MaplePrimes Questions

When I click on   I get this message 


And this has been the case for few days now. But only now I can see I can access the site if I know the internal sub link to it.  

So why is the main page down for so long?

Probably not Maple's territory, but maybe a challenge?  Can we can get maple to do this?  Done by Matlab found here..

i got 2 curves
a := abs(x);
b := (3/4)*x^2+1/4;

how can i get the max distance between them from x = -1 until x =1?


Hello! Hope everyone would be fine. I want to solve the following system of ODEs please help to find the numerical solution

N := .6; alpha := .4; beta := .1; Nt := .2; Pr := .5; Nb := .1; s := .2; lambda[1] := 1; delta := .5; gm := 1; Sc := 1:L:=1:

Eq1 := (alpha*s+1)*(diff(F(eta), eta, eta, eta))-(F(eta)+(1/2)*s*eta)*(diff(F(eta), eta, eta))+((1/2)*(diff(F(eta), eta))-s)*(diff(F(eta), eta))-2*(G(eta)^2-(1-gm)^2)-2*lambda[1]*(H(eta)+N*Y(eta))-(alpha+beta-(1/4)*delta*(diff(F(eta), eta, eta, eta)))*(diff(F(eta), eta, eta))^2-(alpha-2*beta)*(diff(F(eta), eta))*(diff(F(eta), eta, eta, eta))-(2*(alpha-beta-(1/4)*delta*(diff(F(eta), eta, eta, eta))))*(diff(G(eta), eta))^2-(2*(alpha-(1/4)*delta*(diff(F(eta), eta, eta))))*G(eta)*(diff(G(eta), eta, eta)) = 0; Eq2 := (alpha*s+1)*(diff(G(eta), eta, eta))-F(eta)*(diff(G(eta), eta))+G(eta)*(diff(F(eta), eta))+s*(1-gm-G(eta)-(1/2)*eta*(diff(G(eta), eta)))-(1/2)*alpha*s*eta*(diff(G(eta), eta, eta, eta))+((3/2)*alpha+beta)*G(eta)*(diff(F(eta), eta, eta, eta))-((1/2)*alpha+beta)*(diff(F(eta), eta))*(diff(G(eta), eta, eta))-delta*((diff(F(eta), eta, eta))^2+6*(diff(G(eta), eta))^2)*(diff(G(eta), eta, eta)) = 0; Eq3 := (diff(H(eta), eta, eta))/Pr-F(eta)*(diff(H(eta), eta))+(1/2)*H(eta)*(diff(F(eta), eta))-s*(2*H(eta)+(1/2)*eta*(diff(H(eta), eta)))+Nb*(diff(H(eta), eta))*(diff(Y(eta), eta))+Nt*(diff(H(eta), eta))^2 = 0; Eq4 := (diff(Y(eta), eta, eta))/Sc-F(eta)*(diff(Y(eta), eta))+(1/2)*Y(eta)*(diff(F(eta), eta))-s*(2*Y(eta)+(1/2)*eta*(diff(Y(eta), eta)))+Nt*(diff(H(eta), eta, eta))/Nb = 0;

IC1 := F(0) = 0, (D(F))(0) = 0, G(0) = gm, H(0) = 1, Y(0) = 1; IC2 := (D(F))(L) = 0, G(L) = 1-gm, (D(G))(L) = 0, H(L) = 0, Y(L) = 0; dsys1 := {Eq1, Eq2, Eq3, Eq4, IC1, IC2}; dsol1 := dsolve(dsys1, numeric, output = listprocedure, range = 0 .. L);

dsol1f := subs(dsol1, F(eta));

dsol1g := subs(dsol1, G(eta)); dsol1h := subs(dsol1, H(eta)); dsol1y := subs(dsol1, Y(eta));

With my best regards and sincerely.



I.e. f is a standard Gaussian PDF.

Then (in Maple 2016.1):




However (again in Maple 2016.1):




This is clearly incorrect, as the integral of a positive function must be positive.

This also seems to be a problem in which ever version of Maple is used behind the scenes on this forum.




Hi, there

How can I find the recurrence relation  for second derivative of sequence of functions  f-{n}(x)=\frac{(1-x^2)^n}{n!} in  maple 15?

please specify the commands.

we know the solution f"_{n}(x)=2(1-2n)f_{n-1}(x)+4f_{n-2}(x)


M.R. Yegan

Dear all

I have created a script code in maple. I also have contructed a power circuit in matlab simulink. How I use my code in matlab?


Seem to be a bit stuck. Here's my code:

Thanks in advance :-) 

It is suggested  

hypergeom([1/3, 2/3], [3/2], (27/4)*z^2*(1-z)) = 1/z

if z > 1. Here is my try to prove that with Maple:


a := `assuming`([convert(hypergeom([1/3, 2/3], [3/2], (27/4)*z^2*(1-z)), elementary)], [z > 1])



b := `assuming`([simplify(a, symbolic)], [z >= 1])



plot(1/b, z = 1 .. 10)


simplify(diff(1/b, z), symbolic)






Maple provides efficient vectorization and automatic parallelization for many common operators. For example

x -> 2*~x*~cos~(x*~x)

But in my application it is common to want to create rather long vectorized operators starting from some complicated symbolic computations. Doing conversions by hand from symbolic expressions to element-wise operations is laborious and error prone.

As a very simple example consider that it is possible to obtain (almost) the same result as above by writing the following as a vectorized operation


But there are at least two problems with this. First of all it is not nearly as efficient as the first operator and second, perhaps not unrelated, is that the datatype returned when applying this operator to a Vector/rtable of hardware floats (e.g. datatype=float[8]) becomes something  more general.

My question is how can I convert a complicated symbolic expression into an efficient numeric element-wise vector operation?

I have tried several different approaches but so far without success. In the case above for example it seemed natural to expect that the following derivative


would produce a vectorized result, but this is not the case. In another attempt I was unable to see how to perform substitions into an expression, e.g. like this

unapply(subs(`*`=`*`~, cos=cos~, diff(sin(x),x)), x)

I would be glad to receive suggestions and/or references to relevant documentation. 


I use the example procedure when search. Clock in help 

but elapsed function can only run one time

because it return clock is not running

need to run clock start again and calculate from beginning again

how elapsed function can run more times



I want to draw  phase plane of system of three fractional order equations. 


Note that 

Also want the  phase portrait when the values of alpha are not same....






I want to get solutions of this system ,can anyone help me ?

(1)How can i draw a graph by considering eta on x-axis and f'(eta),theta(eta)on y-axis in a single graph with respect to variatiation  in the parameter beta=0.01,0.1,1.0.. 

(2). how can i get different values of f'(eta) by varying values of eta .

restart; with(plots); beta := 0.1e-1; Bi := 10; Pr := 3.0; L0 := 1; w := 0.2e-1

Eq1 := diff(f(eta), eta, eta, eta)+f(eta)*(diff(f(eta), eta, eta))-(diff(f(eta), eta))^2+beta*H(eta)*(F(eta)-(diff(f(eta), eta))) = 0

diff(diff(diff(f(eta), eta), eta), eta)+f(eta)*(diff(diff(f(eta), eta), eta))-(diff(f(eta), eta))^2+0.1e-1*H(eta)*(F(eta)-(diff(f(eta), eta))) = 0


Eq2 := G(eta)*(diff(F(eta), eta))+F(eta)^2+beta*(F(eta)-(diff(f(eta), eta))) = 0

G(eta)*(diff(F(eta), eta))+F(eta)^2+0.1e-1*F(eta)-0.1e-1*(diff(f(eta), eta)) = 0


Eq3 := G(eta)*(diff(G(eta), eta))+beta*(f(eta)+G(eta)) = 0

G(eta)*(diff(G(eta), eta))+0.1e-1*f(eta)+0.1e-1*G(eta) = 0


Eq4 := H(eta)*F(eta)+H(eta)*(diff(G(eta), eta))+G(eta)*(diff(H(eta), eta)) = 0

H(eta)*F(eta)+H(eta)*(diff(G(eta), eta))+G(eta)*(diff(H(eta), eta)) = 0


Eq5 := (diff(theta(eta), eta, eta))/Pr+f(eta)*(diff(theta(eta), eta))+(2*H(eta)*beta*(1/3))*(thetap(eta)-theta(eta)) = 0

.3333333333*(diff(diff(theta(eta), eta), eta))+f(eta)*(diff(theta(eta), eta))+0.6666666667e-2*H(eta)*(thetap(eta)-theta(eta)) = 0


Eq6 := G(eta)*(diff(thetap(eta), eta))+L0*beta*(thetap(eta)-theta(eta)) = 0

G(eta)*(diff(thetap(eta), eta))+0.1e-1*thetap(eta)-0.1e-1*theta(eta) = 0


bcs1 := f(0) = 0, (D(f))(0) = 1, (D(theta))(0) = -Bi*(1-theta(0)), (D(f))(5) = 0, F(5) = 0, G(5) = -f(5), H(5) = w, theta(5) = 0, thetap(5) = 0;

f(0) = 0, (D(f))(0) = 1, (D(theta))(0) = -10+10*theta(0), (D(f))(5) = 0, F(5) = 0, G(5) = -f(5), H(5) = 0.2e-1, theta(5) = 0, thetap(5) = 0


p := dsolve({Eq1, Eq2, Eq3, Eq4, Eq5, Eq6, bcs1}, numeric);

proc (x_bvp) local res, data, solnproc, _ndsol, outpoint, i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; _EnvDSNumericSaveDigits := Digits; Digits := 14; if _EnvInFsolve = true then outpoint := evalf[_EnvDSNumericSaveDigits](x_bvp) else outpoint := evalf(x_bvp) end if; data := eval(`dsolve/numeric/data/modules`[1]); solnproc := data:-Get("soln_procedure"); if not type(outpoint, 'numeric') then if outpoint = "solnprocedure" then return eval(solnproc) elif member(outpoint, ["start", "left", "right", "errorproc", "rawdata", "order", "error"]) then return solnproc(x_bvp) elif outpoint = "sysvars" then return data:-Get("sysvars") elif procname <> unknown then return ('procname')(x_bvp) else _ndsol := pointto(data:-Get("soln_procedures")[0]); return ('_ndsol')(x_bvp) end if end if; try res := solnproc(outpoint); [eta = res[1], seq('[F(eta), G(eta), H(eta), f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), theta(eta), diff(theta(eta), eta), thetap(eta)]'[i] = res[i+1], i = 1 .. 9)] catch: error  end try end proc


odeplot(p, [eta, f(eta)], 0 .. 5);


odeplot(p, [eta, diff(f(eta), eta)], 0 .. 5);



odeplot(p, [eta, thetap(eta)], 0 .. 5);


odeplot(p, [[eta, F(eta)], [eta, thetap(eta)]], 0 .. 5);




Download from_net_(1).mw


I am trying to plot f=[r^2 *cos(theta)+r*sin(theta)],as a DensityPlot[] in polar coordinates.

here r is a function of theta, r=r1(θ)..r2(θ) , for this reason, I have a problem to plot f in density plot

f=[r^2 *cos(theta)+r*sin(theta)];

r1(theta)= 0.3+0.1*cos(theta);
r2(theta)= 0.5+0.1*cos(theta);
display(changecoords(densityplot(f, r =r1(theta)..r2(theta), theta = 0 .. 2*Pi, style = patchnogrid, colorstyle = HUE), polar), axes = box, orientation = [270, 0], labels = [x, y, ``]);

(Error, (in plots/densityplot) bad range arguments r = .3+.1*cos(theta) .. .5+.1*cos(theta), theta = 0 .. 2*Pi )

5 6 7 8 9 10 11 Last Page 7 of 1410