Maple Questions and Posts

These are Posts and Questions associated with the product, Maple

Maple 2022.2

> restart
> expr = x^4-10*x^2+1
> plot(expr)

produces an error message:
com.maplesoft.maplets.ComponentAccessException: not a valid plot structure

plot(expr, x) works Ok.

Tom Dean

How I can solve a PDE on two regions with matching conditions at the common boundary?  

T1.mw

How would I solve for the product of two terms ( s*V or s^2*V). This is a simple example but I would be applying this on much higher order equations.

     V = Vx/(a*s^2 + b*s + c)

Hello, 

What would be the procedure to find the eigenvalues for a coupled harmonic oscillators characterized by eigenvalue E1 and E2? Are they treated as parameters in the numerical solution of the system of ode?

thanks in advance 

How to plot this equation

 y(x):=

where,

A := Matrix([[1, -1, 1, -1], [1, 1, -1, -1], [-1, 1, 1, -1], [1, 1, 1, 1]]);
B := Matrix([[1], [0], [1], [0]])

As a part of my learning curve, I am trying to play with extending Maple's BernsteinBasis, which has only a limited support right now (BernsteinBasis - Maple Help (maplesoft.com)).

My goal is to implement basis operation on polynomials in Bernstein basis, so that derivatives, integrals and products of polynomials in  BernsteinBasis would be again expressed in BernsteinBasis.

While it looks like it is relatively easy to extend diff procedure, by using `diff/BernsteinBasis`, I didn't find anything similar for the int. Is there something like `int/BernsteinBasis`?

The problem is that when I am trying to implement my own int procedure in a module that  would extend standard int, it seems I need to manually implement logic for (at very least) linearity, so that int(p(x) + q(x), x) would decay into int(p(x), x) + int(q(x), x ) (I probably don't need more complex rewriting rules). So before trying this approach, is there any easy way such as with diff?
 

restart;

read("C:\\Users\\Igor\\Maple\\BernsteinPolynomials.mpl");

_m2141342686560

(1)

# General formula
diff(BernsteinBasis(k, n, a, b, x), x);

n*BernsteinBasis(k-1, n-1, a, b, x)/(b-a)-n*BernsteinBasis(k, n-1, a, b, x)/(b-a)

(2)

# In expressions
diff(2*x*BernsteinBasis(1, 2, 0, 1, x) + BernsteinBasis(2, 2, 0, 1, x), x);

2*BernsteinBasis(1, 2, 0, 1, x)+2*x*(2*BernsteinBasis(0, 1, 0, 1, x)-2*BernsteinBasis(1, 1, 0, 1, x))+2*BernsteinBasis(1, 1, 0, 1, x)

(3)

# Convertion to MatrixPolynomialObject works
p := diff(BernsteinBasis(1, 2, 0, 1, x) + BernsteinBasis(2, 2, 0, 1, x), x);
P := convert(p, MatrixPolynomialObject, x);
P:-Value(a);

p := 2*BernsteinBasis(0, 1, 0, 1, x)

 

P := Record(Value = Default[value], Variable = x, Degree = 1, Coefficient = coe, Dimension = [1, 1], Basis = BernsteinBasis, BasisParameters = [1, 0, 1], IsMonic = mon, OutputOptions = [shape = [], storage = rectangular, order = Fortran_order, fill = 0, attributes = []])

 

Matrix(%id = 36893490288797933188)

(4)

# Now, integrataion
with(BernsteinPolynomials);

[int]

(5)

# Still works
int(x^2, x);

(1/3)*x^3

(6)

# Not implemented but will be added later...
int(BernsteinBasis(1, 2, 0, 1, x), x);

"Will be implemented here..."

 

int(BernsteinBasis(1, 2, 0, 1, x), x)

(7)

# This is the problem: how to implement basis properties such as linearity?
int(2 * BernsteinBasis(1, 2, 0, 1, x), x);

int(2*BernsteinBasis(1, 2, 0, 1, x), x)

(8)

 

 

BernsteinPolynomials := module()
    description "Basic operations in Bernstein basis";
	option package;
	global BernsteinBasis, `diff/BernsteinBasis`;
	export int;

	BernsteinBasis := proc(k, n, a, b, x)
		description "Bernstein basis polynomial";
		if k::numeric then
			if k < 0 then 
				return 0;
			end if
		end if;
		if n::numeric then
			if n < 0 then 
				return 0; 
			end if;
			if k::numeric then
				if k > n then
					return 0;
				end if;
			end if;
		end if;
		'procname'(_passed)
	end proc;

	`diff/BernsteinBasis` := proc()
		description "Derivative of the Bernstein basis polynomial in the Bernstein basis";
		if _npassed = 6 then
			if _passed[-1] = _passed[-2] then
				_passed[2] * BernsteinBasis(_passed[1] - 1, _passed[2] - 1, _passed[3], _passed[4], _passed[5]) / (_passed[4] - _passed[3]) -
				_passed[2] * BernsteinBasis(_passed[1], _passed[2] - 1, _passed[3], _passed[4], _passed[5]) / (_passed[4] - _passed[3]);
			end if;
		end if;
	end proc;
	
	int := proc()
		description "Integral of the Bernstein basis polynomial in the Bernstein basis";
		if type(_passed[1], 'specfunc'(anything, BernsteinBasis)) then
		    print("Will be implemented here...");
		end if;
		:-int(_passed)
	end proc;

end module;

Download bernstein.mw

In my code, without knowing what the expression is, other than it has RootOf, the code called allvalues and got internal error 

Error, (in SolveTools:-Basis) invalid input: igcd received 5/7, which is not valid for its 2nd argument

Is this to be expected depending on the input, or is this some internal problem I need to report?

restart;
expr:=RootOf(R^4*b+R^2*a*_Z+2*_Z^2-exp(RootOf(tanh(1/2*(a^2-8*b)^(1/2)*(4*S-_Z)/a)^2*R^4*a^2-8*tanh(1/2*(a^2-8*b)^(1/2)*(4*S-_Z)/a)^2*R^4*b-R^4*a^2+8*R^4*b-8*exp(_Z))))

allvalues(expr)

Error, (in SolveTools:-Basis) invalid input: igcd received 5/7, which is not valid for its 2nd argument

Maple 2023.2 on windows 10

ps.  Reported to Maplesoft

restart

V := m^4*(1-(varphi/mu)^p);

m^4*(1-(varphi/mu)^p)

(1)

V1 := diff(V, varphi);

-m^4*(varphi/mu)^p*p/varphi

(2)

V2 := diff(V1, varphi);

-m^4*(varphi/mu)^p*p^2/varphi^2+m^4*(varphi/mu)^p*p/varphi^2

(3)

f := Zeta * (varphi^2);

Zeta*varphi^2

(4)

f1 := diff(f, varphi);

2*Zeta*varphi

(5)

f2 := diff(f1, varphi);

2*Zeta

(6)

R:= simplify(((V/3-f1*V1/(3*V))/((1-kappa^2*f)/(12*kappa^2)+f1/V)));

4*kappa^2*m^4*(-3*(varphi/mu)^(2*p)*m^4+(varphi/mu)^(3*p)*m^4+3*(varphi/mu)^p*m^4-m^4-2*Zeta*(varphi/mu)^p*p+2*Zeta*(varphi/mu)^(2*p)*p)/((m^4*(Zeta*kappa^2*varphi^2-1)*(varphi/mu)^p+(-Zeta*kappa^2*varphi^2+1)*m^4+24*Zeta*varphi*kappa^2)*(-1+(varphi/mu)^p))

(7)

N:=evalf(int((3*V1*kappa^2*((2*V*V1)/3 - f1^2*V1*R/(3*V) - f1*V1^2/(3*V))/(V*(-f*kappa^2 + 1)*(-R*f1 - 2*V1))),varphi=varphi__hc..varphi__end)assuming varphi__hc > 0, varphi__hc > varphi__end);

-1.*(int(-3.*(varphi/mu)^p*p*kappa^2*(-.6666666667*m^8*(1.-1.*(varphi/mu)^p)*(varphi/mu)^p*p/varphi+5.333333333*Zeta^2*varphi*m^4*(varphi/mu)^p*p*kappa^2*(-3.*(varphi/mu)^(2.*p)*m^4+(varphi/mu)^(3.*p)*m^4+3.*(varphi/mu)^p*m^4-1.*m^4-2.*Zeta*(varphi/mu)^p*p+2.*Zeta*(varphi/mu)^(2.*p)*p)/((m^4*(Zeta*kappa^2*varphi^2-1.)*(varphi/mu)^p+(-1.*Zeta*kappa^2*varphi^2+1.)*m^4+24.*Zeta*varphi*kappa^2)*(-1.+(varphi/mu)^p)*(1.-1.*(varphi/mu)^p))-.6666666667*Zeta*m^4*((varphi/mu)^p)^2*p^2/(varphi*(1.-1.*(varphi/mu)^p)))/(varphi*(1.-1.*(varphi/mu)^p)*(-1.*Zeta*kappa^2*varphi^2+1.)*(-8.*kappa^2*m^4*(-3.*(varphi/mu)^(2.*p)*m^4+(varphi/mu)^(3.*p)*m^4+3.*(varphi/mu)^p*m^4-1.*m^4-2.*Zeta*(varphi/mu)^p*p+2.*Zeta*(varphi/mu)^(2.*p)*p)*Zeta*varphi/((m^4*(Zeta*kappa^2*varphi^2-1.)*(varphi/mu)^p+(-1.*Zeta*kappa^2*varphi^2+1.)*m^4+24.*Zeta*varphi*kappa^2)*(-1.+(varphi/mu)^p))+2.*m^4*(varphi/mu)^p*p/varphi)), varphi = varphi__end .. varphi__hc))

(8)

simplify(-1.*(int(-3.*(varphi/mu)^p*p*kappa^2*(-.6666666667*m^8*(1.-1.*(varphi/mu)^p)*(varphi/mu)^p*p/varphi+5.333333333*Zeta^2*varphi*m^4*(varphi/mu)^p*p*kappa^2*(-3.*(varphi/mu)^(2.*p)*m^4+(varphi/mu)^(3.*p)*m^4+3.*(varphi/mu)^p*m^4-1.*m^4-2.*Zeta*(varphi/mu)^p*p+2.*Zeta*(varphi/mu)^(2.*p)*p)/((m^4*(Zeta*kappa^2*varphi^2-1.)*(varphi/mu)^p+(-1.*Zeta*kappa^2*varphi^2+1.)*m^4+24.*Zeta*varphi*kappa^2)*(-1.+(varphi/mu)^p)*(1.-1.*(varphi/mu)^p))-.6666666667*Zeta*m^4*((varphi/mu)^p)^2*p^2/(varphi*(1.-1.*(varphi/mu)^p)))/(varphi*(1.-1.*(varphi/mu)^p)*(-1.*Zeta*kappa^2*varphi^2+1.)*(-8.*kappa^2*m^4*(-3.*(varphi/mu)^(2.*p)*m^4+(varphi/mu)^(3.*p)*m^4+3.*(varphi/mu)^p*m^4-1.*m^4-2.*Zeta*(varphi/mu)^p*p+2.*Zeta*(varphi/mu)^(2.*p)*p)*Zeta*varphi/((m^4*(Zeta*kappa^2*varphi^2-1.)*(varphi/mu)^p+(-1.*Zeta*kappa^2*varphi^2+1.)*m^4+24.*Zeta*varphi*kappa^2)*(-1.+(varphi/mu)^p))+2.*m^4*(varphi/mu)^p*p/varphi)), varphi = varphi__end .. varphi__hc)))

Error, (in content/content) invalid arguments

 

NULL

Download ex.mw

In an old question, @mbras asked for a "partial" `convert/elsymfun`. However, SymPy's sympy.polys.rings.PolyElement.symmetrize seems to provide more examples that cannot be handled by the program that appeared in that question.
For instance, 

>>> from sympy import var
>>> var('x:z,p:r')
(x, y, z, p, q, r)
>>> from sympy.polys.polyfuncs import symmetrize
>>> symmetrize(x**2-(y**2+2**z),[y,x],formal=True,symbols=[p+p,q*q])[0]
-2**z - 4*p**2 + 2*q**2
>>> symmetrize(x*x*y+y*y*z+z*z*x,[y,x,z],formal=True,symbols=[p,q,r])
(0, x**2*y + x*z**2 + y**2*z, [(p, x + y + z), (q, x*y + x*z + y*z), (r, x*y*z)])

Though I can , can't the built-in  be generalized to such expressions (in other words, write the polynomial part of input as a symmetric part and a remainder with (named, if need be) elementary symmetric polynomials)?

Besides, since any symmetric polynomial can also be expressed in terms of the complete symmetric polynomials, is there a similar  command in Maple?

The uploaded worksheet begins to uniformly tile the Poincare disk with pentagons using hyperbolic reflection .

Although relatively easy to create the central pentagon and the first adjacent pentagon, it becomes increasingly difficult to determine which lines to reflect to create the remaining pentagons in the first tier adjacent to the central pentagon and more so to create the pentagons of the second tier adjacent to those in the first tier and so on.

Is there a better technique for accomplishing this?

In particular can Mobius tranformations be employed to do this? If so, please replay with or point to a working example of this for me to follow.

 Tile_Poincare_disk.mw

Sorry, I forgot that respondents to this question must establich their own link to the DirectSearch package.

Why does _EnvLinalg95 only affect  (and ) and not and ? 
 

restart;

m := <3 , 4 | 4 , 3>;

m := Matrix(2, 2, {(1, 1) = 3, (1, 2) = 4, (2, 1) = 4, (2, 2) = 3})

(1)

LinearAlgebra:-Eigenvalues(m);

Vector(2, {(1) = 7, (2) = -1})

(2)

LinearAlgebra:-Eigenvectors(m);

Vector(2, {(1) = -1, (2) = 7}), Matrix(2, 2, {(1, 1) = -1, (1, 2) = 1, (2, 1) = 1, (2, 2) = 1})

(3)

LinearAlgebra:-EigenConditionNumbers(m);

Vector(2, {(1) = 1.00000000000000, (2) = 1.00000000000000}), Vector(2, {(1) = 8., (2) = 8.})

(4)

_EnvLinalg95 := true:

whattype(m);

Matrix

(5)

LinearAlgebra:-Eigenvalues(m);

Vector(2, {(1) = 7, (2) = -1})

(6)

LinearAlgebra:-Eigenvectors(m):

Error, (in Matrix) invalid input: `Matrix/MakeInit` expects its 1st argument, initializer, to be of type list(list), but received [proc (i, j) options operator, arrow; `if`(j = 1 and i <= 2, (Vector(2, {(1) = 1, (2) = 1}))[i], rhs(fill_opt)) end proc]

 

LinearAlgebra:-EigenConditionNumbers(m);

Vector(2, {(1) = 1.00000000000000, (2) = 1.00000000000000}), Vector(2, {(1) = 8., (2) = 8.})

(7)

_EnvLinalg95 := false:

LinearAlgebra:-Eigenvectors(m);

Vector(2, {(1) = -1, (2) = 7}), Matrix(2, 2, {(1, 1) = -1, (1, 2) = 1, (2, 1) = 1, (2, 2) = 1})

(8)


 

Download _EnvLinalg95.mw

I have read the help page of Eigenvectors but couldn't find anything related.

how to find CharacteristicPolynomiall of matrix with vector entries? 

restart

with(LinearAlgebra)

with(ArrayTools)

M := Matrix([[-(I*2)*lambda+I*(lambda+m0), c], [-Transpose(c), I*a+I*(lambda+m0)]])

Matrix(%id = 36893490099698106484)

(1)

P := CharacteristicPolynomial(M, eta)

eta^2+(-I*a-(2*I)*m0)*eta+a*lambda-a*m0+c^2+lambda^2-m0^2

(2)

NULL

NULL

NULL

NULL

Download characpol.mw

Hello,

I want to use the spline options in the SavitzkyGolayFilter, but I don't understand the description in the Maple help. Can someone give me Sytax examples? I would also like to specify the 1st and 2nd derivatives of the endpoints.

I am grateful for any help!

This looks like a bug I have not seen before. Any one seen this before?

Error, (in Handlers:-TrigExpOnly) cannot determine if this expression is true or false: tr_is_cos

Can others reproduce it? I am using Maple 2023.2 on windows 10

btw, I found that by doing int(evala(integrand),t) instead of int(integrand,t) then the error goes away but not all the time. Below are two examples. The first where evala() fixes it, but the second it does not fix it. 

Physics:-Version()

`The "Physics Updates" version in the MapleCloud is 1585 and is the same as the version installed in this computer, created 2023, October 29, 6:31 hours Pacific Time.`

interface(version);

`Standard Worksheet Interface, Maple 2023.2, Windows 10, October 25 2023 Build ID 1753458`

restart;

15332

integrand:=-(((sqrt(3)*sqrt(27983)*I + 276)*(-594 + 6*I*sqrt(3)*sqrt(27983))^(1/3) + 15*I*sqrt(3)*sqrt(27983) + (25*(-594 + 6*I*sqrt(3)*sqrt(27983))^(2/3))/2 + 2265)*(-150 + (-150 + (-594 + 6*I*sqrt(3)*sqrt(27983))^(2/3))*sqrt(3)*I - (-594 + 6*I*sqrt(3)*sqrt(27983))^(2/3) + 24*(-594 + 6*I*sqrt(3)*sqrt(27983))^(1/3))*(150 + (-150 + (-594 + 6*I*sqrt(3)*sqrt(27983))^(2/3))*sqrt(3)*I + (-594 + 6*I*sqrt(3)*sqrt(27983))^(2/3) - 24*(-594 + 6*I*sqrt(3)*sqrt(27983))^(1/3))*((sqrt(3)*sqrt(27983)*I + 276)*(-594 + 6*I*sqrt(3)*sqrt(27983))^(1/3) - 15*I*sqrt(3)*sqrt(27983) - 2265)*exp(-t*((-594 + 6*I*sqrt(83949))^(2/3)/3 + (-594 + 6*I*sqrt(83949))^(1/3) + 50)/(-594 + 6*I*sqrt(83949))^(1/3))*(-594 + 6*I*sqrt(3)*sqrt(27983))^(2/3)*((-594 + 6*I*sqrt(3)*sqrt(27983))^(2/3) + 12*(-594 + 6*I*sqrt(3)*sqrt(27983))^(1/3) + 150)*sin(t)*cos(t))/(10101630528*(sqrt(3)*sqrt(27983)*I - 99)^2*(sqrt(3)*sqrt(27983)*I + 27983/33)*exp(t)) - ((-594 + 6*I*sqrt(83949))^(2/3) + 12*(-594 + 6*I*sqrt(83949))^(1/3) + 150)*(2*I*sqrt(83949)*(-594 + 6*I*sqrt(83949))^(1/3) + 30*I*sqrt(83949) + 25*(-594 + 6*I*sqrt(83949))^(2/3) + 552*(-594 + 6*I*sqrt(83949))^(1/3) + 4530)*(-594 + 6*I*sqrt(83949))^(1/3)*(sqrt(83949)*(-594 + 6*I*sqrt(83949))^(1/3)*I - 15*I*sqrt(83949) + 276*(-594 + 6*I*sqrt(83949))^(1/3) - 2265)*exp(-t*((-594 + 6*I*sqrt(83949))^(2/3)/3 + (-594 + 6*I*sqrt(83949))^(1/3) + 50)/(-594 + 6*I*sqrt(83949))^(1/3))*(8*cos(t)^2/exp(t) - 4/exp(t))/(5196312*(sqrt(83949)*I + 27983/33)*(sqrt(83949)*I - 99)) + ((-594 + 6*I*sqrt(83949))^(2/3) + 12*(-594 + 6*I*sqrt(83949))^(1/3) + 150)*(2*I*sqrt(83949)*(-594 + 6*I*sqrt(83949))^(1/3) + 30*I*sqrt(83949) + 25*(-594 + 6*I*sqrt(83949))^(2/3) + 552*(-594 + 6*I*sqrt(83949))^(1/3) + 4530)*(-150 + (-594 + 6*I*sqrt(83949))^(2/3))*(-594 + 6*I*sqrt(83949))^(2/3)*exp(-t*((-594 + 6*I*sqrt(83949))^(2/3)/3 + (-594 + 6*I*sqrt(83949))^(1/3) + 50)/(-594 + 6*I*sqrt(83949))^(1/3))/(1154736*(sqrt(83949)*I + 27983/33)*(sqrt(83949)*I - 99)*exp(t)):

int(integrand,t)

Error, (in Handlers:-TrigExpOnly) cannot determine if this expression is true or false: tr_is_cos

 

Download handler_trig_exp_only_nov_18_2023.mw

But the trick of using evala() to avoid this error does not always work. Here is an example below. So need to find another workaround for this.

restart;

18704

interface(version);

`Standard Worksheet Interface, Maple 2023.2, Windows 10, October 25 2023 Build ID 1753458`

integrand2:=1/40406522112*I*(-594+6*I*3^(1/2)*27983^(1/2))^(2/3)*exp(t*(5/3*3^(1/2)*2^(1/2)
*sin(1/3*arctan(1/99*83949^(1/2))+1/6*Pi)-5*cos(1/3*arctan(1/99*83949^(1/2))+1/
6*Pi)*2^(1/2)-1))*(150+I*(-150+(-594+6*I*3^(1/2)*27983^(1/2))^(2/3))*3^(1/2)+(-\
594+6*I*3^(1/2)*27983^(1/2))^(2/3)-24*(-594+6*I*3^(1/2)*27983^(1/2))^(1/3))*(
2265+(276+I*(27983^(1/2)+92)*3^(1/2)-27983^(1/2))*(-594+6*I*3^(1/2)*27983^(1/2)
)^(1/3)+5*I*(-151+3*27983^(1/2))*3^(1/2)+15*27983^(1/2))*(2265-25*(-594+6*I*3^(
1/2)*27983^(1/2))^(2/3)+(276+I*(-276+27983^(1/2))*3^(1/2)+3*27983^(1/2))*(-594+
6*I*3^(1/2)*27983^(1/2))^(1/3)+15*I*(151+27983^(1/2))*3^(1/2)-45*27983^(1/2))*(
(-594+6*I*3^(1/2)*27983^(1/2))^(2/3)+12*(-594+6*I*3^(1/2)*27983^(1/2))^(1/3)+
150)*3^(1/2)*(-150+I*(-150+(-594+6*I*3^(1/2)*27983^(1/2))^(2/3))*3^(1/2)-(-594+
6*I*3^(1/2)*27983^(1/2))^(2/3)+24*(-594+6*I*3^(1/2)*27983^(1/2))^(1/3))/(I*3^(1
/2)*27983^(1/2)+27983/33)/(I*3^(1/2)*27983^(1/2)-99)^2/exp(t)*sin(t)*cos(t)-1/
20785248*I*(I*(-594+6*I*3^(1/2)*27983^(1/2))^(2/3)*3^(1/2)+(-594+6*I*3^(1/2)*
27983^(1/2))^(2/3)-150*I*3^(1/2)-24*(-594+6*I*3^(1/2)*27983^(1/2))^(1/3)+150)*
exp(5/3*3^(1/2)*sin(1/3*arctan(1/99*83949^(1/2))+1/6*Pi)*2^(1/2)*t-5*cos(1/3*
arctan(1/99*83949^(1/2))+1/6*Pi)*2^(1/2)*t-t)*(2265-25*(-594+6*I*3^(1/2)*27983^
(1/2))^(2/3)+(276+I*(-276+27983^(1/2))*3^(1/2)+3*27983^(1/2))*(-594+6*I*3^(1/2)
*27983^(1/2))^(1/3)+15*I*(151+27983^(1/2))*3^(1/2)-45*27983^(1/2))*(2265+(276+I
*(27983^(1/2)+92)*3^(1/2)-27983^(1/2))*(-594+6*I*3^(1/2)*27983^(1/2))^(1/3)+5*I
*(-151+3*27983^(1/2))*3^(1/2)+15*27983^(1/2))*(-594+6*I*3^(1/2)*27983^(1/2))^(1
/3)*3^(1/2)/(I*3^(1/2)*27983^(1/2)+27983/33)/(I*3^(1/2)*27983^(1/2)-99)*(8/exp(
t)*cos(t)^2-4/exp(t))+1/13856832*I*(-594+6*I*3^(1/2)*27983^(1/2))^(2/3)*(-450+I
*(-150+(-594+6*I*3^(1/2)*27983^(1/2))^(2/3))*3^(1/2)-3*(-594+6*I*3^(1/2)*27983^
(1/2))^(2/3))*exp(t*(5/3*3^(1/2)*2^(1/2)*sin(1/3*arctan(1/99*83949^(1/2))+1/6*
Pi)-5*cos(1/3*arctan(1/99*83949^(1/2))+1/6*Pi)*2^(1/2)-1))*(150+I*(-150+(-594+6
*I*3^(1/2)*27983^(1/2))^(2/3))*3^(1/2)+(-594+6*I*3^(1/2)*27983^(1/2))^(2/3)-24*
(-594+6*I*3^(1/2)*27983^(1/2))^(1/3))*(2265-25*(-594+6*I*3^(1/2)*27983^(1/2))^(
2/3)+(276+I*(-276+27983^(1/2))*3^(1/2)+3*27983^(1/2))*(-594+6*I*3^(1/2)*27983^(
1/2))^(1/3)+15*I*(151+27983^(1/2))*3^(1/2)-45*27983^(1/2))*3^(1/2)/(I*3^(1/2)*
27983^(1/2)+27983/33)/(I*3^(1/2)*27983^(1/2)-99)/exp(t):

int(integrand2,t);

Error, (in Handlers:-TrigExpOnly) cannot determine if this expression is true or false: tr_is_cos

int(evala(integrand2),t);

Error, (in Handlers:-TrigExpOnly) cannot determine if this expression is true or false: tr_is_cos

 

Download handler_trig_exp_version_2.mw

ps. send to Maplesoft support.

Since C2=D1.D1inv should be equal to I. But return is just an expression (see attached). Further, how to obtain residue for a function C2?

residue.mw

First 8 9 10 11 12 13 14 Last Page 10 of 2114