MaplePrimes Questions

Good Morning Sir. How to get the series of g(x).I couldn't get  it.

AGM.mw

Please help to plot this equation 

fwf-v.mw

Hello,

I am a beginner using Maple 18. In the procedure I am analyzing, the result is 0.*I. This result means that the procedure cannot be completed until the end, displaying the graph. I am attaching Maple worksheet. Please help me solve this problem.

Capillarity.mw

Maple does not give solution to this first order ode with IC, if asked to do it implicit. It only solves it explicit. 

ode := diff(y(x), x) - 2*(2*y(x) - x)/(x + y(x)) = 0;
ic:=y(0)=2;
dsolve([ode,ic],'implicit'); #maple gives no solution when implicit!

Then I asked Maple for an implicit solution but with no IC. Then solved for the constant of integration myself, and plugged this back in the solution. But odetest now says the initial conditions do not verify. 

Here are the steps I did to solve for the constant of integration. I do not see any error I made. Does any one see where my error is and why odetest does not verify the solution for IC?

This first order ode has unique solution. Here is my worksheet.
 

35220

restart;

35220

ode := diff(y(x), x) - 2*(2*y(x) - x)/(x + y(x)) = 0;
ic:=y(0)=2;
dsolve([ode,ic],'implicit'); #maple gives no solution when implicit!

diff(y(x), x)-2*(2*y(x)-x)/(x+y(x)) = 0

y(0) = 2

#lets now try finding the constant of integration ourself
sol:=dsolve(ode,'implicit')

2*ln(-(-y(x)+x)/x)-3*ln(-(-y(x)+2*x)/x)-ln(x)-c__1 = 0

#setup equation and plugin the IC. Raise both sides to exp. RHS becomes 1
eq:=exp(lhs(sol))=1;

exp(2*ln(-(-y(x)+x)/x)-3*ln(-(-y(x)+2*x)/x)-ln(x)-c__1) = 1

simplify(eq,exp);

(y(x)-x)^2*exp(-c__1)/(y(x)-2*x)^3 = 1

#plugin in y=2 at x=0
eval(%,[y(x)=2,x=0]);

(1/2)*exp(-c__1) = 1

#solve for constant of integration
solve(%,c__1)

-ln(2)

#subtitute back in the solution
sol:=eval(sol,c__1=%);

2*ln(-(-y(x)+x)/x)-3*ln(-(-y(x)+2*x)/x)-ln(x)+ln(2) = 0

#verify. Why it failed check on IC?? Notice it is not [0,0].
odetest(sol,[ode,ic])

[0, 2]

 


 

Download why_fails_to_verify.mw

 

I bought Maple 2023 student version. (I am student) and installed it on windows 10.

I wanted to try it on Linux to see if runs better. So Installed the Linux version. When I tried to activate using the same purchase code I got, I get error that I have no more activations or I exceeded the number of activations.

But I installed Maple 2023 only one time, on windows which is my main OS. Never installed it anywhere else before.

Is one really only allowed one installation?

How would then I can try Maple on Linux but keep my Maple on windows until I decide if Maple works better on Linux or not?

Hello everyone,

Please, I need your help. I want to plot the spectrum of a dataset in #Problem 1.

In #Problem 2 If it is possible, how can I convert that function from the time domain to the frequency domain?

Thank you

Fourier_transform.mw

I would like to apply the pappus theorem to an ellipse. Pascale's theorem 

Hi,

How to insert a condition in the final graph to display the parabola, its vertex, the axis of symmetry, and the roots (if they exist), and only display the parabola, the vertex, and its axis of symmetry otherwise. Thank you for your insights

S5AléatoireParaboleSommetGraphe.mw

Greetings! I need a maple code of logarithm of residuals for graphical comparison of iterative methods. Can anyone help me out by sharing a code comparing log of residuals of 2 or 3 iterative methods? 

I think the GF function, input, accepts out-of-range inputs.

From ?GF: The G:-input and G:-output commands convert from an integer in the range 
  "0 .. p^k - 1" to the corresponding polynomial and back

GF_strange.mw

The first GF was from a typo. I think it should have produced an error message, according to help.
If I understand correctly, GF(7,1) should only have 7 members.
The second GF is to allow the input 28856.

Tom Dean

This first order ode is quadrature with initial conditions. By existence theorem it has solution and is unique on some interval that includes the initial conditions (because f and f_y  are continuous on the initial condition).

But for some reason Maple can't find the solution, unless one adds 'implicit' option. Why is that? I thought that Maple will automatically return implicit solution if can't find explicit solution. 

So does one then needs to try with implicit solution again if no solution is returned? I am basically asking if this is expected behavior of dsolve.

Below is worksheet also with the solution that Maple verifies is valid and satisfies the ode and also initial conditions.

ode:=diff(y(x), x) = sin(y(x)) + 1;
ic:=y(0)=Pi;
sol:=dsolve([ode,ic]);

20212

interface(version);

`Standard Worksheet Interface, Maple 2023.2, Windows 10, November 24 2023 Build ID 1762575`

Physics:-Version();

`The "Physics Updates" version in the MapleCloud is 1618 and is the same as the version installed in this computer, created 2023, November 29, 17:28 hours Pacific Time.`

restart;

28544

ode:=diff(y(x), x) = sin(y(x)) + 1;
ic:=y(0)=Pi;
sol:=dsolve([ode,ic]);

diff(y(x), x) = sin(y(x))+1

y(0) = Pi

maple_sol:=dsolve([ode,ic],'implicit');
odetest(maple_sol,[ode,ic])

(2+x*tan((1/2)*y(x))+x)/(tan((1/2)*y(x))+1) = 0

[0, 0]

maple_sol:=dsolve([ode,ic],y(x),'explicit');

mysol:=y(x)=2*arccos(-x/(sqrt(4+4*x+2*x^2)));
odetest(mysol,[ode,ic]) assuming x>=0

y(x) = 2*Pi-2*arccos(x/(2*x^2+4*x+4)^(1/2))

[0, 0]

 


 

Download unable_to_dsolve_quadature_dec_22_2023.mw

 

Why does

restart;
eq:=Z^2=y/x;
solve(eq,Z)

give

I never told maple that y>=0 and x>=0 ?   I was expecting what we will do by hand. which is

Note that sqrt(x*y) is same as sqrt(x)*sqrt(y) only when y and x are not negative. 

Is there an option to make Maple not do this and give same result as above? I tried PDEtools:-Solve and it gives same solution as solve.

Maple 2023.2.1 on windows 10

Notional example:
I use mtaylor compute the Taylor expansion of a function f (U) of several variables U1, .., UN.
In the resul the terms are ordered this way:

  • the leftmost term is f (P) where P denotes the point where the expansion is done
  • followed by a succession of terms :
    • firstly ranked according to the total order of derivation of  f.
    • and among terms of same derivation order, ranked in some kind of lexicographic order

For instance

Vars    := [seq(U[i], i=1..2)]:
AtPoint := [seq(P[i], i=1..2)]:
mt      := mtaylor(f(Vars[]), Vars =~ AtPoint, 3)

 

f(P[1], P[2])+(D[1](f))(P[1], P[2])*(U[1]-P[1])+(D[2](f))(P[1], P[2])*(U[2]-P[2])+(1/2)*(D[1, 1](f))(P[1], P[2])*(U[1]-P[1])^2+(D[1, 2](f))(P[1], P[2])*(U[1]-P[1])*(U[2]-P[2])+(1/2)*(D[2, 2](f))(P[1], P[2])*(U[2]-P[2])^2

(1)

map(t -> op([0, 0], select(has, [op(t)], D)[]), [op(mt)][2..-1])

[D[1], D[2], D[1, 1], D[1, 2], D[2, 2]]

(2)
 

 

Download mtaylor.mw

How could I define another ordering of the terms in this mtaylor expansion?
For instance 1 being identified to some letter and 2 to another one such that 1 <  2 a lexicographic order would be 

D[1], D[1, 1], D[1, 2], D[2], D[2, 2]

Thanks in advance

Hello everyone,

I'm trying to symbolically diagonalize a 5x5 matrix in Maple. I can determine the eigenvalues for my matrix, but when it comes to evaluating the eigenvectors, Maple gives me the following results:

eigenvalues(A): -a + u, a + u, u, u, u

eigenvectors(A): [a + u, 1, {r}], [-a + u, 1, {r}], [u, 5, {r, r, r, r, r}]

I don't understand why I'm getting {r} in the eigenvectors. How can I display the eigenvectors for my matrix A?

Thank you in advance for your answers !

5x5

 

restartNULL

with(linalg)

[BlockDiagonal, GramSchmidt, JordanBlock, LUdecomp, QRdecomp, Wronskian, addcol, addrow, adj, adjoint, angle, augment, backsub, band, basis, bezout, blockmatrix, charmat, charpoly, cholesky, col, coldim, colspace, colspan, companion, concat, cond, copyinto, crossprod, curl, definite, delcols, delrows, det, diag, diverge, dotprod, eigenvals, eigenvalues, eigenvectors, eigenvects, entermatrix, equal, exponential, extend, ffgausselim, fibonacci, forwardsub, frobenius, gausselim, gaussjord, geneqns, genmatrix, grad, hadamard, hermite, hessian, hilbert, htranspose, ihermite, indexfunc, innerprod, intbasis, inverse, ismith, issimilar, iszero, jacobian, jordan, kernel, laplacian, leastsqrs, linsolve, matadd, matrix, minor, minpoly, mulcol, mulrow, multiply, norm, normalize, nullspace, orthog, permanent, pivot, potential, randmatrix, randvector, rank, ratform, row, rowdim, rowspace, rowspan, rref, scalarmul, singularvals, smith, stackmatrix, submatrix, subvector, sumbasis, swapcol, swaprow, sylvester, toeplitz, trace, transpose, vandermonde, vecpotent, vectdim, vector, wronskian]

(1.1)

A := Matrix([[0, 1, 0, 0, 0], [(gamma-1)*H-u^2-a^2, (3-gamma)*u, -(gamma-1)*v, -(gamma-1)*w, gamma-1], [-u*v, v, u, 0, 0], [-u*w, w, 0, u, 0], [u*((gamma-2)*H-a^2), H-(gamma-1)*u^2, -(gamma-1)*u*v, -(gamma-1)*u*w, gamma*u]])

Matrix(%id = 18446746202416421574)

(1.2)

eigenvalues(A)

u+(-gamma*u^2-gamma*v^2-gamma*w^2+2*H*gamma-a^2+u^2+v^2+w^2-2*H)^(1/2), u-(-gamma*u^2-gamma*v^2-gamma*w^2+2*H*gamma-a^2+u^2+v^2+w^2-2*H)^(1/2), u, u, u

(1.3)

V := sqrt(u^2+v^2+w^2)

(u^2+v^2+w^2)^(1/2)

(1.4)

H := (1/2)*V^2+a^2/(gamma-1)

(1/2)*u^2+(1/2)*v^2+(1/2)*w^2+a^2/(gamma-1)

(1.5)

eigenvalues(A)

-a+u, a+u, u, u, u

(1.6)

eigenvectors(A)

[-a+u, 1, {r}], [a+u, 1, {r}], [u, 3, {r, r, r}]

(1.7)

``

Download maps.mw

NULL

restart

with(LinearAlgebra)

prel := {p1 = (1/2)*exp(I*a*x*(1/2)+I*b*t*(1/2))*(I*a*g[1](t, x)+2*(diff(g[1](t, x), x))), p2 = -(1/2)*exp(-I*a*x*(1/2)-I*b*t*(1/2))*(I*a*g[2](t, x)-2*(diff(g[2](t, x), x))), p3 = -(1/2)*exp(-I*a*x*(1/2)-I*b*t*(1/2))*(I*a*g[3](t, x)-2*(diff(g[3](t, x), x)))}

{p1 = (1/2)*exp(((1/2)*I)*a*x+((1/2)*I)*b*t)*(I*a*g[1](t, x)+2*(diff(g[1](t, x), x))), p2 = -(1/2)*exp(-((1/2)*I)*a*x-((1/2)*I)*b*t)*(I*a*g[2](t, x)-2*(diff(g[2](t, x), x))), p3 = -(1/2)*exp(-((1/2)*I)*a*x-((1/2)*I)*b*t)*(I*a*g[3](t, x)-2*(diff(g[3](t, x), x)))}

(1)

A := Matrix([[rhs(prel[1]), rhs(prel[2]), rhs(prel[3])]])

A1 := Transpose(A)

Matrix(%id = 36893490201564614396)

(2)

prel1 := {p4 = exp((1/2*I)*a*x+(1/2*I)*b*t)*(-I*lambda*g[1](t, x)+c[1]*g[2](t, x)+c[2]*g[3](t, x)), p5 = exp(-(1/2*I)*a*x-(1/2*I)*b*t)*(I*lambda*g[2](t, x)-c[1]*g[1](t, x)), p6 = exp(-(1/2*I)*a*x-(1/2*I)*b*t)*(I*lambda*g[3](t, x)-c[2]*g[1](t, x))}

{p4 = exp(((1/2)*I)*a*x+((1/2)*I)*b*t)*(-I*lambda*g[1](t, x)+c[1]*g[2](t, x)+c[2]*g[3](t, x)), p5 = exp(-((1/2)*I)*a*x-((1/2)*I)*b*t)*(I*lambda*g[2](t, x)-c[1]*g[1](t, x)), p6 = exp(-((1/2)*I)*a*x-((1/2)*I)*b*t)*(I*lambda*g[3](t, x)-c[2]*g[1](t, x))}

(3)

A2 := Matrix([[rhs(prel1[1]), rhs(prel1[2]), rhs(prel1[3])]]); A3 := Transpose(A2)

Matrix(%id = 36893490201519962460)

(4)

NULL

Download simplify2getgXisBg.mw

First 141 142 143 144 145 146 147 Last Page 143 of 2426