Maple Questions and Posts

These are Posts and Questions associated with the product, Maple

In the study of the Gödel spacetime model, a tetrad was suggested in the literature [1]. Alas, upon entering the tetrad in question, Maple's Tetrad's package complained that that matrix was not a tetrad! What went wrong? After an exchange with Edgardo S. Cheb-Terrab, Edgardo provided us with awfully useful comments regarding the use of the package and suggested that the problem together with its solution be presented in a post, as others may find it of some use for their work as well.

 

The Gödel spacetime solution to Einsten's equations is as follows.

 

Physics:-Version()

`The "Physics Updates" version in the MapleCloud is 858 and is the same as the version installed in this computer, created 2020, October 27, 10:19 hours Pacific Time.`

(1)

with(Physics); with(Tetrads)

_______________________________________________________

 

`Setting `*lowercaselatin_ah*` letters to represent `*tetrad*` indices`

 

((`Defined as tetrad tensors `*`see <a href='http://www.maplesoft.com/support/help/search.aspx?term=Physics,tetrads`*`,' target='_new'>?Physics,tetrads`*`,</a> `*`&efr;`[a, mu]*`, `)*eta[a, b]*`, `*gamma[a, b, c]*`, `)*lambda[a, b, c]

 

((`Defined as spacetime tensors representing the NP null vectors of the tetrad formalism `*`see <a href='http://www.maplesoft.com/support/help/search.aspx?term=Physics,tetrads`*`,' target='_new'>?Physics,tetrads`*`,</a> `*l[mu]*`, `)*n[mu]*`, `*m[mu]*`, `)*conjugate(m[mu])

 

_______________________________________________________

(2)

Working with Cartesian coordinates,

Coordinates(cartesian)

`Systems of spacetime coordinates are:`*{X = (x, y, z, t)}

 

{X}

(3)

the Gödel line element is

 

ds^2 = d_(t)^2-d_(x)^2-d_(y)^2+(1/2)*exp(2*q*y)*d_(z)^2+2*exp(q*y)*d_(z)*d_(t)

ds^2 = Physics:-d_(t)^2-Physics:-d_(x)^2-Physics:-d_(y)^2+(1/2)*exp(2*q*y)*Physics:-d_(z)^2+2*exp(q*y)*Physics:-d_(z)*Physics:-d_(t)

(4)

Setting the metric

Setup(metric = rhs(ds^2 = Physics[d_](t)^2-Physics[d_](x)^2-Physics[d_](y)^2+(1/2)*exp(2*q*y)*Physics[d_](z)^2+2*exp(q*y)*Physics[d_](z)*Physics[d_](t)))

_______________________________________________________

 

`Coordinates: `*[x, y, z, t]*`. Signature: `*`- - - +`

 

_______________________________________________________

 

Physics:-g_[mu, nu] = Matrix(%id = 18446744078354506566)

 

_______________________________________________________

 

`Setting `*lowercaselatin_is*` letters to represent `*space*` indices`

 

[metric = {(1, 1) = -1, (2, 2) = -1, (3, 3) = (1/2)*exp(2*q*y), (3, 4) = exp(q*y), (4, 4) = 1}, spaceindices = lowercaselatin_is]

(5)

The problem appeared upon entering the matrix M below supposedly representing the alleged tetrad.

interface(imaginaryunit = i)

M := Matrix([[1/sqrt(2), 0, 0, 1/sqrt(2)], [-1/sqrt(2), 0, 0, 1/sqrt(2)], [0, 1/sqrt(2), -I*exp(-q*y), I], [0, 1/sqrt(2), I*exp(-q*y), -I]])

Matrix(%id = 18446744078162949534)

(6)

Each of the rows of this matrix is supposed to be one of the null vectors [l, n, m, conjugate(m)]. Before setting this alleged tetrad, Maple was asked to settle the nature of it, and the answer was that M was not a tetrad! With the Physics Updates v.857, a more detailed message was issued:

IsTetrad(M)

`Warning, the given components form a`*null*`tetrad, `*`with a contravariant spacetime index`*`, only if you change the signature from `*`- - - +`*` to `*`+ - - -`*`. 
You can do that by entering (copy and paste): `*Setup(signature = "+ - - -")

 

false

(7)

So there were actually three problems:

1. 

The entered entity was a null tetrad, while the default of the Physics package is an orthonormal tetrad. This can be seen in the form of the tetrad metric, or using the library commands:

eta_[]

Physics:-Tetrads:-eta_[a, b] = Matrix(%id = 18446744078354552462)

(8)

Library:-IsOrthonormalTetradMetric()

true

(9)

Library:-IsNullTetradMetric()

false

(10)
2. 

The matrix M would only be a tetrad if the spacetime index is contravariant. On the other hand, the command IsTetrad will return true only when M represents a tetrad with both indices covariant. For  instance, if the command IsTetrad  is issued about the tetrad automatically computed by Maple, but is passed the matrix corresponding to "`&efr;`[a]^(mu)"  with the spacetime index contravariant,  false is returned:

"e_[a,~mu, matrix]"

Physics:-Tetrads:-e_[a, `~&mu;`] = Matrix(%id = 18446744078297840926)

(11)

"IsTetrad(rhs(?))"

Typesetting[delayDotProduct](`Warning, the given components form a`*orthonormal*`tetrad only if the spacetime index is contravariant. 
You can construct a tetrad with a covariant spacetime index by entering (copy and paste): `, Matrix(4, 4, {(1, 1) = 1, (1, 2) = 0, (1, 3) = 0, (1, 4) = 0, (2, 1) = 0, (2, 2) = 1, (2, 3) = 0, (2, 4) = 0, (3, 1) = 0, (3, 2) = 0, (3, 3) = sqrt(2)*exp(-q*y), (3, 4) = -sqrt(2), (4, 1) = 0, (4, 2) = 0, (4, 3) = 0, (4, 4) = 1}), true).rhs(g[])

 

false

(12)
3. 

The matrix M corresponds to a tetrad with different signature, (+---), instead of Maple's default (---+). Although these two signatures represent the same physics, they differ in the ordering of rows and columns: the timelike component is respectively in positions 1 and 4.

 

The issue, then, became how to correct the matrix M to be a valid tetrad: either change the setup, or change the matrix M. Below the two courses of action are provided.

 

First the simplest: change the settings. According to the message (7), setting the tetrad to be null, changing the signature to be (+---) and indicating that M represents a tetrad with its spacetime index contravariant would suffice:

Setup(tetradmetric = null, signature = "+---")

[signature = `+ - - -`, tetradmetric = {(1, 2) = 1, (3, 4) = -1}]

(13)

The null tetrad metric is now as in the reference used.

eta_[]

Physics:-Tetrads:-eta_[a, b] = Matrix(%id = 18446744078298386174)

(14)

Checking now with the spacetime index contravariant

e_[a, `~&mu;`] = M

Physics:-Tetrads:-e_[a, `~&mu;`] = Matrix(%id = 18446744078162949534)

(15)

At this point, the command IsTetrad  provided with the equation (15), where the left-hand side has the information that the spacetime index is contravariant

"IsTetrad(?)"

`Type of tetrad: `*null

 

true

(16)

Great! one can now set the tetrad M exactly as entered, without changing anything else. In the next line it will only be necessary to indicate that the spacetime index, mu, is contravariant.

Setup(e_[a, `~&mu;`] = M, quiet)

[tetrad = {(1, 1) = -(1/2)*2^(1/2), (1, 3) = (1/2)*2^(1/2)*exp(q*y), (1, 4) = (1/2)*2^(1/2), (2, 1) = (1/2)*2^(1/2), (2, 3) = (1/2)*2^(1/2)*exp(q*y), (2, 4) = (1/2)*2^(1/2), (3, 2) = -(1/2)*2^(1/2), (3, 3) = ((1/2)*I)*exp(q*y), (3, 4) = 0, (4, 2) = -(1/2)*2^(1/2), (4, 3) = -((1/2)*I)*exp(q*y), (4, 4) = 0}]

(17)

 

The tetrad is now the matrix M. In addition to checking this tetrad making use of the IsTetrad command, it is also possible to check the definitions of tetrads and null vectors using TensorArray.

e_[definition]

Physics:-Tetrads:-e_[a, `&mu;`]*Physics:-Tetrads:-e_[b, `~&mu;`] = Physics:-Tetrads:-eta_[a, b]

(18)

TensorArray(Physics:-Tetrads:-e_[a, `&mu;`]*Physics:-Tetrads:-e_[b, `~&mu;`] = Physics:-Tetrads:-eta_[a, b], simplifier = simplify)

Matrix(%id = 18446744078353048270)

(19)

For the null vectors:

l_[definition]

Physics:-Tetrads:-l_[mu]*Physics:-Tetrads:-l_[`~mu`] = 0, Physics:-Tetrads:-l_[mu]*Physics:-Tetrads:-n_[`~mu`] = 1, Physics:-Tetrads:-l_[mu]*Physics:-Tetrads:-m_[`~mu`] = 0, Physics:-Tetrads:-l_[mu]*Physics:-Tetrads:-mb_[`~mu`] = 0, Physics:-g_[mu, nu] = Physics:-Tetrads:-l_[mu]*Physics:-Tetrads:-n_[nu]+Physics:-Tetrads:-l_[nu]*Physics:-Tetrads:-n_[mu]-Physics:-Tetrads:-m_[mu]*Physics:-Tetrads:-mb_[nu]-Physics:-Tetrads:-m_[nu]*Physics:-Tetrads:-mb_[mu]

(20)

TensorArray([Physics:-Tetrads:-l_[mu]*Physics:-Tetrads:-l_[`~mu`] = 0, Physics:-Tetrads:-l_[mu]*Physics:-Tetrads:-n_[`~mu`] = 1, Physics:-Tetrads:-l_[mu]*Physics:-Tetrads:-m_[`~mu`] = 0, Physics:-Tetrads:-l_[mu]*Physics:-Tetrads:-mb_[`~mu`] = 0, Physics[g_][mu, nu] = Physics:-Tetrads:-l_[mu]*Physics:-Tetrads:-n_[nu]+Physics:-Tetrads:-l_[nu]*Physics:-Tetrads:-n_[mu]-Physics:-Tetrads:-m_[mu]*Physics:-Tetrads:-mb_[nu]-Physics:-Tetrads:-m_[nu]*Physics:-Tetrads:-mb_[mu]], simplifier = simplify)

[0 = 0, 1 = 1, 0 = 0, 0 = 0, Matrix(%id = 18446744078414241910)]

(21)

From its Weyl scalars, this tetrad is already in the canonical form for a spacetime of Petrov type "D": only `&Psi;__2` <> 0

PetrovType()

"D"

(22)

Weyl[scalars]

psi__0 = 0, psi__1 = 0, psi__2 = -(1/6)*q^2, psi__3 = 0, psi__4 = 0

(23)

Attempting to transform it into canonicalform returns the tetrad (17) itself

TransformTetrad(canonicalform)

Matrix(%id = 18446744078396685478)

(24)

Let's now obtain the correct tetrad without changing the signature as done in (13).

Start by changing the signature back to "(- - - +)"

Setup(signature = "---+")

[signature = `- - - +`]

(25)

So again, M is not a tetrad, even if the spacetime index is specified as contravariant.

IsTetrad(e_[a, `~&mu;`] = M)

`Warning, the given components form a`*null*`tetrad, `*`with a contravariant spacetime index`*`, only if you change the signature from `*`- - - +`*` to `*`+ - - -`*`. 
You can do that by entering (copy and paste): `*Setup(signature = "+ - - -")

 

false

(26)

By construction, the tetrad M has its rows formed by the null vectors with the ordering [l, n, m, conjugate(m)]. To understand what needs to be changed in M, define those vectors, independent of the null vectors [l_, n_, m_, mb_] (with underscore) that come with the Tetrads package.

Define(l[mu], n[mu], m[mu], mb[mu], quiet)

and set their components using the matrix M taking into account that its spacetime index is contravariant, and equating the rows of M  using the ordering [l, n, m, conjugate(m)]:

`~`[`=`]([l[`~&mu;`], n[`~&mu;`], m[`~&mu;`], mb[`~&mu;`]], [seq(M[j, 1 .. 4], j = 1 .. 4)])

[l[`~&mu;`] = Vector[row](%id = 18446744078368885086), n[`~&mu;`] = Vector[row](%id = 18446744078368885206), m[`~&mu;`] = Vector[row](%id = 18446744078368885326), mb[`~&mu;`] = Vector[row](%id = 18446744078368885446)]

(27)

"Define(op(?))"

`Defined objects with tensor properties`

 

{Physics:-D_[mu], Physics:-Dgamma[mu], Physics:-Psigma[mu], Physics:-Ricci[mu, nu], Physics:-Riemann[mu, nu, alpha, beta], Physics:-Weyl[mu, nu, alpha, beta], Physics:-d_[mu], Physics:-Tetrads:-e_[a, mu], Physics:-Tetrads:-eta_[a, b], Physics:-g_[mu, nu], Physics:-gamma_[i, j], Physics:-Tetrads:-gamma_[a, b, c], l[mu], Physics:-Tetrads:-l_[mu], Physics:-Tetrads:-lambda_[a, b, c], m[mu], Physics:-Tetrads:-m_[mu], mb[mu], Physics:-Tetrads:-mb_[mu], n[mu], Physics:-Tetrads:-n_[mu], Physics:-Christoffel[mu, nu, alpha], Physics:-Einstein[mu, nu], Physics:-LeviCivita[alpha, beta, mu, nu], Physics:-SpaceTimeVector[mu](X)}

(28)

Check the covariant components of these vectors towards comparing them with the lines of the Maple's tetrad `&efr;`[a, mu]

l[], n[], m[], mb[]

l[mu] = Array(%id = 18446744078298368710), n[mu] = Array(%id = 18446744078298365214), m[mu] = Array(%id = 18446744078298359558), mb[mu] = Array(%id = 18446744078298341734)

(29)

This shows the [l_, n_, m_, mb_] null vectors (with underscore) that come with Tetrads package

e_[nullvectors]

Physics:-Tetrads:-l_[mu] = Vector[row](%id = 18446744078354520414), Physics:-Tetrads:-n_[mu] = Vector[row](%id = 18446744078354520534), Physics:-Tetrads:-m_[mu] = Vector[row](%id = 18446744078354520654), Physics:-Tetrads:-mb_[mu] = Vector[row](%id = 18446744078354520774)

(30)

So (29) computed from M is the same as (30) computed from Maple's tetrad.

But, from (30) and the form of Maple's tetrad

e_[]

Physics:-Tetrads:-e_[a, mu] = Matrix(%id = 18446744078297844182)

(31)

for the current signature

Setup(signature)

[signature = `- - - +`]

(32)

we see the ordering of the null vectors is [n, m, mb, l], not [l, n, m, mb] used in [1] with the signature (+ - - -). So the adjustment required in  M, resulting in "M^( ')", consists of reordering M's rows to be [n, m, mb, l]

`#msup(mi("M"),mrow(mo("&InvisibleTimes;"),mo("&apos;")))` := simplify(Matrix(4, map(Library:-TensorComponents, [n[mu], m[mu], mb[mu], l[mu]])))

Matrix(%id = 18446744078414243230)

(33)

IsTetrad(`#msup(mi("M"),mrow(mo("&InvisibleTimes;"),mo("&apos;")))`)

`Type of tetrad: `*null

 

true

(34)

Comparing "M^( ')" with the tetrad `&efr;`[a, mu]computed by Maple ((24) and (31), they are actually the same.

References

[1]. Rainer Burghardt, "Constructing the Godel Universe", the arxiv gr-qc/0106070 2001.

[2]. Frank Grave and Michael Buser, "Visiting the Gödel Universe",  IEEE Trans Vis Comput GRAPH, 14(6):1563-70, 2008.


 

Download Godel_universe_and_Tedrads.mw

I'm doing som XML readin, and need a bit help in using the HasChild function properly.

The attachment shows that using HasChild on a xmltree works fine, but I can't get i working when using it on a xmldocument. The latter is usually the case when you get when you read in from a file.

HasChild.mw

Hello there, 

Would you please tell me how to re-write the 'PMSM_v_eq' as 'PMSM_flux_eq_desired'? My simple attempt was using the 'solve()' command, but it failed. 

Here is the worksheet:


 

restart;

PMSM_v_eq := V__alphabeta(t) = R__s * i__alphabeta(t) + L__s*diff(i__alphabeta(t), t) + diff(lambda__alphabeta(t), t);

V__alphabeta(t) = R__s*i__alphabeta(t)+L__s*(diff(i__alphabeta(t), t))+diff(lambda__alphabeta(t), t)

(1)

 

PMSM_flux_eq := solve(PMSM_v_eq, lambda__alphabeta(t));

Error, (in solve) cannot solve expressions with diff(lambda__alphabeta(t), t) for lambda__alphabeta(t)

 

PMSM_flux_eq_desired := lambda__alphabeta(t) =  int(V__alphabeta(t) - R__s * i__alphabeta(t), t) - L__s*i__alphabeta(t);

lambda__alphabeta(t) = int(V__alphabeta(t)-R__s*i__alphabeta(t), t)-L__s*i__alphabeta(t)

(2)

 


Thank you!

Download PMSM_eq.mw

Hello

I have no choice but use Grid:-Map and Grid:-Seq in my calculations due to the size of them.  Here is a very small example that is puzzling me (Perhaps I did something really silly and did not realize). 

ansa:=CodeTools:-Usage(Grid:-Map(w->CondswithOnesolutionTest(w,eqns,vars,newvars,tlim),conds5s)):

with the following result:

ansa:=set([{alpha[1, 1] = 0, alpha[1, 2] = 0, alpha[1, 3] = 0, alpha[1, 4] = 0, alpha[1, 5] = 0, alpha[1, 6] = 0, alpha[1, 8] = 0, alpha[1, 9] = 0, alpha[2, 0] = 0, alpha[2, 1] = 0, alpha[2, 2] = 0, alpha[2, 4] = 0, alpha[2, 5] = 0, alpha[2, 7] = 0, alpha[2, 8] = 0, alpha[2, 9] = 0, alpha[3, 0] = 0, alpha[3, 1] = 0, alpha[3, 2] = 0, alpha[3, 3] = 0, alpha[3, 4] = 0, alpha[3, 6] = 0, alpha[3, 7] = 0, alpha[3, 8] = 0, alpha[3, 9] = 0}, {}, {}, {}, {}, {}], [{}, {}, {}, {}, {}, {alpha[1, 1] = 0, alpha[1, 2] = 0, alpha[1, 3] = 0, alpha[1, 4] = 0, alpha[1, 5] = 0, alpha[1, 6] = 0, alpha[1, 8] = 0, alpha[1, 9] = 0, alpha[2, 0] = 0, alpha[2, 1] = 0, alpha[2, 2] = 0, alpha[2, 4] = 0, alpha[2, 5] = 0, alpha[2, 7] = 0, alpha[2, 8] = 0, alpha[2, 9] = 0, alpha[3, 0] = 0, alpha[3, 1] = 0, alpha[3, 2] = 0, alpha[3, 3] = 0, alpha[3, 5] = 0, alpha[3, 6] = 0, alpha[3, 7] = 0, alpha[3, 8] = 0, alpha[3, 9] = 0}], [{alpha[1, 1] = 0, alpha[1, 2] = 0, alpha[1, 3] = 0, alpha[1, 4] = 0, alpha[1, 5] = 0, alpha[1, 6] = 0, alpha[1, 8] = 0, alpha[1, 9] = 0, alpha[2, 0] = 0, alpha[2, 1] = 0, alpha[2, 2] = 0, alpha[2, 4] = 0, alpha[2, 5] = 0, alpha[2, 7] = 0, alpha[2, 8] = 0, alpha[2, 9] = 0, alpha[3, 0] = 0, alpha[3, 1] = 0, alpha[3, 3] = 0, alpha[3, 4] = 0, alpha[3, 5] = 0, alpha[3, 6] = 0, alpha[3, 7] = 0, alpha[3, 8] = 0, alpha[3, 9] = 0}, {}, {}, {}, {}, {}], [{}, {}, {}, {}, {}, {alpha[1, 1] = 0, alpha[1, 2] = 0, alpha[1, 3] = 0, alpha[1, 4] = 0, alpha[1, 5] = 0, alpha[1, 6] = 0, alpha[1, 8] = 0, alpha[1, 9] = 0, alpha[2, 0] = 0, alpha[2, 1] = 0, alpha[2, 2] = 0, alpha[2, 4] = 0, alpha[2, 5] = 0, alpha[2, 7] = 0, alpha[2, 8] = 0, alpha[2, 9] = 0, alpha[3, 0] = 0, alpha[3, 2] = 0, alpha[3, 3] = 0, alpha[3, 4] = 0, alpha[3, 5] = 0, alpha[3, 6] = 0, alpha[3, 7] = 0, alpha[3, 8] = 0, alpha[3, 9] = 0}])

The same thing but now using only map

ansb:=CodeTools:-Usage(map(w->CondswithOnesolutionTest(w,eqns,vars,newvars,tlim),conds5s)):
ansb:={[{}, {}, {}, {}, {}, {alpha[1, 1] = 0, alpha[1, 2] = 0, alpha[1, 3] = 0, alpha[1, 4] = 0, alpha[1, 5] = 0, alpha[1, 6] = 0, alpha[1, 8] = 0, alpha[1, 9] = 0, alpha[2, 0] = 0, alpha[2, 1] = 0, alpha[2, 2] = 0, alpha[2, 4] = 0, alpha[2, 5] = 0, alpha[2, 7] = 0, alpha[2, 8] = 0, alpha[2, 9] = 0, alpha[3, 0] = 0, alpha[3, 1] = 0, alpha[3, 2] = 0, alpha[3, 3] = 0, alpha[3, 5] = 0, alpha[3, 6] = 0, alpha[3, 7] = 0, alpha[3, 8] = 0, alpha[3, 9] = 0}], [{}, {}, {}, {}, {}, {alpha[1, 1] = 0, alpha[1, 2] = 0, alpha[1, 3] = 0, alpha[1, 4] = 0, alpha[1, 5] = 0, alpha[1, 6] = 0, alpha[1, 8] = 0, alpha[1, 9] = 0, alpha[2, 0] = 0, alpha[2, 1] = 0, alpha[2, 2] = 0, alpha[2, 4] = 0, alpha[2, 5] = 0, alpha[2, 7] = 0, alpha[2, 8] = 0, alpha[2, 9] = 0, alpha[3, 0] = 0, alpha[3, 2] = 0, alpha[3, 3] = 0, alpha[3, 4] = 0, alpha[3, 5] = 0, alpha[3, 6] = 0, alpha[3, 7] = 0, alpha[3, 8] = 0, alpha[3, 9] = 0}], [{alpha[1, 1] = 0, alpha[1, 2] = 0, alpha[1, 3] = 0, alpha[1, 4] = 0, alpha[1, 5] = 0, alpha[1, 6] = 0, alpha[1, 8] = 0, alpha[1, 9] = 0, alpha[2, 0] = 0, alpha[2, 1] = 0, alpha[2, 2] = 0, alpha[2, 4] = 0, alpha[2, 5] = 0, alpha[2, 7] = 0, alpha[2, 8] = 0, alpha[2, 9] = 0, alpha[3, 0] = 0, alpha[3, 1] = 0, alpha[3, 2] = 0, alpha[3, 3] = 0, alpha[3, 4] = 0, alpha[3, 6] = 0, alpha[3, 7] = 0, alpha[3, 8] = 0, alpha[3, 9] = 0}, {}, {}, {}, {}, {}], [{alpha[1, 1] = 0, alpha[1, 2] = 0, alpha[1, 3] = 0, alpha[1, 4] = 0, alpha[1, 5] = 0, alpha[1, 6] = 0, alpha[1, 8] = 0, alpha[1, 9] = 0, alpha[2, 0] = 0, alpha[2, 1] = 0, alpha[2, 2] = 0, alpha[2, 4] = 0, alpha[2, 5] = 0, alpha[2, 7] = 0, alpha[2, 8] = 0, alpha[2, 9] = 0, alpha[3, 0] = 0, alpha[3, 1] = 0, alpha[3, 3] = 0, alpha[3, 4] = 0, alpha[3, 5] = 0, alpha[3, 6] = 0, alpha[3, 7] = 0, alpha[3, 8] = 0, alpha[3, 9] = 0}, {}, {}, {}, {}, {}]}

(This is what I expected as the result).

 

Why did Grid:-Map add set to the answer?  What am I missing?  

 

Many thanks

 

mwe.mw

I have a system of ODEs, and I am using the DifferentialAlgebra Package. I am getting this error message: Error, (in DifferentialAlgebra:-RosenfeldGroebner) unexpected occurrence of the non-rational constants {-I, I, 2*I} in the given input. What should I do?

Here is the problem. I start Maple 2020 on windows 10. Run a script which takes 1-2 days to complete. 

During this time, I can't use that Maple at all, since it is busy. 

I could start Maple 2019, and that runs as completely separate process. But I want to use Maple 2020 since some things in my scripts do not work on Maple 2019 that work on Maple 2020.

If I start a new instance of Maple 2020, by doing Start->Maple 2020. it does seem to start it OK, but I noticed it seems to be somehow still connected to the one running somehow.  May be they are sharing the same interface?

I can use the new instance now and open new worksheet and use it. But it seems to become very slow, as if it is sharing something with the other Maple 2020 running the long script which uses lots of resources. It is not RAM issue, I have 64 GB RAM, and there is plenty of free RAM left. 

When I close the new Maple 2020 workseet I started, I get a message asking if I want to save the worksheet that I have open from the earlier instance which is still running ! 

I say no ofcourse, as I do not want to terminate that instance, I want to keep it running until the script is completed.

My question is: Could someone may be explain exactly what happens when one starts new Maple 2020, while one is allready running? Why it seems they are sharing either the interface or something else.  How to start completely separate Maple 2020 instance on same PC while one is allready running?

With Mathematica, this issue does not happen. I can start two instances of same version on same PC, and there is nothing shared between them at all.  This does not seem to be the case with Maple.

Maple 2020.1 on windows 10.

 

sometimes solve returns solution of the form

restart;

#eqs:=.....
#sol:=solve(eqs,{v[1],v[2],v[3]});

sol:={v[1]=t,v[2]=3/2*t,v[3]=v[3]};

And wanted to remove all those that represnt arbitrary solution, which is v[3]=v[3] above.

I could do this using

remove(x->lhs(x)=rhs(x),sol);

which gives

{v[1]=t,v[2]=3/2*t};

But as an excersise, I could not figure how to do the same using subsindent (where I wanted to replace v[3]=v[3] with {} or NULL,. and also using applyrule.

Is it possible to do the same as above but using subsindent and applyrule (which is similar to patmatch)? 

Sorry I can't make it very easy to understand in the title, this is what I want:

In the forms of Method of Underdetermined Coefficient a*y''+b*y'+c*y=F(x), I want the maple to assume b^2 < 4ac so the homogenous will contain sin and cos. Is there any quick command to do this or I have to develop on my own? 

I want this because I want to set the coefficient unknown and graph them, so if I do what Maple default does, when I plug the coefficients (which b^2<4ac) it returns imaginary numbers and I don't know how do deal with it.

Thank you for everyone helping.

I needed to make symbolic vector, as in  

my_vector:=Vector([v__1,v__2,v__3])

The problem is that, the proc called, has to create this vector on the fly, since the dimension changes on each call. So I used seq command to generate it. But seq did not work. I tried

my_vector:=Vector([seq('v__i',i=1..3)])

 

After looking more at it, It seems to have nothing to do with evaluation. If the subscript index is variable, it does not work.

 

f:=proc(v::symbol,i::posint)  
  print("i=",i);
  print("v__i=",v__i); 
  return (v__i);
end proc;

f(v,2)

One way is to use v[i] instead of v__i, and now it works:

[seq('v[i]',i=1..3)]

But since subscripted variable are supposed to be safer than indexed variable, I wanted to use v__i and not v[i].

 

Why it does not work? And is there a workaround this?  

ps. I could always do this 

V:=[seq(:-parse(cat("v__",convert(i,string))),i=1..3)]
lprint(V[1])

But this seems like a hack to me and I do not know why it should be needed.

ps. any one knows where help on "__" is in Maple? I can't find it. doing ?__ turns out nothing. I do not know under what name help on double subscript is in maple.

Maple 2020.1

Is it possible to determine an analytic solution to the following system of two differential equations for $A$ and $B$ using Maple.  My suspicion is that trial and error would find an analytic solution in theory and so that Maple could find the solution.  M is a constant and \sigma is some arbitrary function of t and the spatial coordinates. 

\[ \Bigg( \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} + \frac{1}{2} \Bigg( 1 + \frac{M}{2 \sqrt{x^2 + y^2 + z^2}} \Bigg) \Bigg( \frac{\partial \sigma}{\partial x }\frac{\partial}{\partial x} +\frac{\partial \sigma}{\partial y}\frac{\partial}{\partial y} +\frac{\partial \sigma}{\partial z}\frac{\partial}{\partial z} \Bigg) \Bigg)B=0, \]

\[\frac{d A}{dt} = AB.\]

Furthermore, the boundary conditions are 

\[B \rightarrow -1  \: \text{as}  \: \sqrt{x^2 + y^2 + z^2} \rightarrow \infty,\]

\[A \rightarrow e^{-t} \: \text{as} \: \sqrt{x^2 + y^2 + z^2} \rightarrow \infty \]

System_of_Equations.pdf

 

Hi, I have this graph and i am trying to find a method that will only look at the second gradient change. I want it to adjust list A that it takes out the coordinates for the first gradient and the last 2. I have tried to find a way to make it work but i have no idea how to get maple to sense that there is a gradient change (basically i want to split the graph in 4 bits each of which contains a constant gradient if that makes sense!)

dsys6 := {x(t)^2 + n*y(t)^2 = 1, diff(x(t), t, t) = -2*m*x(t), diff(y(t), t, t) = -2*m*y(t) - Pi^2, x(0) = 0, y(0) = -1, D(x)(0) = 1/10, D(y)(0) = 0}


 

Dear Users!

Hope you would be fine. I have some problem in execution the last loops (highlighted as red) where sumation is present. When NN>3 it takes alot of time more than 12 hours. Is there any alternative command to reduce the query. I am waiting for your response. Thanks in advance. 

restart; with(LinearAlgebra); Digits := 30; NN := 2; nu := 1; M1 := NN; M2 := NN; M3 := NN;

for k1 from 0 while k1 <= M1-1 do for k2 from 0 while k2 <= M2-1 do for k3 from 0 while k3 <= M3-1 do

SGP[M3*(M2*k1+k2)+k3+1] := simplify(sum((-1)^(k1-i1)*GAMMA(k1+i1+2*nu)*x^i1*(sum((-1)^(k2-i2)*GAMMA(k2+i2+2*nu)*y^i2*(sum((-1)^(k3-i3)*GAMMA(k3+i3+2*nu)*z^i3/(GAMMA(i3+nu+1/2)*factorial(k3-i3)*factorial(i3)), i3 = 0 .. k3))/(GAMMA(i2+nu+1/2)*factorial(k2-i2)*factorial(i2)), i2 = 0 .. k2))/(GAMMA(i1+nu+1/2)*factorial(k1-i1)*factorial(i1)), i1 = 0 .. k1)) end do end do end do;

SGPxyz := `<,>`(seq(seq(seq(SGP[M3*(M2*(i-1)+j-1)+k], k = 1 .. M3), j = 1 .. M2), i = 1 .. M1));

Lambda := `<,>`(seq(seq(seq(chi[M3*(M2*(i-1)+j-1)+k], k = 1 .. M3), j = 1 .. M2), i = 1 .. M1));

for i while i <= NN^3 do for j while j <= NN^3 do for k while k <= NN^3 do

q[i, j, k] := int(int(int(SGP[i]*SGP[j]*SGP[k]*(-x^2+x)^(nu-1/2)*(-y^2+y)^(nu-1/2)*(-z^2+z)^(nu-1/2), z = 0 .. 1), y = 0 .. 1), x = 0 .. 1) end do end do end do;

U := Matrix(NN^3, NN^3, 0);

for j while j <= NN^3 do for k while k <= NN^3 do U[j, k] := simplify(sum(chi[i1]*q[i1, j, k], i1 = 1 .. NN^3)) end do end do;

F := simplify(evalm(U));

Special request to @acer @Carl Love @Kitonum @Preben Alsholm

 

Using library is very easy to plot the graph. But how to do this question by using spacecurve rather than the library

 

I do not quite understand why prof asks this question. Or I am doing right? Where can I improve? Or I understand this question completely wrong. To be honest, I did not get the point 

First 16 17 18 19 20 21 22 Last Page 18 of 1757