962500000e-1+.16*cos(Y[1]))-1.2*(-3.924*Y[1]-3.924*Y[3]-.16*Y[4]^2*Y[1])*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])+100.258795838552*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3]))+.2596250000*(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])+(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])*(0.9962500000e-1+.16*cos(Y[1]))+.36251666668*(-.4*Y[1]-.4*Y[3])*(.8*Y[4]^2+.4*(Y[4]+Y[2])^2+2383.830+4905.000*Y[7]+158.631022309198*sin(.43*X-Y[5])*(1-Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sin(11/2+Y[7]+.2500000000*Y[3])))+1.2*(-.4*Y[1]-.4*Y[3])^2*(-2*Y[1]*(0.8e-1*Y[4]^2-0.8e-1*(Y[4]+Y[2])^2)+3.924*Y[1]+1340.209500*Y[3]+9810.000*Y[3]*Y[7]^2+4905.000*Y[3]*Y[7]+1.596679687-158.631022309198*sin(.43*X-Y[5])*(-(Y[7]-.2500000000*Y[3]+1/2)*sinh(-11/2-Y[7]+.2500000000*Y[3])-cosh(-11/2-Y[7]+.2500000000*Y[3]))+158.631022309198*sin(.43*X-Y[5])*((Y[7]+.2500000000*Y[3]+1/2)*sinh(11/2+Y[7]+.2500000000*Y[3])-cosh(11/2+Y[7]+.2500000000*Y[3]))-(4905.00*Y[7]+2452.50)*(1.0*Y[5]+.5*Y[3])+4905.000*Y[3]^2*Y[7]+1226.250*Y[3]^3-Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3]))+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))-cosh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))+cosh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])))-1.8173750000*(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(0.9962500000e-1+.16*cos(Y[1]))+8.4*(-3.924*Y[1]-3.924*Y[3]-.16*Y[4]^2*Y[1])*(0.9962500000e-1+.16*cos(Y[1]))-.9062916667*(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-.4*Y[3])^2+0.15700000000e-1*(.8*Y[4]^2+.4*(Y[4]+Y[2])^2+2383.830+4905.000*Y[7]+158.631022309198*sin(.43*X-Y[5])*(1-Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sin(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-1.2*Y[3])+.50562012085193000000*Y[4]^2*Y[3]+.25281006042596500000*(Y[4]+Y[2])^2*(Y[1]+Y[3])-0.9962500000e-1*(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-1.2*Y[3])^2-17.4335493517808*sin(.43*X-Y[5])*((Y[7]+.2500000000*Y[3]+1/2)*sinh(11/2+Y[7]+.2500000000*Y[3])-cosh(11/2+Y[7]+.2500000000*Y[3]))+17.4335493517808*sin(.43*X-Y[5])*(-(Y[7]-.2500000000*Y[3]+1/2)*sinh(-11/2-Y[7]+.2500000000*Y[3])-cosh(-11/2-Y[7]+.2500000000*Y[3]))+.4060186666816*Y[4]^2*Y[1]+.4*(-3.924*Y[1]-3.924*Y[3]-.16*Y[4]^2*Y[1])*(-.4*Y[1]-1.2*Y[3])^2+.219800000000*Y[1]*(0.8e-1*Y[4]^2-0.8e-1*(Y[4]+Y[2])^2)-1078.119000000000000*Y[3]*Y[7]^2-539.059500000000000*Y[3]*Y[7]+.109900000000*(4905.00*Y[7]+2452.50)*(1.0*Y[5]+.5*Y[3])-539.059500000000000*Y[3]^2*Y[7])/(2.3445975001253875000-.53737500000*(-.4*Y[1]-1.2*Y[3])^2+.8573750000*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])-1.497860000000*cos(Y[1])-4.9040416669*(-.4*Y[1]-.4*Y[3])^2+7*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])*(0.9962500000e-1+.16*cos(Y[1]))); YP[8] := -(-.53737500000*(-.4*Y[1]-1.2*Y[3])*(-2*Y[1]*(0.8e-1*Y[4]^2-0.8e-1*(Y[4]+Y[2])^2)+3.924*Y[1]+1340.209500*Y[3]+9810.000*Y[3]*Y[7]^2+4905.000*Y[3]*Y[7]+1.596679687-158.631022309198*sin(.43*X-Y[5])*(-(Y[7]-.2500000000*Y[3]+1/2)*sinh(-11/2-Y[7]+.2500000000*Y[3])-cosh(-11/2-Y[7]+.2500000000*Y[3]))+158.631022309198*sin(.43*X-Y[5])*((Y[7]+.2500000000*Y[3]+1/2)*sinh(11/2+Y[7]+.2500000000*Y[3])-cosh(11/2+Y[7]+.2500000000*Y[3]))-(4905.00*Y[7]+2452.50)*(1.0*Y[5]+.5*Y[3])+4905.000*Y[3]^2*Y[7]+1226.250*Y[3]^3-Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3]))+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))-cosh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))+cosh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])))-.48*(-3.924*Y[1]-3.924*Y[3]-.16*Y[4]^2*Y[1])*(-.4*Y[1]-1.2*Y[3])+1.3373750000*(-.4*Y[1]-.4*Y[3])*(-2*Y[1]*(0.8e-1*Y[4]^2-0.8e-1*(Y[4]+Y[2])^2)+3.924*Y[1]+1340.209500*Y[3]+9810.000*Y[3]*Y[7]^2+4905.000*Y[3]*Y[7]+1.596679687-158.631022309198*sin(.43*X-Y[5])*(-(Y[7]-.2500000000*Y[3]+1/2)*sinh(-11/2-Y[7]+.2500000000*Y[3])-cosh(-11/2-Y[7]+.2500000000*Y[3]))+158.631022309198*sin(.43*X-Y[5])*((Y[7]+.2500000000*Y[3]+1/2)*sinh(11/2+Y[7]+.2500000000*Y[3])-cosh(11/2+Y[7]+.2500000000*Y[3]))-(4905.00*Y[7]+2452.50)*(1.0*Y[5]+.5*Y[3])+4905.000*Y[3]^2*Y[7]+1226.250*Y[3]^3-Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3]))+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))-cosh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))+cosh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])))-4.9040416669*(-3.924*Y[1]-3.924*Y[3]-.16*Y[4]^2*Y[1])*(-.4*Y[1]-.4*Y[3])+.119550000000*(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-1.2*Y[3])+7*(-3.924*Y[1]-3.924*Y[3]-.16*Y[4]^2*Y[1])*(-.4*Y[1]-1.2*Y[3])*(0.9962500000e-1+.16*cos(Y[1]))-.4*(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-1.2*Y[3])*(0.9962500000e-1+.16*cos(Y[1]))+74.2676316024185*sin(.43*X-Y[5])*(1-Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sin(11/2+Y[7]+.2500000000*Y[3]))+1116.0579164503566049-1.3373750000*(.8*Y[4]^2+.4*(Y[4]+Y[2])^2+2383.830+4905.000*Y[7]+158.631022309198*sin(.43*X-Y[5])*(1-Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sin(11/2+Y[7]+.2500000000*Y[3])))*(0.9962500000e-1+.16*cos(Y[1]))+0.5096666668e-1*(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-.4*Y[3])+2296.4154659472358125*Y[7]+.37454278751433000000*Y[4]^2+.18727139375716500000*(Y[4]+Y[2])^2)/(2.3445975001253875000-.53737500000*(-.4*Y[1]-1.2*Y[3])^2+.8573750000*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])-1.497860000000*cos(Y[1])-4.9040416669*(-.4*Y[1]-.4*Y[3])^2+7*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])*(0.9962500000e-1+.16*cos(Y[1]))); YP[1] := Y[2]; YP[3] := Y[4]; YP[5] := Y[6]; YP[7] := Y[8]; 0 end proc, -1, 0, 0, 0, 0, 0, 0]), ( 11 ) = (Array(1..6, 0..8, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = .0, (1, 7) = .0, (1, 8) = .0, (2, 0) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = .0, (2, 7) = .0, (2, 8) = .0, (3, 0) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = .0, (3, 7) = .0, (3, 8) = .0, (4, 0) = .0, (4, 1) = .0, (4, 2) = .0, (4, 3) = .0, (4, 4) = .0, (4, 5) = .0, (4, 6) = .0, (4, 7) = .0, (4, 8) = .0, (5, 0) = .0, (5, 1) = .0, (5, 2) = .0, (5, 3) = .0, (5, 4) = .0, (5, 5) = .0, (5, 6) = .0, (5, 7) = .0, (5, 8) = .0, (6, 0) = .0, (6, 1) = .0, (6, 2) = .0, (6, 3) = .0, (6, 4) = .0, (6, 5) = .0, (6, 6) = .0, (6, 7) = .0, (6, 8) = .0}, datatype = float[8], order = C_order)), ( 8 ) = ([Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = 17.65307013401197, (3) = .0, (4) = -7.093237546136753, (5) = .0, (6) = .20723671453704962, (7) = .0, (8) = -340.5471428571427}, datatype = float[8], order = C_order)]), ( 9 ) = ([Array(1..8, {(1) = .1, (2) = .1, (3) = .1, (4) = .1, (5) = .1, (6) = .1, (7) = .1, (8) = .1}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, 1..8, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = .0, (1, 7) = .0, (1, 8) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = .0, (2, 7) = .0, (2, 8) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = .0, (3, 7) = .0, (3, 8) = .0, (4, 1) = .0, (4, 2) = .0, (4, 3) = .0, (4, 4) = .0, (4, 5) = .0, (4, 6) = .0, (4, 7) = .0, (4, 8) = .0, (5, 1) = .0, (5, 2) = .0, (5, 3) = .0, (5, 4) = .0, (5, 5) = .0, (5, 6) = .0, (5, 7) = .0, (5, 8) = .0, (6, 1) = .0, (6, 2) = .0, (6, 3) = .0, (6, 4) = .0, (6, 5) = .0, (6, 6) = .0, (6, 7) = .0, (6, 8) = .0, (7, 1) = .0, (7, 2) = .0, (7, 3) = .0, (7, 4) = .0, (7, 5) = .0, (7, 6) = .0, (7, 7) = .0, (7, 8) = .0, (8, 1) = .0, (8, 2) = .0, (8, 3) = .0, (8, 4) = .0, (8, 5) = .0, (8, 6) = .0, (8, 7) = .0, (8, 8) = .0}, datatype = float[8], order = C_order), Array(1..8, 1..8, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = .0, (1, 7) = .0, (1, 8) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = .0, (2, 7) = .0, (2, 8) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = .0, (3, 7) = .0, (3, 8) = .0, (4, 1) = .0, (4, 2) = .0, (4, 3) = .0, (4, 4) = .0, (4, 5) = .0, (4, 6) = .0, (4, 7) = .0, (4, 8) = .0, (5, 1) = .0, (5, 2) = .0, (5, 3) = .0, (5, 4) = .0, (5, 5) = .0, (5, 6) = .0, (5, 7) = .0, (5, 8) = .0, (6, 1) = .0, (6, 2) = .0, (6, 3) = .0, (6, 4) = .0, (6, 5) = .0, (6, 6) = .0, (6, 7) = .0, (6, 8) = .0, (7, 1) = .0, (7, 2) = .0, (7, 3) = .0, (7, 4) = .0, (7, 5) = .0, (7, 6) = .0, (7, 7) = .0, (7, 8) = .0, (8, 1) = .0, (8, 2) = .0, (8, 3) = .0, (8, 4) = .0, (8, 5) = .0, (8, 6) = .0, (8, 7) = .0, (8, 8) = .0}, datatype = float[8], order = C_order), Array(1..8, 1..6, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = .0, (4, 1) = .0, (4, 2) = .0, (4, 3) = .0, (4, 4) = .0, (4, 5) = .0, (4, 6) = .0, (5, 1) = .0, (5, 2) = .0, (5, 3) = .0, (5, 4) = .0, (5, 5) = .0, (5, 6) = .0, (6, 1) = .0, (6, 2) = .0, (6, 3) = .0, (6, 4) = .0, (6, 5) = .0, (6, 6) = .0, (7, 1) = .0, (7, 2) = .0, (7, 3) = .0, (7, 4) = .0, (7, 5) = .0, (7, 6) = .0, (8, 1) = .0, (8, 2) = .0, (8, 3) = .0, (8, 4) = .0, (8, 5) = .0, (8, 6) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = 0, (2) = 0, (3) = 0, (4) = 0, (5) = 0, (6) = 0, (7) = 0, (8) = 0}, datatype = integer[4]), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order)]), ( 15 ) = ("rkf45"), ( 14 ) = ([0, 0]), ( 13 ) = (), ( 12 ) = (), ( 20 ) = ([]), ( 16 ) = ([0, 0, 0, []]), ( 17 ) = ([proc (N, X, Y, YP) option `[Y[1] = alpha(t), Y[2] = diff(alpha(t),t), Y[3] = theta(t), Y[4] = diff(theta(t),t), Y[5] = x(t), Y[6] = diff(x(t),t), Y[7] = z(t), Y[8] = diff(z(t),t)]`; YP[2] := -(-14.947516474811375000+9.3616250000*cosh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))-9.3616250000*cosh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3]))-12681.242976943909200*Y[3]-171.4392330064092*Y[1]-11479.6926562500000*Y[3]^3+9.3616250000*Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3]))-9.3616250000*Y[3]*(Y[5]+.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))+7*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])*(-2*Y[1]*(0.8e-1*Y[4]^2-0.8e-1*(Y[4]+Y[2])^2)+3.924*Y[1]+1340.209500*Y[3]+9810.000*Y[3]*Y[7]^2+4905.000*Y[3]*Y[7]+1.596679687-158.631022309198*sin(.43*X-Y[5])*(-(Y[7]-.2500000000*Y[3]+1/2)*sinh(-11/2-Y[7]+.2500000000*Y[3])-cosh(-11/2-Y[7]+.2500000000*Y[3]))+158.631022309198*sin(.43*X-Y[5])*((Y[7]+.2500000000*Y[3]+1/2)*sinh(11/2+Y[7]+.2500000000*Y[3])-cosh(11/2+Y[7]+.2500000000*Y[3]))-(4905.00*Y[7]+2452.50)*(1.0*Y[5]+.5*Y[3])+4905.000*Y[3]^2*Y[7]+1226.250*Y[3]^3-Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3]))+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))-cosh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))+cosh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])))-56.5942610739837*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3]))-1.2*(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])-4.9040416669*(-.4*Y[1]-.4*Y[3])*(.8*Y[4]^2+.4*(Y[4]+Y[2])^2+2383.830+4905.000*Y[7]+158.631022309198*sin(.43*X-Y[5])*(1-Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sin(11/2+Y[7]+.2500000000*Y[3])))+1.3373750000*(.8*Y[4]^2+.4*(Y[4]+Y[2])^2+2383.830+4905.000*Y[7]+158.631022309198*sin(.43*X-Y[5])*(1-Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sin(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-1.2*Y[3])-.285413333408*Y[4]^2*Y[3]-.142706666704*(Y[4]+Y[2])^2*(Y[1]+Y[3])+.4*(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-1.2*Y[3])^2-1485.04414422534*sin(.43*X-Y[5])*((Y[7]+.2500000000*Y[3]+1/2)*sinh(11/2+Y[7]+.2500000000*Y[3])-cosh(11/2+Y[7]+.2500000000*Y[3]))+1485.04414422534*sin(.43*X-Y[5])*(-(Y[7]-.2500000000*Y[3]+1/2)*sinh(-11/2-Y[7]+.2500000000*Y[3])-cosh(-11/2-Y[7]+.2500000000*Y[3]))-5.492526666928*Y[4]^2*Y[1]-7*(-3.924*Y[1]-3.924*Y[3]-.16*Y[4]^2*Y[1])*(-.4*Y[1]-1.2*Y[3])^2+18.7232500000*Y[1]*(0.8e-1*Y[4]^2-0.8e-1*(Y[4]+Y[2])^2)-91837.5412500000000*Y[3]*Y[7]^2-45918.7706250000000*Y[3]*Y[7]+9.3616250000*(4905.00*Y[7]+2452.50)*(1.0*Y[5]+.5*Y[3])-45918.7706250000000*Y[3]^2*Y[7])/(2.3445975001253875000-.53737500000*(-.4*Y[1]-1.2*Y[3])^2+.8573750000*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])-1.497860000000*cos(Y[1])-4.9040416669*(-.4*Y[1]-.4*Y[3])^2+7*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])*(0.9962500000e-1+.16*cos(Y[1]))); YP[4] := (-6.0061102276113750000+3.76162500000*cosh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))-3.76162500000*cosh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3]))-5028.1809204375000000*Y[3]-1.57597650000000*Y[1]-4612.69265625000000*Y[3]^3+3.76162500000*Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3]))-3.76162500000*Y[3]*(Y[5]+.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))-7*(-.4*Y[1]-.4*Y[3])*(.8*Y[4]^2+.4*(Y[4]+Y[2])^2+2383.830+4905.000*Y[7]+158.631022309198*sin(.43*X-Y[5])*(1-Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sin(11/2+Y[7]+.2500000000*Y[3])))*(0.9962500000e-1+.16*cos(Y[1]))-7*(-3.924*Y[1]-3.924*Y[3]-.16*Y[4]^2*Y[1])*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])+132.750371019452*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3]))+.4*(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])+.48*(-.4*Y[1]-.4*Y[3])*(.8*Y[4]^2+.4*(Y[4]+Y[2])^2+2383.830+4905.000*Y[7]+158.631022309198*sin(.43*X-Y[5])*(1-Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sin(11/2+Y[7]+.2500000000*Y[3])))+7*(-.4*Y[1]-.4*Y[3])^2*(-2*Y[1]*(0.8e-1*Y[4]^2-0.8e-1*(Y[4]+Y[2])^2)+3.924*Y[1]+1340.209500*Y[3]+9810.000*Y[3]*Y[7]^2+4905.000*Y[3]*Y[7]+1.596679687-158.631022309198*sin(.43*X-Y[5])*(-(Y[7]-.2500000000*Y[3]+1/2)*sinh(-11/2-Y[7]+.2500000000*Y[3])-cosh(-11/2-Y[7]+.2500000000*Y[3]))+158.631022309198*sin(.43*X-Y[5])*((Y[7]+.2500000000*Y[3]+1/2)*sinh(11/2+Y[7]+.2500000000*Y[3])-cosh(11/2+Y[7]+.2500000000*Y[3]))-(4905.00*Y[7]+2452.50)*(1.0*Y[5]+.5*Y[3])+4905.000*Y[3]^2*Y[7]+1226.250*Y[3]^3-Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3]))+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))-cosh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))+cosh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])))-2.8*(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(0.9962500000e-1+.16*cos(Y[1]))+49*(-3.924*Y[1]-3.924*Y[3]-.16*Y[4]^2*Y[1])*(0.9962500000e-1+.16*cos(Y[1]))-1.2*(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-.4*Y[3])^2+.53737500000*(.8*Y[4]^2+.4*(Y[4]+Y[2])^2+2383.830+4905.000*Y[7]+158.631022309198*sin(.43*X-Y[5])*(1-Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sin(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-1.2*Y[3])+.6694800000000*Y[4]^2*Y[3]+.3347400000000*(Y[4]+Y[2])^2*(Y[1]+Y[3])-596.710419293836*sin(.43*X-Y[5])*((Y[7]+.2500000000*Y[3]+1/2)*sinh(11/2+Y[7]+.2500000000*Y[3])-cosh(11/2+Y[7]+.2500000000*Y[3]))+596.710419293836*sin(.43*X-Y[5])*(-(Y[7]-.2500000000*Y[3]+1/2)*sinh(-11/2-Y[7]+.2500000000*Y[3])-cosh(-11/2-Y[7]+.2500000000*Y[3]))+.5376*Y[4]^2*Y[1]+7.52325000000*Y[1]*(0.8e-1*Y[4]^2-0.8e-1*(Y[4]+Y[2])^2)-36901.54125000000000*Y[3]*Y[7]^2-18450.77062500000000*Y[3]*Y[7]+3.76162500000*(4905.00*Y[7]+2452.50)*(1.0*Y[5]+.5*Y[3])-18450.77062500000000*Y[3]^2*Y[7])/(2.3445975001253875000-.53737500000*(-.4*Y[1]-1.2*Y[3])^2+.8573750000*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])-1.497860000000*cos(Y[1])-4.9040416669*(-.4*Y[1]-.4*Y[3])^2+7*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])*(0.9962500000e-1+.16*cos(Y[1]))); YP[6] := -(-.1754750976013000000+.109900000000*cosh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))-.109900000000*cosh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3]))-137.33141624963376000*Y[3]+9.526360200366240*Y[1]-134.764875000000000*Y[3]^3+.109900000000*Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3]))-.109900000000*Y[3]*(Y[5]+.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))-.4*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])*(-2*Y[1]*(0.8e-1*Y[4]^2-0.8e-1*(Y[4]+Y[2])^2)+3.924*Y[1]+1340.209500*Y[3]+9810.000*Y[3]*Y[7]^2+4905.000*Y[3]*Y[7]+1.596679687-158.631022309198*sin(.43*X-Y[5])*(-(Y[7]-.2500000000*Y[3]+1/2)*sinh(-11/2-Y[7]+.2500000000*Y[3])-cosh(-11/2-Y[7]+.2500000000*Y[3]))+158.631022309198*sin(.43*X-Y[5])*((Y[7]+.2500000000*Y[3]+1/2)*sinh(11/2+Y[7]+.2500000000*Y[3])-cosh(11/2+Y[7]+.2500000000*Y[3]))-(4905.00*Y[7]+2452.50)*(1.0*Y[5]+.5*Y[3])+4905.000*Y[3]^2*Y[7]+1226.250*Y[3]^3-Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3]))+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))-cosh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))+cosh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])))-1.2*(-.4*Y[1]-.4*Y[3])*(.8*Y[4]^2+.4*(Y[4]+Y[2])^2+2383.830+4905.000*Y[7]+158.631022309198*sin(.43*X-Y[5])*(1-Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sin(11/2+Y[7]+.2500000000*Y[3])))*(0.9962500000e-1+.16*cos(Y[1]))-1.2*(-3.924*Y[1]-3.924*Y[3]-.16*Y[4]^2*Y[1])*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])+100.258795838552*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3]))+.2596250000*(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])+(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])*(0.9962500000e-1+.16*cos(Y[1]))+.36251666668*(-.4*Y[1]-.4*Y[3])*(.8*Y[4]^2+.4*(Y[4]+Y[2])^2+2383.830+4905.000*Y[7]+158.631022309198*sin(.43*X-Y[5])*(1-Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sin(11/2+Y[7]+.2500000000*Y[3])))+1.2*(-.4*Y[1]-.4*Y[3])^2*(-2*Y[1]*(0.8e-1*Y[4]^2-0.8e-1*(Y[4]+Y[2])^2)+3.924*Y[1]+1340.209500*Y[3]+9810.000*Y[3]*Y[7]^2+4905.000*Y[3]*Y[7]+1.596679687-158.631022309198*sin(.43*X-Y[5])*(-(Y[7]-.2500000000*Y[3]+1/2)*sinh(-11/2-Y[7]+.2500000000*Y[3])-cosh(-11/2-Y[7]+.2500000000*Y[3]))+158.631022309198*sin(.43*X-Y[5])*((Y[7]+.2500000000*Y[3]+1/2)*sinh(11/2+Y[7]+.2500000000*Y[3])-cosh(11/2+Y[7]+.2500000000*Y[3]))-(4905.00*Y[7]+2452.50)*(1.0*Y[5]+.5*Y[3])+4905.000*Y[3]^2*Y[7]+1226.250*Y[3]^3-Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3]))+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))-cosh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))+cosh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])))-1.8173750000*(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(0.9962500000e-1+.16*cos(Y[1]))+8.4*(-3.924*Y[1]-3.924*Y[3]-.16*Y[4]^2*Y[1])*(0.9962500000e-1+.16*cos(Y[1]))-.9062916667*(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-.4*Y[3])^2+0.15700000000e-1*(.8*Y[4]^2+.4*(Y[4]+Y[2])^2+2383.830+4905.000*Y[7]+158.631022309198*sin(.43*X-Y[5])*(1-Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sin(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-1.2*Y[3])+.50562012085193000000*Y[4]^2*Y[3]+.25281006042596500000*(Y[4]+Y[2])^2*(Y[1]+Y[3])-0.9962500000e-1*(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-1.2*Y[3])^2-17.4335493517808*sin(.43*X-Y[5])*((Y[7]+.2500000000*Y[3]+1/2)*sinh(11/2+Y[7]+.2500000000*Y[3])-cosh(11/2+Y[7]+.2500000000*Y[3]))+17.4335493517808*sin(.43*X-Y[5])*(-(Y[7]-.2500000000*Y[3]+1/2)*sinh(-11/2-Y[7]+.2500000000*Y[3])-cosh(-11/2-Y[7]+.2500000000*Y[3]))+.4060186666816*Y[4]^2*Y[1]+.4*(-3.924*Y[1]-3.924*Y[3]-.16*Y[4]^2*Y[1])*(-.4*Y[1]-1.2*Y[3])^2+.219800000000*Y[1]*(0.8e-1*Y[4]^2-0.8e-1*(Y[4]+Y[2])^2)-1078.119000000000000*Y[3]*Y[7]^2-539.059500000000000*Y[3]*Y[7]+.109900000000*(4905.00*Y[7]+2452.50)*(1.0*Y[5]+.5*Y[3])-539.059500000000000*Y[3]^2*Y[7])/(2.3445975001253875000-.53737500000*(-.4*Y[1]-1.2*Y[3])^2+.8573750000*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])-1.497860000000*cos(Y[1])-4.9040416669*(-.4*Y[1]-.4*Y[3])^2+7*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])*(0.9962500000e-1+.16*cos(Y[1]))); YP[8] := -(-.53737500000*(-.4*Y[1]-1.2*Y[3])*(-2*Y[1]*(0.8e-1*Y[4]^2-0.8e-1*(Y[4]+Y[2])^2)+3.924*Y[1]+1340.209500*Y[3]+9810.000*Y[3]*Y[7]^2+4905.000*Y[3]*Y[7]+1.596679687-158.631022309198*sin(.43*X-Y[5])*(-(Y[7]-.2500000000*Y[3]+1/2)*sinh(-11/2-Y[7]+.2500000000*Y[3])-cosh(-11/2-Y[7]+.2500000000*Y[3]))+158.631022309198*sin(.43*X-Y[5])*((Y[7]+.2500000000*Y[3]+1/2)*sinh(11/2+Y[7]+.2500000000*Y[3])-cosh(11/2+Y[7]+.2500000000*Y[3]))-(4905.00*Y[7]+2452.50)*(1.0*Y[5]+.5*Y[3])+4905.000*Y[3]^2*Y[7]+1226.250*Y[3]^3-Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3]))+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))-cosh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))+cosh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])))-.48*(-3.924*Y[1]-3.924*Y[3]-.16*Y[4]^2*Y[1])*(-.4*Y[1]-1.2*Y[3])+1.3373750000*(-.4*Y[1]-.4*Y[3])*(-2*Y[1]*(0.8e-1*Y[4]^2-0.8e-1*(Y[4]+Y[2])^2)+3.924*Y[1]+1340.209500*Y[3]+9810.000*Y[3]*Y[7]^2+4905.000*Y[3]*Y[7]+1.596679687-158.631022309198*sin(.43*X-Y[5])*(-(Y[7]-.2500000000*Y[3]+1/2)*sinh(-11/2-Y[7]+.2500000000*Y[3])-cosh(-11/2-Y[7]+.2500000000*Y[3]))+158.631022309198*sin(.43*X-Y[5])*((Y[7]+.2500000000*Y[3]+1/2)*sinh(11/2+Y[7]+.2500000000*Y[3])-cosh(11/2+Y[7]+.2500000000*Y[3]))-(4905.00*Y[7]+2452.50)*(1.0*Y[5]+.5*Y[3])+4905.000*Y[3]^2*Y[7]+1226.250*Y[3]^3-Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3]))+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3])*sinh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))-cosh(-11/2-Y[7]+Y[3]*(Y[5]+.2500000000+(1/2)*Y[3]))+cosh(-11/2-Y[7]+Y[3]*(Y[5]-.2500000000+(1/2)*Y[3])))-4.9040416669*(-3.924*Y[1]-3.924*Y[3]-.16*Y[4]^2*Y[1])*(-.4*Y[1]-.4*Y[3])+.119550000000*(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-1.2*Y[3])+7*(-3.924*Y[1]-3.924*Y[3]-.16*Y[4]^2*Y[1])*(-.4*Y[1]-1.2*Y[3])*(0.9962500000e-1+.16*cos(Y[1]))-.4*(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-1.2*Y[3])*(0.9962500000e-1+.16*cos(Y[1]))+74.2676316024185*sin(.43*X-Y[5])*(1-Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sin(11/2+Y[7]+.2500000000*Y[3]))+1116.0579164503566049-1.3373750000*(.8*Y[4]^2+.4*(Y[4]+Y[2])^2+2383.830+4905.000*Y[7]+158.631022309198*sin(.43*X-Y[5])*(1-Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sin(11/2+Y[7]+.2500000000*Y[3])))*(0.9962500000e-1+.16*cos(Y[1]))+0.5096666668e-1*(.8*Y[4]^2*Y[3]+.4*(Y[4]+Y[2])^2*(Y[1]+Y[3])+158.631022309198*sin(.43*X-Y[5])*(1+Y[3])*(-sinh(-11/2-Y[7]+.2500000000*Y[3])-sinh(11/2+Y[7]+.2500000000*Y[3])))*(-.4*Y[1]-.4*Y[3])+2296.4154659472358125*Y[7]+.37454278751433000000*Y[4]^2+.18727139375716500000*(Y[4]+Y[2])^2)/(2.3445975001253875000-.53737500000*(-.4*Y[1]-1.2*Y[3])^2+.8573750000*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])-1.497860000000*cos(Y[1])-4.9040416669*(-.4*Y[1]-.4*Y[3])^2+7*(-.4*Y[1]-.4*Y[3])*(-.4*Y[1]-1.2*Y[3])*(0.9962500000e-1+.16*cos(Y[1]))); YP[1] := Y[2]; YP[3] := Y[4]; YP[5] := Y[6]; YP[7] := Y[8]; 0 end proc, -1, 0, 0, 0, 0, 0, 0]), ( 18 ) = ([]), ( 19 ) = (0)  ] ))  ] ); _y0 := Array(0..8, {(1) = 0., (2) = 0., (3) = 0., (4) = 0., (5) = 0., (6) = 0., (7) = 0., (8) = 0.}); _vmap := array( 1 .. 8, [( 1 ) = (1), ( 2 ) = (2), ( 3 ) = (3), ( 5 ) = (5), ( 4 ) = (4), ( 7 ) = (7), ( 6 ) = (6), ( 8 ) = (8)  ] ); _x0 := _dtbl[1][5][5]; _n := _dtbl[1][4][1]; _ne := _dtbl[1][4][3]; _nd := _dtbl[1][4][4]; _nv := _dtbl[1][4][16]; if not type(_xout, 'numeric') then if member(_xout, ["start", "left", "right"]) then if _Env_smart_dsolve_numeric = true or _dtbl[1][4][10] = 1 then if _xout = "left" then if type(_dtbl[2], 'table') then return _dtbl[2][5][1] end if elif _xout = "right" then if type(_dtbl[3], 'table') then return _dtbl[3][5][1] end if end if end if; return _dtbl[1][5][5] elif _xout = "method" then return _dtbl[1][15] elif _xout = "storage" then return evalb(_dtbl[1][4][10] = 1) elif _xout = "leftdata" then if not type(_dtbl[2], 'array') then return NULL else return eval(_dtbl[2]) end if elif _xout = "rightdata" then if not type(_dtbl[3], 'array') then return NULL else return eval(_dtbl[3]) end if elif _xout = "enginedata" then return eval(_dtbl[1]) elif _xout = "enginereset" then _dtbl[2] := evaln(_dtbl[2]); _dtbl[3] := evaln(_dtbl[3]); return NULL elif _xout = "initial" then return procname(_y0[0]) elif _xout = "laxtol" then return _dtbl[`if`(member(_dtbl[4], {2, 3}), _dtbl[4], 1)][5][18] elif _xout = "numfun" then return `if`(member(_dtbl[4], {2, 3}), _dtbl[_dtbl[4]][4][18], 0) elif _xout = "parameters" then return [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] elif _xout = "initial_and_parameters" then return procname(_y0[0]), [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] elif _xout = "last" then if _dtbl[4] <> 2 and _dtbl[4] <> 3 or _x0-_dtbl[_dtbl[4]][5][1] = 0. then error "no information is available on last computed point" else _xout := _dtbl[_dtbl[4]][5][1] end if elif _xout = "function" then if _dtbl[1][4][33]-2. = 0 then return eval(_dtbl[1][10], 1) else return eval(_dtbl[1][10][1], 1) end if elif _xout = "map" then return copy(_vmap) elif type(_xin, `=`) and type(rhs(_xin), 'list') and member(lhs(_xin), {"initial", "parameters", "initial_and_parameters"}) then _ini, _par := [], []; if lhs(_xin) = "initial" then _ini := rhs(_xin) elif lhs(_xin) = "parameters" then _par := rhs(_xin) elif select(type, rhs(_xin), `=`) <> [] then _par, _ini := selectremove(type, rhs(_xin), `=`) elif nops(rhs(_xin)) < nops(_pars)+1 then error "insufficient data for specification of initial and parameters" else _par := rhs(_xin)[-nops(_pars) .. -1]; _ini := rhs(_xin)[1 .. -nops(_pars)-1] end if; _xout := lhs(_xout); if _par <> [] then `dsolve/numeric/process_parameters`(_n, _pars, _par, _y0) end if; if _ini <> [] then `dsolve/numeric/process_initial`(_n-_ne, _ini, _y0, _pars, _vmap) end if; `dsolve/numeric/SC/reinitialize`(_dtbl, _y0, _n, procname, _pars); if _Env_smart_dsolve_numeric = true and type(_y0[0], 'numeric') and _dtbl[1][4][10] <> 1 then procname("right") := _y0[0]; procname("left") := _y0[0] end if; if _xout = "initial" then return [_y0[0], seq(_y0[_vmap[_i]], _i = 1 .. _n-_ne)] elif _xout = "parameters" then return [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] else return [_y0[0], seq(_y0[_vmap[_i]], _i = 1 .. _n-_ne)], [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] end if elif _xin = "eventstop" then if _nv = 0 then error "this solution has no events" end if; _i := _dtbl[4]; if _i <> 2 and _i <> 3 then return 0 end if; if _dtbl[_i][4][10] = 1 and assigned(_dtbl[5-_i]) and _dtbl[_i][4][9] < 10 and 10 <= _dtbl[5-_i][4][9] then _i := 5-_i; _dtbl[4] := _i; _j := round(_dtbl[_i][4][17]); return round(_dtbl[_i][3][1][_j, 1]) elif 10 <= _dtbl[_i][4][9] then _j := round(_dtbl[_i][4][17]); return round(_dtbl[_i][3][1][_j, 1]) else return 0 end if elif _xin = "eventstatus" then if _nv = 0 then error "this solution has no events" end if; _i := [selectremove(proc (a) options operator, arrow; _dtbl[1][3][1][a, 7] = 1 end proc, {seq(_j, _j = 1 .. round(_dtbl[1][3][1][_nv+1, 1]))})]; return ':-enabled' = _i[1], ':-disabled' = _i[2] elif _xin = "eventclear" then if _nv = 0 then error "this solution has no events" end if; _i := _dtbl[4]; if _i <> 2 and _i <> 3 then error "no events to clear" end if; if _dtbl[_i][4][10] = 1 and assigned(_dtbl[5-_i]) and _dtbl[_i][4][9] < 10 and 10 < _dtbl[5-_i][4][9] then _dtbl[4] := 5-_i; _i := 5-_i end if; if _dtbl[_i][4][9] < 10 then error "no events to clear" elif _nv < _dtbl[_i][4][9]-10 then error "event error condition cannot be cleared" else _j := _dtbl[_i][4][9]-10; if irem(round(_dtbl[_i][3][1][_j, 4]), 2) = 1 then error "retriggerable events cannot be cleared" end if; _j := round(_dtbl[_i][3][1][_j, 1]); for _k to _nv do if _dtbl[_i][3][1][_k, 1] = _j then if _dtbl[_i][3][1][_k, 2] = 3 then error "range events cannot be cleared" end if; _dtbl[_i][3][1][_k, 8] := _dtbl[_i][3][1][_nv+1, 8] end if end do; _dtbl[_i][4][17] := 0; _dtbl[_i][4][9] := 0; if _dtbl[1][4][10] = 1 then if _i = 2 then try procname(procname("left")) catch:  end try else try procname(procname("right")) catch:  end try end if end if end if; return  elif type(_xin, `=`) and member(lhs(_xin), {"eventdisable", "eventenable"}) then if _nv = 0 then error "this solution has no events" end if; if type(rhs(_xin), {('list')('posint'), ('set')('posint')}) then _i := {op(rhs(_xin))} elif type(rhs(_xin), 'posint') then _i := {rhs(_xin)} else error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; if select(proc (a) options operator, arrow; _nv < a end proc, _i) <> {} then error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; _k := {}; for _j to _nv do if member(round(_dtbl[1][3][1][_j, 1]), _i) then _k := `union`(_k, {_j}) end if end do; _i := _k; if lhs(_xin) = "eventdisable" then _dtbl[4] := 0; _j := [evalb(assigned(_dtbl[2]) and member(_dtbl[2][4][17], _i)), evalb(assigned(_dtbl[3]) and member(_dtbl[3][4][17], _i))]; for _k in _i do _dtbl[1][3][1][_k, 7] := 0; if assigned(_dtbl[2]) then _dtbl[2][3][1][_k, 7] := 0 end if; if assigned(_dtbl[3]) then _dtbl[3][3][1][_k, 7] := 0 end if end do; if _j[1] then for _k to _nv+1 do if _k <= _nv and not type(_dtbl[2][3][4][_k, 1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to defined init `, _dtbl[2][3][4][_k, 1]); _dtbl[2][3][1][_k, 8] := _dtbl[2][3][4][_k, 1] elif _dtbl[2][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[2][3][1][_k, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to rate hysteresis init `, _dtbl[2][5][24]); _dtbl[2][3][1][_k, 8] := _dtbl[2][5][24] elif _dtbl[2][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[2][3][1][_k, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to initial init `, _x0); _dtbl[2][3][1][_k, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to fireinitial init `, _x0-1); _dtbl[2][3][1][_k, 8] := _x0-1 end if end do; _dtbl[2][4][17] := 0; _dtbl[2][4][9] := 0; if _dtbl[1][4][10] = 1 then procname(procname("left")) end if end if; if _j[2] then for _k to _nv+1 do if _k <= _nv and not type(_dtbl[3][3][4][_k, 2], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to defined init `, _dtbl[3][3][4][_k, 2]); _dtbl[3][3][1][_k, 8] := _dtbl[3][3][4][_k, 2] elif _dtbl[3][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[3][3][1][_k, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to rate hysteresis init `, _dtbl[3][5][24]); _dtbl[3][3][1][_k, 8] := _dtbl[3][5][24] elif _dtbl[3][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[3][3][1][_k, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to initial init `, _x0); _dtbl[3][3][1][_k, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to fireinitial init `, _x0+1); _dtbl[3][3][1][_k, 8] := _x0+1 end if end do; _dtbl[3][4][17] := 0; _dtbl[3][4][9] := 0; if _dtbl[1][4][10] = 1 then procname(procname("right")) end if end if else for _k in _i do _dtbl[1][3][1][_k, 7] := 1 end do; _dtbl[2] := evaln(_dtbl[2]); _dtbl[3] := evaln(_dtbl[3]); _dtbl[4] := 0; if _dtbl[1][4][10] = 1 then if _x0 <= procname("right") then try procname(procname("right")) catch:  end try end if; if procname("left") <= _x0 then try procname(procname("left")) catch:  end try end if end if end if; return  elif type(_xin, `=`) and lhs(_xin) = "eventfired" then if not type(rhs(_xin), 'list') then error "'eventfired' must be specified as a list" end if; if _nv = 0 then error "this solution has no events" end if; if _dtbl[4] <> 2 and _dtbl[4] <> 3 then error "'direction' must be set prior to calling/setting 'eventfired'" end if; _i := _dtbl[4]; _val := NULL; if not assigned(_EnvEventRetriggerWarned) then _EnvEventRetriggerWarned := false end if; for _k in rhs(_xin) do if type(_k, 'integer') then _src := _k elif type(_k, 'integer' = 'anything') and type(evalf(rhs(_k)), 'numeric') then _k := lhs(_k) = evalf[max(Digits, 18)](rhs(_k)); _src := lhs(_k) else error "'eventfired' entry is not valid: %1", _k end if; if _src < 1 or round(_dtbl[1][3][1][_nv+1, 1]) < _src then error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; _src := {seq(`if`(_dtbl[1][3][1][_j, 1]-_src = 0., _j, NULL), _j = 1 .. _nv)}; if nops(_src) <> 1 then error "'eventfired' can only be set/queried for root-finding events and time/interval events" end if; _src := _src[1]; if _dtbl[1][3][1][_src, 2] <> 0. and _dtbl[1][3][1][_src, 2]-2. <> 0. then error "'eventfired' can only be set/queried for root-finding events and time/interval events" elif irem(round(_dtbl[1][3][1][_src, 4]), 2) = 1 then if _EnvEventRetriggerWarned = false then WARNING(`'eventfired' has no effect on events that retrigger`) end if; _EnvEventRetriggerWarned := true end if; if _dtbl[_i][3][1][_src, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_src, 4]), 32), 2) = 1 then _val := _val, undefined elif type(_dtbl[_i][3][4][_src, _i-1], 'undefined') or _i = 2 and _dtbl[2][3][1][_src, 8] < _dtbl[2][3][4][_src, 1] or _i = 3 and _dtbl[3][3][4][_src, 2] < _dtbl[3][3][1][_src, 8] then _val := _val, _dtbl[_i][3][1][_src, 8] else _val := _val, _dtbl[_i][3][4][_src, _i-1] end if; if type(_k, `=`) then if _dtbl[_i][3][1][_src, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_src, 4]), 32), 2) = 1 then error "cannot set event code for a rate hysteresis event" end if; userinfo(3, {'events', 'eventreset'}, `manual set event code `, _src, ` to value `, rhs(_k)); _dtbl[_i][3][1][_src, 8] := rhs(_k); _dtbl[_i][3][4][_src, _i-1] := rhs(_k) end if end do; return [_val] elif type(_xin, `=`) and lhs(_xin) = "direction" then if not member(rhs(_xin), {-1, 1, ':-left', ':-right'}) then error "'direction' must be specified as either '1' or 'right' (positive) or '-1' or 'left' (negative)" end if; _src := `if`(_dtbl[4] = 2, -1, `if`(_dtbl[4] = 3, 1, undefined)); _i := `if`(member(rhs(_xin), {1, ':-right'}), 3, 2); _dtbl[4] := _i; _dtbl[_i] := `dsolve/numeric/SC/IVPdcopy`(_dtbl[1], `if`(assigned(_dtbl[_i]), _dtbl[_i], NULL)); if 0 < _nv then for _j to _nv+1 do if _j <= _nv and not type(_dtbl[_i][3][4][_j, _i-1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to defined init `, _dtbl[_i][3][4][_j, _i-1]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][3][4][_j, _i-1] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to rate hysteresis init `, _dtbl[_i][5][24]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][5][24] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to initial init `, _x0); _dtbl[_i][3][1][_j, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to fireinitial init `, _x0-2*_i+5.0); _dtbl[_i][3][1][_j, 8] := _x0-2*_i+5.0 end if end do end if; return _src elif _xin = "eventcount" then if _dtbl[1][3][1] = 0 or _dtbl[4] <> 2 and _dtbl[4] <> 3 then return 0 else return round(_dtbl[_dtbl[4]][3][1][_nv+1, 12]) end if else return "procname" end if end if; if _xout = _x0 then return [_x0, seq(evalf(_dtbl[1][6][_vmap[_i]]), _i = 1 .. _n-_ne)] end if; _i := `if`(_x0 <= _xout, 3, 2); if _xin = "last" and 0 < _dtbl[_i][4][9] and _dtbl[_i][4][9] < 10 then _dat := eval(_dtbl[_i], 2); _j := _dat[4][20]; return [_dat[11][_j, 0], seq(_dat[11][_j, _vmap[_i]], _i = 1 .. _n-_ne-_nd), seq(_dat[8][1][_vmap[_i]], _i = _n-_ne-_nd+1 .. _n-_ne)] end if; if not type(_dtbl[_i], 'array') then _dtbl[_i] := `dsolve/numeric/SC/IVPdcopy`(_dtbl[1], `if`(assigned(_dtbl[_i]), _dtbl[_i], NULL)); if 0 < _nv then for _j to _nv+1 do if _j <= _nv and not type(_dtbl[_i][3][4][_j, _i-1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to defined init `, _dtbl[_i][3][4][_j, _i-1]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][3][4][_j, _i-1] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to rate hysteresis init `, _dtbl[_i][5][24]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][5][24] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to initial init `, _x0); _dtbl[_i][3][1][_j, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to fireinitial init `, _x0-2*_i+5.0); _dtbl[_i][3][1][_j, 8] := _x0-2*_i+5.0 end if end do end if end if; if _xin <> "last" then if 0 < 0 then if `dsolve/numeric/checkglobals`(op(_dtbl[1][14]), _pars, _n, _y0) then `dsolve/numeric/SC/reinitialize`(_dtbl, _y0, _n, procname, _pars, _i) end if end if; if _dtbl[1][4][7] = 0 then error "parameters must be initialized before solution can be computed" end if end if; _dat := eval(_dtbl[_i], 2); _dtbl[4] := _i; try _src := `dsolve/numeric/SC/IVPrun`(_dat, _xout) catch: userinfo(2, `dsolve/debug`, print(`Exception in solnproc:`, [lastexception][2 .. -1])); error  end try; if _src = 0 and 10 < _dat[4][9] then _val := _dat[3][1][_nv+1, 8] else _val := _dat[11][_dat[4][20], 0] end if; if _src <> 0 or _dat[4][9] <= 0 then _dtbl[1][5][1] := _xout else _dtbl[1][5][1] := _val end if; if _i = 3 and _val < _xout then Rounding := -infinity; if _dat[4][9] = 1 then error "cannot evaluate the solution further right of %1, probably a singularity", evalf[8](_val) elif _dat[4][9] = 2 then error "cannot evaluate the solution further right of %1, maxfun limit exceeded (see <a href='http://www.maplesoft.com/support/help/search.aspx?term=dsolve,maxfun' target='_new'>?dsolve,maxfun</a> for details)", evalf[8](_val) elif _dat[4][9] = 3 then if _dat[4][25] = 3 then error "cannot evaluate the solution past the initial point, problem may be initially singular or improperly set up" else error "cannot evaluate the solution past the initial point, problem may be complex, initially singular or improperly set up" end if elif _dat[4][9] = 4 then error "cannot evaluate the solution further right of %1, accuracy goal cannot be achieved with specified 'minstep'", evalf[8](_val) elif _dat[4][9] = 5 then error "cannot evaluate the solution further right of %1, too many step failures, tolerances may be too loose for problem", evalf[8](_val) elif 10 < _dat[4][9] then if _dat[4][9]-10 = _nv+1 then error "constraint projection failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-10 = _nv+2 then error "index-1 and derivative evaluation failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-10 = _nv+3 then error "maximum number of event iterations reached (%1) at t=%2", round(_dat[3][1][_nv+1, 3]), evalf[8](_val) else if _Env_dsolve_nowarnstop <> true then `dsolve/numeric/warning`(StringTools:-FormatMessage("cannot evaluate the solution further right of %1, event #%2 triggered a halt", evalf[8](_val), round(_dat[3][1][_dat[4][9]-10, 1]))) end if; Rounding := 'nearest'; _xout := _val end if else error "cannot evaluate the solution further right of %1", evalf[8](_val) end if elif _i = 2 and _xout < _val then Rounding := infinity; if _dat[4][9] = 1 then error "cannot evaluate the solution further left of %1, probably a singularity", evalf[8](_val) elif _dat[4][9] = 2 then error "cannot evaluate the solution further left of %1, maxfun limit exceeded (see <a href='http://www.maplesoft.com/support/help/search.aspx?term=dsolve,maxfun' target='_new'>?dsolve,maxfun</a> for details)", evalf[8](_val) elif _dat[4][9] = 3 then if _dat[4][25] = 3 then error "cannot evaluate the solution past the initial point, problem may be initially singular or improperly set up" else error "cannot evaluate the solution past the initial point, problem may be complex, initially singular or improperly set up" end if elif _dat[4][9] = 4 then error "cannot evaluate the solution further left of %1, accuracy goal cannot be achieved with specified 'minstep'", evalf[8](_val) elif _dat[4][9] = 5 then error "cannot evaluate the solution further left of %1, too many step failures, tolerances may be too loose for problem", evalf[8](_val) elif 10 < _dat[4][9] then if _dat[4][9]-10 = _nv+1 then error "constraint projection failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-10 = _nv+2 then error "index-1 and derivative evaluation failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-10 = _nv+3 then error "maximum number of event iterations reached (%1) at t=%2", round(_dat[3][1][_nv+1, 3]), evalf[8](_val) else if _Env_dsolve_nowarnstop <> true then `dsolve/numeric/warning`(StringTools:-FormatMessage("cannot evaluate the solution further left of %1, event #%2 triggered a halt", evalf[8](_val), round(_dat[3][1][_dat[4][9]-10, 1]))) end if; Rounding := 'nearest'; _xout := _val end if else error "cannot evaluate the solution further left of %1", evalf[8](_val) end if end if; if _EnvInFsolve = true then _dig := _dat[4][26]; _dat[4][26] := _EnvDSNumericSaveDigits; _Env_dsolve_SC_native := true; if _dat[4][25] = 1 then _i := 1; _dat[4][25] := 2 else _i := _dat[4][25] end if; _val := `dsolve/numeric/SC/IVPval`(_dat, _xout, _src); _dat[4][25] := _i; _dat[4][26] := _dig; [_xout, seq(_val[_vmap[_i]], _i = 1 .. _n-_ne)] else Digits := _dat[4][26]; _val := `dsolve/numeric/SC/IVPval`(eval(_dat, 2), _xout, _src); [_xout, seq(_val[_vmap[_i]], _i = 1 .. _n-_ne)] end if end proc, (2) = Array(0..0, {}), (3) = [t, alpha(t), diff(alpha(t), t), theta(t), diff(theta(t), t), x(t), diff(x(t), t), z(t), diff(z(t), t)], (4) = []}); _vars := _dat[3]; _pars := map(rhs, _dat[4]); _n := nops(_vars)-1; _solnproc := _dat[1]; if not type(_xout, 'numeric') then if member(x_rkf45, ["start", 'start', "method", 'method', "left", 'left', "right", 'right', "leftdata", "rightdata", "enginedata", "eventstop", 'eventstop', "eventclear", 'eventclear', "eventstatus", 'eventstatus', "eventcount", 'eventcount', "laxtol", 'laxtol', "numfun", 'numfun', NULL]) then _res := _solnproc(convert(x_rkf45, 'string')); if 1 < nops([_res]) then return _res elif type(_res, 'array') then return eval(_res, 1) elif _res <> "procname" then return _res end if elif member(x_rkf45, ["last", 'last', "initial", 'initial', "parameters", 'parameters', "initial_and_parameters", 'initial_and_parameters', NULL]) then _xout := convert(x_rkf45, 'string'); _res := _solnproc(_xout); if _xout = "parameters" then return [seq(_pars[_i] = _res[_i], _i = 1 .. nops(_pars))] elif _xout = "initial_and_parameters" then return [seq(_vars[_i+1] = [_res][1][_i+1], _i = 0 .. _n), seq(_pars[_i] = [_res][2][_i], _i = 1 .. nops(_pars))] else return [seq(_vars[_i+1] = _res[_i+1], _i = 0 .. _n)] end if elif type(_xout, `=`) and member(lhs(_xout), ["initial", 'initial', "parameters", 'parameters', "initial_and_parameters", 'initial_and_parameters', NULL]) then _xout := convert(lhs(x_rkf45), 'string') = rhs(x_rkf45); if type(rhs(_xout), 'list') then _res := _solnproc(_xout) else error "initial and/or parameter values must be specified in a list" end if; if lhs(_xout) = "initial" then return [seq(_vars[_i+1] = _res[_i+1], _i = 0 .. _n)] elif lhs(_xout) = "parameters" then return [seq(_pars[_i] = _res[_i], _i = 1 .. nops(_pars))] else return [seq(_vars[_i+1] = [_res][1][_i+1], _i = 0 .. _n), seq(_pars[_i] = [_res][2][_i], _i = 1 .. nops(_pars))] end if elif type(_xout, `=`) and member(lhs(_xout), ["eventdisable", 'eventdisable', "eventenable", 'eventenable', "eventfired", 'eventfired', "direction", 'direction', NULL]) then return _solnproc(convert(lhs(x_rkf45), 'string') = rhs(x_rkf45)) elif _xout = "solnprocedure" then return eval(_solnproc) elif _xout = "sysvars" then return _vars end if; if procname <> unknown then return ('procname')(x_rkf45) else _ndsol; _ndsol := pointto(_dat[2][0]); return ('_ndsol')(x_rkf45) end if end if; try _res := _solnproc(_xout); [seq(_vars[_i+1] = _res[_i+1], _i = 0 .. _n)] catch: error  end try end proc

 

Warning, cannot evaluate the solution further right of .33009777, probably a singularity

 

 

 

``

``


thank you !

Download DL.mw

Hi everyone,

I was trying to write a Maple sheet to calculate some perturbation theory expension as close to the "book notation" as possible. Lets for example consider a linearly perturbed harmonic oscillator with H = hω(n+1/2) and V = λ(a+a), this is one of the classical examples as it can be solved analytically by completing the square. In the Kato formulation (as used in the appended Maple worksheet), as well as in Rayleigh-Schrödinger perturbation theory one uses the projector onto the complement of the unperturbed state. I would like to do this by defining a projector in Maple. I've read the examples concerning projectors in Maple but it seems I have to use a rather ugly workaround by treating the states "below" the unperturbed state and the ones "above" separately. While this is a little annoying in one dimension it becomes a major nuisance in higher dimensions.

My question would be: How do I define the projector onto the complement of some state?

 

Cheers, Sören

 

restart; with(Physics); Setup(mathematicalnotation = true)

a := Annihilation(N, 1):

assume(`and`(`in`(m, nonnegint), m > 0)):

Physics:-Ket(N, m)

(1)

H := Physics:-`*`(Physics:-`*`(h, omega), n+1/2):

`&Delta;E__2` := simplify(value(Typesetting:-delayDotProduct(Typesetting:-delayDotProduct(Typesetting:-delayDotProduct(Typesetting:-delayDotProduct(Dagger(psi), V), 1/(E(m)-H)), V), psi)))

-lambda^2/(h*omega)

(2)

`&Delta;E__4,111` := simplify(value(Dagger(psi).V.(1/(E(m)-H)).V.(1/(E(m)-H)).V.(1/(E(m)-H)).V.psi))

Error, (in Physics:-Dagger) numeric exception: division by zero

 

`&Delta;E__4,201` := -simplify(value(Typesetting:-delayDotProduct(Typesetting:-delayDotProduct(Typesetting:-delayDotProduct(Typesetting:-delayDotProduct(Physics:-`*`(Typesetting:-delayDotProduct(Typesetting:-delayDotProduct(Typesetting:-delayDotProduct(Typesetting:-delayDotProduct(Dagger(psi), V), 1/(E(m)-H)^2), V), psi), Dagger(psi)), V), 1/(E(m)-H)), V), psi)))

lambda^4*(2*m+1)/(h^3*omega^3)

(3)

`&Delta;E__4` := `&Delta;E__4,111`+`&Delta;E__4,201`

`&Delta;E__4,111`+lambda^4*(2*m+1)/(h^3*omega^3)

(4)

``


Download kato_perturbation_theory.mw

i googled nullspace from ReducedRowEchelonForm

but when calculate it, ReducedRowEchelonForm do not contain the eigenvector in nullspace

how to calculate nullspace by hand?

 

i find that in maple 12 and maple 15 null space are different , however the common thing is that they are different from eigenvector by one of column multiply -1

is multiplication to one of column is due to rank=2 < 3, 3-2 = 1, so that random choose a column to multiply -1?

 

then i use elementary transformation, still can not get a rref which is like eigenvector, where is wrong?

sys1:=NewInput3-Matrix([[FirstEigenValue, 0, 0], [0, FirstEigenValue, 0], [0, 0, FirstEigenValue]]); sys1 := Matrix([[sys1[1,1], sys1[1,2], sys1[1,3]], [sys1[2,1]-sys1[2,1]/sys1[1,1]*sys1[1,1], sys1[2,2]-sys1[2,1]/sys1[1,1]*sys1[1,2], sys1[2,3]-sys1[2,1]/sys1[1,1]*sys1[1,3]], [sys1[3,1], sys1[3,2], sys1[3,3]]]);

sys1 := Matrix([[sys1[1,1], sys1[1,2], sys1[1,3]], [sys1[2,1], sys1[2,2], sys1[2,3]], [sys1[3,1]-sys1[3,1]/sys1[1,1]*sys1[1,1], sys1[3,2]-sys1[3,1]/sys1[1,1]*sys1[1,2], sys1[3,3]-sys1[3,1]/sys1[1,1]*sys1[1,3]]]);

sys1 := Matrix([[sys1[1,1]/sys1[1,1], sys1[1,2]/sys1[1,1], sys1[1,3]/sys1[1,1]], [sys1[2,1], sys1[2,2], sys1[2,3]], [sys1[3,1], sys1[3,2], sys1[3,3]]]);

sys1 := Matrix([[sys1[1,1], sys1[1,2], sys1[1,3]], [sys1[2,1], sys1[2,2], sys1[2,3]], [sys1[3,1]-sys1[3,2]/sys1[2,2]*sys1[2,1], sys1[3,2]-sys1[3,2]/sys1[2,2]*sys1[2,2], sys1[3,3]-sys1[3,2]/sys1[2,2]*sys1[2,3]]]);

sys1 := Matrix([[sys1[1,1], sys1[1,2], sys1[1,3]], [sys1[2,1]/sys1[2,2], sys1[2,2]/sys1[2,2], sys1[2,3]/sys1[2,2]], [sys1[3,1], sys1[3,2], sys1[3,3]]]);

 

http://rosettacode.org/wiki/Reduced_row_echelon_form#C.23

change c# code from integer to double, it return only an identity matrix. same as maple, how eigenvector come from rref?

 

when compare maple with sympy in python27,

sympy even do not have solution in nullspace!!!

from sympy import *
InputMatrix3 = Matrix([[31.25,30.8,30.5],[30.8,30.5,0],[30.5,0,0]])
NewInput3 := InputMatrix3.T*InputMatrix3
NewInput3.nullspace()

 

InputMatrix3 := Matrix([[31.25,30.8,30.5],[30.8,30.5,0],[30.5,0,0]]);
NewInput3 := MatrixMatrixMultiply(Transpose(InputMatrix3), InputMatrix3);
Old_Asso_eigenvector := Eigenvectors(NewInput3);
FirstEigenValue := solve(Determinant(NewInput3-Matrix([[lambda1, 0, 0], [0, lambda1, 0], [0, 0, lambda1]])), lambda1)[3]; # find back eigenvalue from eigenvector
SecondEigenValue := solve(Determinant(NewInput3-Matrix([[lambda1, 0, 0], [0, lambda1, 0], [0, 0, lambda1]])), lambda1)[2]; # find back eigenvalue from eigenvector
ThirdEigenValue := solve(Determinant(NewInput3-Matrix([[lambda1, 0, 0], [0, lambda1, 0], [0, 0, lambda1]])), lambda1)[1]; # find back eigenvalue from eigenvector
sys1:=NewInput3-Matrix([[FirstEigenValue, 0, 0], [0, FirstEigenValue, 0], [0, 0, FirstEigenValue]]);
sys2:=NewInput3-Matrix([[SecondEigenValue, 0, 0], [0, SecondEigenValue, 0], [0, 0, SecondEigenValue]]);
sys3:=NewInput3-Matrix([[ThirdEigenValue, 0, 0], [0, ThirdEigenValue, 0], [0, 0, ThirdEigenValue]]);
sys1b:=MatrixMatrixMultiply(NewInput3-Matrix([[FirstEigenValue, 0, 0], [0, FirstEigenValue, 0], [0, 0, FirstEigenValue]]),Matrix([[x],[y],[z]]));
sys2b:=MatrixMatrixMultiply(NewInput3-Matrix([[SecondEigenValue, 0, 0], [0, SecondEigenValue, 0], [0, 0, SecondEigenValue]]),Matrix([[x],[y],[z]]));
sys3b:=MatrixMatrixMultiply(NewInput3-Matrix([[ThirdEigenValue, 0, 0], [0, ThirdEigenValue, 0], [0, 0, ThirdEigenValue]]),Matrix([[x],[y],[z]]));

sys1:=NewInput3-Matrix([[FirstEigenValue, 0, 0], [0, FirstEigenValue, 0], [0, 0, FirstEigenValue]]);
sys2:=NewInput3-Matrix([[SecondEigenValue, 0, 0], [0, SecondEigenValue, 0], [0, 0, SecondEigenValue]]);
sys3:=NewInput3-Matrix([[ThirdEigenValue, 0, 0], [0, ThirdEigenValue, 0], [0, 0, ThirdEigenValue]]);
ReducedRowEchelonForm(sys1);
NullSpace(sys1);
NullSpace(sys2);
NullSpace(sys3);

 

The following code will not produce a plot. My previous attempts with different equations have worked fine. What am I missing? Thanks for any help.

 

restart;
with(DEtools);

sys := diff(x(t), t) = 10*x(t)-3*x(t)^2-x(t)*y(t), diff(y(t), t) = 14*y(t)-3*y(t)^2-x(t)*y(t);

with(plots);
fcns := {x(t), y(t)}; p := dsolve({sys, x(0) = 10, y(0) = 15}, fcns, type = numeric, method = classical);

odeplot(p, [[t, x(t)], [t, y(t)]], 0 .. 14);

Hi everyone,

I wanted to plot the fourier series up to a given order of a step function using the code I attached, to change the order I used a sum with upper boundary M. When setting M to a particular value and plotting the function the result is obtained within a second, when on the otherhand using plot(subs(M=11,...),...) it takes close to a minute to produce a picture.

This might be a misuse of subs, in any case, I wanted to share my experience and maybe get an explanation about why this takes that much longer.

Cheers,

Sören

restart

f := proc (t) options operator, arrow; sum(-4*sin((2*n+1)*t)/(Pi*(2*n+1)), n = 0 .. M) end proc

proc (t) options operator, arrow; sum(-4*sin((2*n+1)*t)/(Pi*(2*n+1)), n = 0 .. M) end proc

(1)

plot(subs(M = 11, f(t)), t = 0 .. 2*Pi)

 

M := 11; plot(f(t), t = 0 .. 2*Pi)

 

Download fourier_subs.mw

Hi,

I have the a code with some parameters including

Nr= 0, 50, 100

Ha=0, 5, 10

EPSILONE= 0, 0.5, 1

Phiavg= 0.02, 0.06, 0.1

0.1<NBT<10

I can give the solution for higher values of 5<NBT<10 and there is no problem. However, As I reduce the values of NBT, the convergence of the problem is hard. for some values of parameters I cannot find the solution. for example:

Nr=Ha=0

EPSILONE=1

Phiavg=0.06

NBT=0.3

 

I would be most grateful if you can tel me how change the algorithm to find the solution in the range of all parameters.

Many thanks for your attentions in advance

The code has been attached

code_7-8-2014_(1).mw

 

Amir

Now that I got my units converted I have a new problem:

 

I have g/mol and g/cm^3, and the result is supposed to be per cm^3 too. So I would like to keep my grams as well as my  cm^3. However, Maple converts it all to kg and m^3!

 

That means I have to divide the final result by 10e6. No big deal, only that it looks strange on my worksheet (when I divide the units stay the same, so if I show that to someone they'll be amazed at the gigantic m^3 result number I got instead of just a few cm^3).

 

By the way, turing off the automatic unit cancellation (see link, my question a few days ago) does not change anything, the g->kg and cm^3->m^3 conversion take place as soon as I enter the values:

 

results in

 

and

gives

Hi guys,

im trying to solve the linear equation system:

mysol := solve({J*a = m*l*(-c*ct^2*sf-c*sf*st^2+cf*d*st^2+d*sf*st^2)+m*g*l*st, cx*ux = cMx*xd+M*c+m*l*(-cp*pd^2*st-cp*st*td^2-2*ct*pd*sp*td+a*cp*ct-b*sp*st), cy*uy = cMy*yd+M*d+m*l*(2*cp*ct*pd*td-pd^2*sp*st-sp*st*td^2+a*ct*sp+b*cp*st), (-l^2*m*st^2+J)*b = -ml(c*cf*ct+ct*d*sf)}, {a, b, c, d}) :

Then, assigning the solutions:

assign(mysol):

Then, eliminating the RootOf's for variable a:

a_explicit := allvalues(a):

Unfortunately, a_explicit still contains RootOf's. How can I avoid this?

Thanks,

Martin

 

5 6 7 8 9 10 11 Last Page 7 of 1030