Maple Questions and Posts

These are Posts and Questions associated with the product, Maple

How can I set the alpha for the plot symbols? I would like to add some alpha for blending purposes(will help with the visual in my case).

 

Idealy I would like to plot a 2d "guassian" fade.

A warm greeting for all

How to import a figure from Mathematica to Maple.

Amr

I have a dependent and independent variables u(x),v(x),w(x),....diff( u(x),x$n)=U(k),diff( v(x),x$n)=V(k)......

Is it possible to create, diff(     , x$n)  is an operator or any differentiable function?

I'm having trouble connecting from Maple on Windows 10 to MSQL Server. I tried Microsoft recommended drivers such as sqljdbc_6.4.0.0, did (as I thought) all required steps. The only invariable result I get is "Cannot load driver". I was wandering if anyone had implemented such a construction. Driver name & version , connection string and Java version would be greatly appreciated. Another option is to have any driver, which connects to any of standard databases (Oracle, MySQL).  The only limitation is- it must be from Windows 7 or 10.
          Thanks.
           A.B.


The results should be the same, right?

50/3.(Vector(2, {(1) = .72, (2) = 0.6e-1})) = Vector[column](%id = 18446745399574633758)NULL

NULLNULL

``

50/3*.72 = 12.00000000

50/3*0.6e-1 = 1.000000000NULL

``


 

Download test.mw

I am trying to compare time taken in minutes for each iterative model(Jacobi, Gauss-Seidel and SOR) to complete, so as to figure out the iterativre model with a faster time of convergence but i don't know the command to initiate.

Hello,

I want to evaluate the change of temperature and energy loss during the flow through an expansion valve.

But the command fsolve this does not work with CoolProp.

The following command is just repeated, but gives no result.

fsolve({ThermophysicalData:-Property("D", "H2", "temperature" = TTT, "pressure" = ppp) = 31.13, ThermophysicalData:-Property("H", "H2", "temperature" = TTT, "pressure" = ppp) = 4.098640000*10^6}, {TTT, ppp})

Regards,

Andreas

Hi!

Assume that we have, in the cube C:=[-1,1]^N, for a fixed integer N>=2, a point X1  and   cosider the (closed) ball centered at X1 and radius R1:=0.6. Fixed an integer m>2, Somebody can indicate me how to compute the centers (belonging to C) and the radius of m disjoint balls with the above ball?

That is to say, compute points X2,...,Xm (in C) and positive numbers R2,...,Rm such that the intersection of the (closed) balls B(Xj,Rj) for j=1,...,m be empty. 

Some suggestion?

Many thanks in advance for your comments.

If i have a function like: f(d) = 1- inf { a \in [0,1]: a = e^{d(a-1)} } how can i plot it in maple?

Or simple one function with a maximum over an intervall in it?

Hello,

I have a problem in solving an integral in maple. I can't solve the below integral in maple and it returns the integral itself to me. I also attach an image from the integral if here is not clearly shown. I want maple to return me just a number. can anyone help me in this?

Thank you

int(sin(beta)*(-0.4447569104e-1*beta(10)^3+1.846983291*beta(10)^2+78.88888890*beta(10)+620.4645491)/(9.+.6366197724*beta(10))^2, beta = 0 .. (1/2)*Pi)

 

 

 

 

restart;
T := mu+lambda*H(xi)+(v-1)*H(xi)^2;
                                                2
               mu + lambda H(xi) + (v - 1) H(xi) 
u[0] := a[0]+a[1]*(d+H(xi))+a[2]/(d+H(xi))+a[3]*(d+H(xi))^2+a[4]/(d+H(xi))^2;
                                a[2]                      2
    a[0] + a[1] (d + H(xi)) + --------- + a[3] (d + H(xi)) 
                              d + H(xi)                    

             a[4]    
       + ------------
                    2
         (d + H(xi)) 
diff(u[0], xi);
                            / d        \
                       a[2] |---- H(xi)|
        / d        \        \ dxi      /
   a[1] |---- H(xi)| - -----------------
        \ dxi      /                2   
                         (d + H(xi))    

                                                 / d        \
                                          2 a[4] |---- H(xi)|
                           / d        \          \ dxi      /
      + 2 a[3] (d + H(xi)) |---- H(xi)| - -------------------
                           \ dxi      /                 3    
                                             (d + H(xi))     
collect(%, diff(H(xi), xi));
/           a[2]                               2 a[4]   \ / d       
|a[1] - ------------ + 2 a[3] (d + H(xi)) - ------------| |---- H(xi
|                  2                                   3| \ dxi     
\       (d + H(xi))                         (d + H(xi)) /           

   \
  )|
   /
d[1] := (a[1]-a[2]/(d+H(xi))^2+2*a[3]*(d+H(xi))-2*a[4]/(d+H(xi))^3)*T;
 /           a[2]                               2 a[4]   \ /  
 |a[1] - ------------ + 2 a[3] (d + H(xi)) - ------------| \mu
 |                  2                                   3|    
 \       (d + H(xi))                         (d + H(xi)) /    

                                  2\
    + lambda H(xi) + (v - 1) H(xi) /
diff(d[1], xi);
/       / d        \                                / d        \\ 
|2 a[2] |---- H(xi)|                         6 a[4] |---- H(xi)|| 
|       \ dxi      /          / d        \          \ dxi      /| 
|------------------- + 2 a[3] |---- H(xi)| + -------------------| 
|              3              \ dxi      /                 4    | 
\   (d + H(xi))                                 (d + H(xi))     / 

  /                                 2\   /           a[2]    
  \mu + lambda H(xi) + (v - 1) H(xi) / + |a[1] - ------------
                                         |                  2
                                         \       (d + H(xi)) 

                             2 a[4]   \ /       / d        \
   + 2 a[3] (d + H(xi)) - ------------| |lambda |---- H(xi)|
                                     3| \       \ dxi      /
                          (d + H(xi)) /                     

                     / d        \\
   + 2 (v - 1) H(xi) |---- H(xi)||
                     \ dxi      //
collect(%, diff(H(xi), xi));
//   2 a[2]                  6 a[4]   \ /                 
||------------ + 2 a[3] + ------------| \mu + lambda H(xi)
||           3                       4|                   
\\(d + H(xi))             (d + H(xi)) /                   

                  2\   /           a[2]                         
   + (v - 1) H(xi) / + |a[1] - ------------ + 2 a[3] (d + H(xi))
                       |                  2                     
                       \       (d + H(xi))                      

        2 a[4]   \                           \ / d        \
   - ------------| (lambda + 2 (v - 1) H(xi))| |---- H(xi)|
                3|                           | \ dxi      /
     (d + H(xi)) /                           /             
d[2] := ((2*a[2]/(d+H(xi))^3+2*a[3]+6*a[4]/(d+H(xi))^4)*(mu+lambda*H(xi)+(v-1)*H(xi)^2)+(a[1]-a[2]/(d+H(xi))^2+2*a[3]*(d+H(xi))-2*a[4]/(d+H(xi))^3)*(lambda+(2*(v-1))*H(xi)))*T;
//   2 a[2]                  6 a[4]   \ /                 
||------------ + 2 a[3] + ------------| \mu + lambda H(xi)
||           3                       4|                   
\\(d + H(xi))             (d + H(xi)) /                   

                  2\   /           a[2]                         
   + (v - 1) H(xi) / + |a[1] - ------------ + 2 a[3] (d + H(xi))
                       |                  2                     
                       \       (d + H(xi))                      

        2 a[4]   \                           \ /                 
   - ------------| (lambda + 2 (v - 1) H(xi))| \mu + lambda H(xi)
                3|                           |                   
     (d + H(xi)) /                           /                   

                  2\
   + (v - 1) H(xi) /

eq := (2*k*k)*w*beta*d[2]-(2*alpha*k*k)*d[1]-2*w*u[0]+k*u[0]*u[0];
   2        //   2 a[2]                  6 a[4]   \ /  
2 k  w beta ||------------ + 2 a[3] + ------------| \mu
            ||           3                       4|    
            \\(d + H(xi))             (d + H(xi)) /    

                                 2\   /           a[2]    
   + lambda H(xi) + (v - 1) H(xi) / + |a[1] - ------------
                                      |                  2
                                      \       (d + H(xi)) 

                             2 a[4]   \                          
   + 2 a[3] (d + H(xi)) - ------------| (lambda + 2 (v - 1) H(xi)
                                     3|                          
                          (d + H(xi)) /                          

   \ /                                 2\            2 /    
  )| \mu + lambda H(xi) + (v - 1) H(xi) / - 2 alpha k  |a[1]
   |                                                   |    
   /                                                   \    

         a[2]                               2 a[4]   \ /  
   - ------------ + 2 a[3] (d + H(xi)) - ------------| \mu
                2                                   3|    
     (d + H(xi))                         (d + H(xi)) /    

                                 2\       /    
   + lambda H(xi) + (v - 1) H(xi) / - 2 w |a[0]
                                          |    
                                          \    

                          a[2]                      2
   + a[1] (d + H(xi)) + --------- + a[3] (d + H(xi)) 
                        d + H(xi)                    

         a[4]    \     /                            a[2]   
   + ------------| + k |a[0] + a[1] (d + H(xi)) + ---------
                2|     |                          d + H(xi)
     (d + H(xi)) /     \                                   

                     2       a[4]    \  
   + a[3] (d + H(xi))  + ------------|^2
                                    2|  
                         (d + H(xi)) /  
value(%);
   2        //   2 a[2]                  6 a[4]   \ /  
2 k  w beta ||------------ + 2 a[3] + ------------| \mu
            ||           3                       4|    
            \\(d + H(xi))             (d + H(xi)) /    

                                 2\   /           a[2]    
   + lambda H(xi) + (v - 1) H(xi) / + |a[1] - ------------
                                      |                  2
                                      \       (d + H(xi)) 

                             2 a[4]   \                          
   + 2 a[3] (d + H(xi)) - ------------| (lambda + 2 (v - 1) H(xi)
                                     3|                          
                          (d + H(xi)) /                          

   \ /                                 2\            2 /    
  )| \mu + lambda H(xi) + (v - 1) H(xi) / - 2 alpha k  |a[1]
   |                                                   |    
   /                                                   \    

         a[2]                               2 a[4]   \ /  
   - ------------ + 2 a[3] (d + H(xi)) - ------------| \mu
                2                                   3|    
     (d + H(xi))                         (d + H(xi)) /    

                                 2\       /    
   + lambda H(xi) + (v - 1) H(xi) / - 2 w |a[0]
                                          |    
                                          \    

                          a[2]                      2
   + a[1] (d + H(xi)) + --------- + a[3] (d + H(xi)) 
                        d + H(xi)                    

         a[4]    \     /                            a[2]   
   + ------------| + k |a[0] + a[1] (d + H(xi)) + ---------
                2|     |                          d + H(xi)
     (d + H(xi)) /     \                                   

                     2       a[4]    \  
   + a[3] (d + H(xi))  + ------------|^2
                                    2|  
                         (d + H(xi)) /  
expr := simplify(%);
Error, (in simplify) too many levels of recursion
temp := algsubs(d+H(xi) = freeze(d+H(xi)), numer(expr));
                              expr
thaw(collect(temp, freeze(d+H(xi)))/denom(expr));
                              expr
collect(%, H(xi));
 

Can someone please explain to me why this occurs:

 


 

with(StringTools):

Join(["H:\\USB 1 BACKUP\\ESD-USB\\", "Chemical Engineering"])

"H:\USB 1 BACKUP\ESD-USB\ Chemical Engineering"

(1)

convert("H:\\USB 1 BACKUP\\ESD-USB\\ Chemical Engineering", 'symbol')

`H:\USB 1 BACKUP\ESD-USB\ Chemical Engineering`

(2)

convert('`H:\USB 1 BACKUP\ESD-USB\ Chemical Engineering`', 'string')

"H:USB 1 BACKUPESD-USBChemical Engineering"

(3)

``


 

Download this_makes_me_grumpy.mw

Hello everyone,

I'm struggling to solve inequalities with conditions.

I have this inequality with 4 variables, which I have some conditions. However, I can't implement this conditions to the inequality and solve using the 'solve' command.

Can anybody help me?

inequality.mw

Hi,

I'm surprised by the result of the procedure VectorCalculus:-Curvature which is always a positive scalar quantity:
For instance
c := VectorCalculus:-Curvature(<x, sin(x)>, x):
plot(c, x=0..2*Pi) 
# c >=0 for all x in [0, 2*Pi]

In the help pages it's written that the (signed) curvature for a function y(x) is y''/(1+y' 2)(3/2).

y := sin(x):
c := diff(y, x$2) / (1+diff(y,x)^2)^(3/2):
plot(c,  x=0..2*Pi) 
# c < 0 if x in (0, Pi)  and  c > 0 if x in (Pi, 2*Pi)

Could you please help me to understand this?

Thank in advance

Some years ago it was promised that expansion of capabilities of Heun functions was imminent, but nothing has appeared.  Other functions long overdue for inclusion as special functions in Maple are the Lame functions, which arise as special cases of Heun's differential equation and therefore of Heun functions.  Lame's differential equation appears in Abramowitz and Stegun, but has long been neglected in Maple.  These spectial functions are much more generally useful to users of Maple than, for instance, esoteric parts of the physics package. 

First 14 15 16 17 18 19 20 Last Page 16 of 1596