MaplePrimes Questions

I am still working on the worksheet linked below.  But I have run into trouble solving the equation symbolicly within for the variable t.  I think this is due to the fact there are multiple solutions and the commands I employed through the GUI interface is not capable of handling this issue?  For example, the solutions for sin(pi*t/T) would be N*T.  MAPLE is simply stating t=0.  So I think this is why my solutions are failing to produce results.

What other commands should I be employing?

solving_transcendental.mw

Imagine three isosceles triangles with coordinates of each stored in a matrix such as:

> coord1:=Matrix(3,2,[0,0,5,0,2.5,4]);

> coord2:=Matrix(3,2,[2,0,7,0,4.5,4]);

> coord3:=Matrix(3,2,[4,0,9,0,6.5,4]);

and plotted together as follows (only the first is shown)

> PLOT(CURVES([[0,0],[5,0],[2.5,4],[0,0]]),COLOR(HUE,1));

I want to create an animation with stationary (original) isosceles triangles in the background along with new isosceles triangles generated by incrementally (say 4 increments) moving only the apex of each triangle until it touches the base of the triangle; obtained by multiplying the apex’s vertical coordinate by (say ¼) in each increment using a do loop. 

Your help is greatly appreciated.

Thank you in advance.

  

 

Dear sir,

 

I request the Maple experts to help me on the above cited subject.

 

 

With best regards.

 

Mr M ANAND,

Associate Professor in Mathematics

Hi everyone,

 

I have below integral. The result must be real. I would like to simplify and get to real part but I couldnt.

> fs := (1-1/sqrt((Uo+U*sin(x))^2+a^2))*(Uo+U*sin(x)); fss := `assuming`([2*(int(fs*sin(x), x = 0 .. Pi))/Pi], [U::real, U::positive, a::real, a::positive, Uo::real, Uo::positive]);

 

I used evalc but it didn't give good results as well.

 

thanks

with(geometry):

eq := subs([x, y] =~ convert(Student:-LinearAlgebra:-RotationMatrix(Pi/3).<x, y>, list),
  2*(x-1)^2+sqrt(2)*y^2-1);

conic(c, eq, [x, y]);
(evala@coordinates@center)(c);
              [160/119-(72/119)*sqrt(2), -(8/119)*sqrt(3)-(44/119)*sqrt(2)*sqrt(3)]

Which should have been [cos(-Pi/3), sin(-Pi/3)].

Maple 2015

Using with(combinat) the permutation of {a,b,c} is determined.

>restart:
>with(combinat):
>permute({a, b, c})
                  [[a, b, c], [a, c, b], [b, a, c], [b, c, a], [c, a, b], [c, b, a]]

The tree diagram of this permutation is

    

In Maple, using with(combinat) and with(GraphTheory), when I attempt to draw the permutation I get the following error:

>L := permute({a, b, c});
       L := [[a, b, c], [a, c, b], [b, a, c], [b, c, a], [c, a, b], [c, b, a]]
>DrawGraph(L);
  Error, invalid input: GraphTheory:-DrawGraph expects its 1st argument, H, to be of type       {GRAPHLN, list(GRAPHLN), set(GRAPHLN)}, but received [[a, b, c], [a, c, b], [b, a, c], [b, c,      a], [c,   a, b], [c, b, a]]

On Maple, again using with(combinat) and with(GraphTheory) the command permute(3) is used.  The results are manually configured as node-connection lines.  A fair representation of the tree diagram is configured by Maple, although the diagram has numeric instead of alpha configurations, and the a,b,c structure shown above is not easily recognized.

Any suggestions on developing a procedure that will graph (draw) an alpha-labeled permutation welcomed.  Thanks!  WC44_Permutation_Graph.mw

Am trying to teach myself "circle inversion" to solve circle geometry problems.  Towards this end I wrote a Maple 7 program to draw a Pappus chain of circles.  Pappus lived around 200AD, and I read that he considered this problem ancient!  

   The output diagram may not come out on this forum, but it comes out as a collection of tangential circles, and I have no problems with that.  In drawing the circles I was thinking of using the infinity symbol.  The following line uses the infinity, but with a minus sign.  Maple is "happy" with this and outputs square braces, suggesting an empty list?  I changed the program by omitting the -ve sign - and Maple came up with an error message.  I would have expected the output to include the value zero  ie [0]  I think it is just that the infinity symbol is not allowed in the seq command. 

[seq( i, i=0..-infinity )];  #???  why the -?,

 

In the next part I define X, Y and rad as the coordinates and radii of a sequence of circles: subscript i, ranging from start to nterm, (for the number of terms).  These are set at 1 and 286.   The program works OK with these values, but if the variable start is changed to zero, 0, it doesn't work.  I thought I might have a division by zero, but can't find one.  I also drew a circle with a radius of zero - no problem!  (...except it's difficult to see:-))   

   My main puzzle is why does it come up with the error message "invalid subscript selector" when the variable start is set to 0?

With i=start=0 I am asking it to draw a circle of radius zero at some specified coords - but it doesn't like it!  

  Any comments would be appreciated.  Merry Christmas.

David

 

 

restart:

# # # # # # # # # # # # # # # # # # # # # # # # # # # #

# Pappus Chain of circles

# # # # # # # # # # # # # # # # # # # # # # # # # # # #

with(plots):

with(plottools):

#Maple 7

#r is ratio of AC/AB = diam of large circle, to a smaller internally tangential one

r:=1.35:

#Why will start=0 not work?

start:=1:

#nterm=286 is smallest value where axes have "true" origin of (0.0)

#nterm<= 285 puts "x-axis" below y=-0.6

nterm:=286:

X := [seq( 0.5*r*(1+r)/(((i*(1-r))^2)+r), i=start..nterm )]:

 

Y := [seq( i*r*(1-r)/(((i*(1-r))^2)+r), i=start..nterm )]:

rad:=[seq(0.5*r*(1-r)/((i*(1-r))^2+r), i=start..nterm)]:

[seq( i, i=0..-infinity )];  #???  why the -?

#Gives [] output with -ve sign:  empty list?  Why is 0 not included?

# Not allowed to use with seq

#ccc:=[seq(circle([X[i],Y[i]],rad[i]), i=1..5)]:  #nops(X))]:

ccc:=[seq(circle([X[i],Y[i]],rad[i]), i=start..nterm)]:

#c := circle([1,1], 0, color=red):

#plots[display](c, scaling=constrained);

plots[display](ccc, scaling=constrained);

 

OUTPUT

 

I am working on a simple PDE and am trying to find the values of the constant coefficients in the PDE such that a function of a particular form satisfies the equation.  The function is a sum of general functions of x, y and z in the argument: for example, one of them is $f(x-2y+z)$.  I then have a PDE with constant coefficients which contains a sum of some mixed and some single second partial derivatives of that function with constant coefficients in front of some of the derivatives.  Is there any relatively easy package with Maple which would enable me to find the values of those coefficients such that the function of the form I have will satisfy the PDE?  I can provide more exact details of the PDE if necessary but didn't want to get bogged down in details as interested in the principle.

I am attempting to use Maple to solve a matrix equation of the form aB^2+bB+cI=B^(−2), where B is a 3×3 matrix whose entries are constants which have been specified, and I is the 3×3 identity matrix (i.e. to find the values a, b and c which satisfy the equation).

My idea was to use a piece of code like

A:=Matrix([[7,4,-2],[4,7,5],[2,-3,8]]);
d:=Vector([[8],[5],[2]]); 

for matrix inversion to solve a system of three linear equations but that would assume that the right-hand side of the equation is a column vector when it is actually another 3×33×3 matrix. One other approach I took was to equate the left and right hand sides so that you add the three matrices on the LHS and then equate the resulting each entry with the corresponding entry of the matrix on the right hand side, however this gives me a set of 9 linear equations for 3 unknowns.  When I try to solve these with fsolve it says that there are more equations than there are unknowns. 

Hey

Can someone figure out why the output does not produce hyperlinked:

A1

B1

A2

B2 

(in the same order as Games).

hyperlink_do-loop.mw

Hi,

I need help. My Maple 2017 do not launch in my MacBook Air (11-inch, Mid 2011, 1.8 GHz Intel Core i7, 4 GB 1333 MHz DDR3, Intel HD Graphics 3000 384 MB) . Whe I open it, I only see the icon of Maple 2017 on the top left on my screen.

 

Now I have macOs High Sierra but with the older operating system it did not launch either.

 

Can you help me, please?

 

Best Regards,

Clara

Dearz

Hope you would be fine with everything. I try to solve the following linear system of equations via fsolve command but the solution doesn't satisfied the system please see and put your valueable comments. Waiting your positive response.

-5.7167551941125971285 d[1, 1] - 0.23520507704562101132 d[1, 2]

   - 4.7759348859301130832 d[1, 3]

   + 82.882747548740738074 d[1, 4]

   + 1.5473302855836067493 d[2, 1]

   + 0.063661977236758134308 d[2, 2]

   + 1.2926823766365742120 d[2, 3]

   - 22.433527600870893213 d[2, 4]

   - 11.906076336447024126 d[3, 1]

   - 0.48985298599265354856 d[3, 2]

   - 9.9466643924764099316 d[3, 3]

   + 172.61685795222431091 d[3, 4]

   + 153.42462622364681378 d[4, 1]

   - 17.156128463674125233 d[4, 2]

   + 222.04914007834331471 d[4, 3]

   - 2162.1913920527683546 d[4, 4] = 0
-6.3505370802317673052 d[1, 1] - 0.23520507704562101132 d[1, 2]

   - 5.4097167720492832599 d[1, 3]

   + 54.802782951629695640 d[1, 4]

   + 1.7188733853924696263 d[2, 1]

   + 0.063661977236758134308 d[2, 2]

   + 1.4642254764454370890 d[2, 3]

   - 14.833240696164645293 d[2, 4]

   - 13.226030621801645811 d[3, 1]

   - 0.48985298599265354856 d[3, 2]

   - 11.266618677831031617 d[3, 3]

   + 114.13574573628827681 d[3, 4]

   + 107.19584752215150208 d[4, 1]

   - 17.156128463674125233 d[4, 2]

   + 175.82036137684800302 d[4, 3]

   - 1136.3239123361047712 d[4, 4] = 0
-6.7642088272251297212 d[1, 1] - 0.23520507704562101132 d[1, 2]

   - 5.8233885190426456759 d[1, 3]

   + 34.632657184619275137 d[1, 4]

   + 1.8308401918550417305 d[2, 1]

   + 0.063661977236758134308 d[2, 2]

   + 1.5761922829080091932 d[2, 3] - 9.373876878125528749 d[2, 4]

   - 14.087569594645296643 d[3, 1]

   - 0.48985298599265354856 d[3, 2]

   - 12.128157650674682449 d[3, 3]

   + 72.128164697121390121 d[3, 4]

   + 77.022155175221117487 d[4, 1]

   - 17.156128463674125233 d[4, 2]

   + 145.64666902991761843 d[4, 3]

   - 601.11088029977885095 d[4, 4] = 0
-1.5473302855836067487 d[1, 1] - 0.06366197723675813430 d[1, 2]

   - 1.2926823766365742115 d[1, 3]

   + 22.433527600870893218 d[1, 4]

   + 1.5473302855836067493 d[2, 1]

   + 0.063661977236758134308 d[2, 2]

   + 1.2926823766365742120 d[2, 3]

   - 22.433527600870893213 d[2, 4]

   - 7.7366514279180337465 d[3, 1]

   - 0.31830988618379067154 d[3, 2]

   - 6.4634118831828710599 d[3, 3]

   + 112.16763800435446606 d[3, 4]

   + 104.66490008068725185 d[4, 1]

   - 19.162255148264198426 d[4, 2]

   + 181.31392067374404557 d[4, 3]

   - 1455.2623850848598494 d[4, 4] = 0
-1.7188733853924696257 d[1, 1] - 0.06366197723675813430 d[1, 2]

   - 1.4642254764454370885 d[1, 3]

   + 14.833240696164645297 d[1, 4]

   + 1.7188733853924696263 d[2, 1]

   + 0.063661977236758134308 d[2, 2]

   + 1.4642254764454370890 d[2, 3]

   - 14.833240696164645293 d[2, 4]

   - 8.5943669269623481316 d[3, 1]

   - 0.31830988618379067154 d[3, 2]

   - 7.3211273822271854450 d[3, 3]

   + 74.166203480823226458 d[3, 4]

   + 53.030427038219525869 d[4, 1]

   - 19.162255148264198426 d[4, 2]

   + 129.67944763127631958 d[4, 3]

   - 668.89639482661771723 d[4, 4] = 0
-1.8308401918550417299 d[1, 1] - 0.06366197723675813430 d[1, 2]

   - 1.5761922829080091926 d[1, 3] + 9.373876878125528754 d[1, 4]

   + 1.8308401918550417305 d[2, 1]

   + 0.063661977236758134308 d[2, 2]

   + 1.5761922829080091932 d[2, 3] - 9.373876878125528749 d[2, 4]

   - 9.1542009592752086523 d[3, 1]

   - 0.31830988618379067154 d[3, 2]

   - 7.8809614145400459657 d[3, 3]

   + 46.869384390627643742 d[3, 4]

   + 19.328418292985322519 d[4, 1]

   - 19.162255148264198426 d[4, 2]

   + 95.977438886042116228 d[4, 3]

   - 305.71973224709969080 d[4, 4] = 0
 7.0561523113686303394 d[1, 1] - 1.9098593171027440292 d[1, 2]

    + 14.695589579779606456 d[1, 3]

    - 96.471127562654332340 d[1, 4]

    - 2.3520507704562101132 d[2, 1]

    + 0.63661977236758134308 d[2, 2]

    - 4.8985298599265354856 d[2, 3]

    + 32.157042520884777447 d[2, 4]

    + 16.464355393193470792 d[3, 1]

    - 4.4563384065730694016 d[3, 2]

    + 34.289709019485748399 d[3, 3]

    - 225.09929764619344213 d[3, 4]

    - 96.434081588704614639 d[4, 1]

    + 26.101410667070835066 d[4, 2]

    - 200.83972425698795490 d[4, 3]

    + 1318.4387433562758754 d[4, 4] = 0
-2.3520507704562101132 d[1, 1] + 0.6366197723675813431 d[1, 2]

   - 4.898529859926535486 d[1, 3] + 32.157042520884777450 d[1, 4]

   - 2.3520507704562101132 d[2, 1]

   + 0.63661977236758134308 d[2, 2]

   - 4.8985298599265354856 d[2, 3]

   + 32.157042520884777447 d[2, 4]

   + 7.0561523113686303394 d[3, 1]

   - 1.9098593171027440293 d[3, 2]

   + 14.695589579779606457 d[3, 3] - 96.47112756265433234 d[3, 4]

   - 11.760253852281050559 d[4, 1] + 3.183098861837906715 d[4, 2]

   - 24.49264929963267742 d[4, 3] + 160.7852126044238874 d[4, 4] = 

  1
1.9098593171027440291 d[1, 1] - 1.9098593171027440292 d[1, 2]

   + 9.5492965855137201456 d[1, 3]

   - 36.287327024952136554 d[1, 4]

   - 0.6366197723675813430 d[2, 1]

   + 0.63661977236758134308 d[2, 2]

   - 3.1830988618379067154 d[2, 3]

   + 12.095775674984045518 d[2, 4]

   + 4.4563384065730694010 d[3, 1]

   - 4.4563384065730694016 d[3, 2]

   + 22.281692032865347008 d[3, 3] - 84.67042972488831863 d[3, 4]

   - 26.101410667070835067 d[4, 1]

   + 26.101410667070835066 d[4, 2]

   - 130.50705333535417533 d[4, 3]

   + 495.92680267434586630 d[4, 4] = 0
-0.6366197723675813431 d[1, 1] + 0.6366197723675813431 d[1, 2]

   - 3.1830988618379067164 d[1, 3]

   + 12.095775674984045516 d[1, 4]

   - 0.6366197723675813430 d[2, 1]

   + 0.63661977236758134308 d[2, 2]

   - 3.1830988618379067154 d[2, 3]

   + 12.095775674984045518 d[2, 4]

   + 1.9098593171027440288 d[3, 1]

   - 1.9098593171027440293 d[3, 2] + 9.549296585513720146 d[3, 3]

   - 36.287327024952136560 d[3, 4] - 3.183098861837906717 d[4, 1]

   + 3.183098861837906715 d[4, 2] - 15.91549430918953358 d[4, 3]

   + 60.47887837492022764 d[4, 4] = 1
-1.4491448767744190950 d[1, 1] - 1.9098593171027440292 d[1, 2]

   + 6.1902923916365570215 d[1, 3]

   - 11.964006709004497915 d[1, 4]

   + 0.4830482922581396984 d[2, 1]

   + 0.63661977236758134308 d[2, 2]

   - 2.0634307972121856740 d[2, 3] + 3.988002236334832639 d[2, 4]

   - 3.381338045806977889 d[3, 1] - 4.4563384065730694016 d[3, 2]

   + 14.444015580485299718 d[3, 3] - 27.91601565434382847 d[3, 4]

   + 19.804979982583727629 d[4, 1]

   + 26.101410667070835066 d[4, 2]

   - 84.600662685699612634 d[4, 3] + 163.5080916897281382 d[4, 4] = 

  0
0.4830482922581396984 d[1, 1] + 0.6366197723675813431 d[1, 2]

   - 2.0634307972121856744 d[1, 3] + 3.988002236334832645 d[1, 4]

   + 0.4830482922581396984 d[2, 1]

   + 0.63661977236758134308 d[2, 2]

   - 2.0634307972121856740 d[2, 3] + 3.988002236334832639 d[2, 4]

   - 1.4491448767744190956 d[3, 1]

   - 1.9098593171027440293 d[3, 2]

   + 6.1902923916365570221 d[3, 3] - 11.96400670900449791 d[3, 4]

   + 2.415241461290698491 d[4, 1] + 3.183098861837906715 d[4, 2]

   - 10.317153986060928369 d[4, 3] + 19.94001118167416332 d[4, 4] = 

  1
 11.581726419330485018 d[1, 1] - 3.8605754731101616728 d[1, 2]

    + 27.024028311771131709 d[1, 3]

    - 158.28359439751662858 d[1, 4]

    - 1.9098593171027440292 d[2, 1]

    + 0.63661977236758134308 d[2, 2]

    - 4.4563384065730694016 d[2, 3]

    + 26.101410667070835066 d[2, 4]

    + 19.221163687741461135 d[3, 1]

    - 6.4070545625804870452 d[3, 2]

    + 44.849381938063409316 d[3, 3]

    - 262.68923706579996884 d[3, 4]

    - 172.31418534244454203 d[4, 1]

    + 57.438061780814847345 d[4, 2]

    - 402.06643246570393142 d[4, 3]

    + 2354.9605330134087411 d[4, 4] = 0
 7.0561523113686303394 d[1, 1] - 2.3520507704562101132 d[1, 2]

    + 16.464355393193470792 d[1, 3]

    - 96.434081588704614639 d[1, 4]

    - 1.9098593171027440292 d[2, 1]

    + 0.63661977236758134308 d[2, 2]

    - 4.4563384065730694016 d[2, 3]

    + 26.101410667070835066 d[2, 4]

    + 14.695589579779606456 d[3, 1]

    - 4.8985298599265354856 d[3, 2]

    + 34.289709019485748399 d[3, 3]

    - 200.83972425698795490 d[3, 4]

    - 96.471127562654332340 d[4, 1]

    + 32.157042520884777447 d[4, 2]

    - 225.09929764619344213 d[4, 3]

    + 1318.4387433562758753 d[4, 4] = 0
 1.9098593171027440291 d[1, 1] - 0.6366197723675813430 d[1, 2]

    + 4.4563384065730694010 d[1, 3]

    - 26.101410667070835067 d[1, 4]

    - 1.9098593171027440292 d[2, 1]

    + 0.63661977236758134308 d[2, 2]

    - 4.4563384065730694016 d[2, 3]

    + 26.101410667070835066 d[2, 4]

    + 9.5492965855137201456 d[3, 1]

    - 3.1830988618379067154 d[3, 2]

    + 22.281692032865347008 d[3, 3]

    - 130.50705333535417533 d[3, 4]

    - 36.287327024952136554 d[4, 1]

    + 12.095775674984045518 d[4, 2]

    - 84.670429724888318626 d[4, 3]

    + 495.92680267434586626 d[4, 4] = 0
-1.4491448767744190950 d[1, 1] + 0.4830482922581396984 d[1, 2]

   - 3.381338045806977889 d[1, 3] + 19.804979982583727629 d[1, 4]

   - 1.9098593171027440292 d[2, 1]

   + 0.63661977236758134308 d[2, 2]

   - 4.4563384065730694016 d[2, 3]

   + 26.101410667070835066 d[2, 4]

   + 6.1902923916365570215 d[3, 1]

   - 2.0634307972121856740 d[3, 2]

   + 14.444015580485299718 d[3, 3]

   - 84.600662685699612634 d[3, 4]

   - 11.964006709004497917 d[4, 1] + 3.988002236334832638 d[4, 2]

   - 27.91601565434382847 d[4, 3] + 163.50809168972813819 d[4, 4] = 

  0
Sols := solve([seq(`$`(F1[l1, l2], l1 = 2 .. 2^K*M-1), l2 = 2 .. 2^K*M), seq(`$`(F2[l1], l1 = 2 .. 2^K*M)), seq(`$`(F3[l1], l1 = 2 .. 2^K*M)), seq(`$`(F4[l1], l1 = 1 .. 2^K*M))], {seq(`$`(d[l1, l2], l1 = 1 .. 2^K*M), l2 = 1 .. 2^K*M)});
map(evalf, subs(Sols, convert(F4, list)));

 

Hello

Long time asker of minimization problems here.

Following on from my question on 2D packing.

I found this "solved" problem for packing 3D items efficiently. See Illustration 6.13

https://www.researchgate.net/file.PostFileLoader.html?id=59938b635b49527571134c33&assetKey=AS%3A527790252490752%401502846410852

Some discrepancies with constraint set-up (first one), number of variables and the optimized solution.

3DbinPack2.mw

 

Hello

When I export a worksheet table as HTML,MATH EXPRESSIONS: GIF the resulting .html file is 100% readable.

screenshot:

But when i send the html file to myself over email, I get gibberish

The (acer) code for the top is... .....Equation(Standings[id]:-mu &+- Standings[id]:-sigma....

and below opponents rating: ....Cell(Equation(thetable[id][':-losses'][r][1] &+- thetable[id][':-losses'][r][2],......

Anyone shed?

 

Given an expression such as (x^2+1)*y^3*exp(-x-y), how to "factor" it to product of the two functions, one in x only and the other in y only. These products in this example are

                  exp(-x)*(1+x^2)

and

                 exp(-y)*y^3

For reference, this was also asked at Mathematica site here

addition:

Is it possible to obtain these separated products in a list or a set to make them easier to get hold of after the call? something like

   myFactor(  (x^2+1)*y^3*exp(-x-y) , {x , y} )

will return

    { exp(-x)*(1+x^2) , exp(-y)*y^3 }

This is current test cases

funcs:=[
   arcsin(x)/(sqrt(1-x^2)*y^2),
   x*y,
   x^2+x^2*y,
   2*x+1,
   cos(2*x),
   y,
   (x-1)/y,
   ln(1+y^2),
   1-x+y^2-x*y^2,
   x^2+x^3*y,
   1/(x+y),
   (1+sqrt(x))/(1+sqrt(y)),
   (1-x^2+y^2-x^2*y^2)/x^2,
   2*x*y^2+3*x^2*y^2,
   3*exp(2*x)+2*y,
   (5*sqrt(x)-y)/x,
   2*x*y+3*x^2*exp(x^2),
   sqrt(1+x+y^2),
   1,
   1+x*y,
   -y+4*x^3*y,
   exp(x^2)+2*x*y,
   -(y-exp(x))/(x-2),
   arcsin(x)/((1-x^2)*y^2),
   -(y-exp(x))/(x-2),
   -y+4*x^3*y,
   (x^2*y+y)*y^3*exp(-x-y+1)*3^(-x-y)*sqrt(x^2*y-y),
    sqrt(1-y^2)/x,
    sqrt(1-y^2)/(2*sqrt(x)),
    sqrt(1-y^2)
];

This functions checks if expression is product separable or not

is_separable:=proc(f,x,y)
  #checks if f(x,y) is separable to X(x)*Y(y) or not
  #but do not do the separation. The separation is done by
  #another function I have

  if diff(simplify(diff( simplify(ln(f)),x)),y) = 0 then
     return(true);
  else
     return(false);
  fi;
end proc:

it used as

for z in funcs do
   is_separable(z,x,y);
od;

 

First 833 834 835 836 837 838 839 Last Page 835 of 2375