MaplePrimes Questions

what package I need to add in order to use commands named "Drawmatrix, Translatemat and Transform" ? I add package named Lamp but it is not working. I have maple 15. Please try to respond as soon as possible because its urgent.

 

Thank you

Hello. Please help me to correct the error. Thank you

lambda := proc (r) options operator, arrow; 3*r end proc;

proc (r) options operator, arrow; 3*r end proc

(1)

mu := proc (r) options operator, arrow; 4*r end proc;

proc (r) options operator, arrow; 4*r end proc

(2)

r1 := 5;

5

(3)

r2 := 3;

3

(4)

omega := 7;

7

(5)

alpha := 1;

1

(6)

beta := 1;

1

(7)

rho := 1;

1

(8)

n := 1;

1

(9)

rho1 := 4;

4

(10)

A := 8;

8

(11)

f11 := proc (r) options operator, arrow; (lambda(r)+2*mu(r))*r^2 end proc;

proc (r) options operator, arrow; (lambda(r)+2*mu(r))*r^2 end proc

(12)

f12 := proc (r) options operator, arrow; [(diff(lambda(r), r)+2*(diff(mu(r), r)))*r^2+(lambda(r)+2*mu(r))*r] end proc

proc (r) options operator, arrow; [(diff(lambda(r), r)+2*(diff(mu(r), r)))*r^2+(lambda(r)+2*mu(r))*r] end proc

(13)

f13 := proc (r) options operator, arrow; -n*(lambda(r)+mu(r))*r end proc;

proc (r) options operator, arrow; -n*(lambda(r)+mu(r))*r end proc

(14)

NULL

f14 := proc (r) options operator, arrow; -alpha*(lambda(r)+mu(r))*r^2 end proc;

proc (r) options operator, arrow; -alpha*(lambda(r)+mu(r))*r^2 end proc

(15)

f15 := proc (r) options operator, arrow; [(diff(lambda(r), r))*r-lambda(r)-(n^2+2+alpha^2*r^2)*mu(r)+omega^2*rho*r^2] end proc;

proc (r) options operator, arrow; [(diff(lambda(r), r))*r-lambda(r)-(n^2+2+alpha^2*r^2)*mu(r)+omega^2*rho*r^2] end proc

(16)

f16 := proc (r) options operator, arrow; -n*[(diff(lambda(r), r))*r-lambda(r)-3*mu(r)] end proc;

proc (r) options operator, arrow; -n*[(diff(lambda(r), r))*r-lambda(r)-3*mu(r)] end proc

(17)

f17 := proc (r) options operator, arrow; -alpha*(diff(lambda(r), r))*r^2 end proc;

proc (r) options operator, arrow; -alpha*(diff(lambda(r), r))*r^2 end proc

(18)

f21 := proc (r) options operator, arrow; (lambda(r)+2*mu(r))*r^2 end proc;

proc (r) options operator, arrow; (lambda(r)+2*mu(r))*r^2 end proc

(19)

f22 := proc (r) options operator, arrow; [(diff(lambda(r), r)+2*(diff(mu(r), r)))*r^2+(lambda(r)+2*mu(r))*r] end proc

proc (r) options operator, arrow; [(diff(lambda(r), r)+2*(diff(mu(r), r)))*r^2+(lambda(r)+2*mu(r))*r] end proc

(20)

f23 := proc (r) options operator, arrow; n*(lambda(r)+mu(r))*r end proc;

proc (r) options operator, arrow; n*(lambda(r)+mu(r))*r end proc

(21)

f24 := proc (r) options operator, arrow; alpha*(lambda(r)+mu(r))*r^2 end proc;

proc (r) options operator, arrow; alpha*(lambda(r)+mu(r))*r^2 end proc

(22)

f25 := proc (r) options operator, arrow; [(diff(lambda(r), r))*r-lambda(r)-(n^2+2+alpha^2*r^2)*mu(r)+omega^2*rho*r^2] end proc;

proc (r) options operator, arrow; [(diff(lambda(r), r))*r-lambda(r)-(n^2+2+alpha^2*r^2)*mu(r)+omega^2*rho*r^2] end proc

(23)

f26 := proc (r) options operator, arrow; n*[(diff(lambda(r), r))*r-lambda(r)-3*mu(r)] end proc;

proc (r) options operator, arrow; n*[(diff(lambda(r), r))*r-lambda(r)-3*mu(r)] end proc

(24)

f27 := proc (r) options operator, arrow; alpha*(diff(lambda(r), r))*r^2 end proc;

proc (r) options operator, arrow; alpha*(diff(lambda(r), r))*r^2 end proc

(25)

f31 := proc (r) options operator, arrow; mu(r)*r^2 end proc;

proc (r) options operator, arrow; mu(r)*r^2 end proc

(26)

f32 := proc (r) options operator, arrow; -n*(lambda(r)+mu(r))*r end proc;

proc (r) options operator, arrow; -n*(lambda(r)+mu(r))*r end proc

(27)

f33 := proc (r) options operator, arrow; (diff(mu(r), r))*r^2+mu(r)*r end proc;

proc (r) options operator, arrow; (diff(mu(r), r))*r^2+mu(r)*r end proc

(28)

f34 := proc (r) options operator, arrow; -n*((diff(mu(r), r))*r+lambda(r)+3*mu(r)) end proc;

proc (r) options operator, arrow; -n*((diff(mu(r), r))*r+lambda(r)+3*mu(r)) end proc

(29)

f35 := proc (r) options operator, arrow; [-(diff(mu(r), r))*r-n^2*lambda(r)-(2*n^2+alpha^2*r^2+1)*mu(r)+omega^2*rho*r^2] end proc;

proc (r) options operator, arrow; [-(diff(mu(r), r))*r-n^2*lambda(r)-(2*n^2+alpha^2*r^2+1)*mu(r)+omega^2*rho*r^2] end proc

(30)

f36 := proc (r) options operator, arrow; -n*alpha*(lambda(r)+mu(r))*r end proc;

proc (r) options operator, arrow; -n*alpha*(lambda(r)+mu(r))*r end proc

(31)

f41 := proc (r) options operator, arrow; mu(r)*r^2 end proc;

proc (r) options operator, arrow; mu(r)*r^2 end proc

(32)

f42 := proc (r) options operator, arrow; n*(lambda(r)+mu(r))*r end proc;

proc (r) options operator, arrow; n*(lambda(r)+mu(r))*r end proc

(33)

f43 := proc (r) options operator, arrow; (diff(mu(r), r))*r^2+mu(r)*r end proc;

proc (r) options operator, arrow; (diff(mu(r), r))*r^2+mu(r)*r end proc

(34)

f44 := proc (r) options operator, arrow; n*((diff(mu(r), r))*r+lambda(r)+3*mu(r)) end proc;

proc (r) options operator, arrow; n*((diff(mu(r), r))*r+lambda(r)+3*mu(r)) end proc

(35)

f45 := proc (r) options operator, arrow; [-(diff(mu(r), r))*r-n^2*lambda(r)-(2*n^2+alpha^2*r^2+1)*mu(r)+omega^2*rho*r^2] end proc;

proc (r) options operator, arrow; [-(diff(mu(r), r))*r-n^2*lambda(r)-(2*n^2+alpha^2*r^2+1)*mu(r)+omega^2*rho*r^2] end proc

(36)

f46 := proc (r) options operator, arrow; -n*alpha*(lambda(r)+mu(r))*r end proc;

proc (r) options operator, arrow; -n*alpha*(lambda(r)+mu(r))*r end proc

(37)

f51 := proc (r) options operator, arrow; mu(r)*r^2 end proc;

proc (r) options operator, arrow; mu(r)*r^2 end proc

(38)

f52 := proc (r) options operator, arrow; -alpha*(lambda(r)+mu(r))*r^2 end proc;

proc (r) options operator, arrow; -alpha*(lambda(r)+mu(r))*r^2 end proc

(39)

f53 := proc (r) options operator, arrow; (diff(mu(r), r))*r^2+mu(r)*r end proc;

proc (r) options operator, arrow; (diff(mu(r), r))*r^2+mu(r)*r end proc

(40)

f54 := proc (r) options operator, arrow; -alpha*[(diff(mu(r), r))*r^2+(lambda(r)+mu(r))*r] end proc;

proc (r) options operator, arrow; -alpha*[(diff(mu(r), r))*r^2+(lambda(r)+mu(r))*r] end proc

(41)

f55 := proc (r) options operator, arrow; -n*alpha*(lambda(r)+mu(r))*r end proc;

proc (r) options operator, arrow; -n*alpha*(lambda(r)+mu(r))*r end proc

(42)

f56 := proc (r) options operator, arrow; [-(n^2+2*alpha^2*r^2)*mu(r)-alpha^2*lambda(r)*r^2+omega^2*rho*r^2] end proc;

proc (r) options operator, arrow; [-(n^2+2*alpha^2*r^2)*mu(r)-alpha^2*lambda(r)*r^2+omega^2*rho*r^2] end proc

(43)

f61 := proc (r) options operator, arrow; mu(r)*r^2 end proc;

proc (r) options operator, arrow; mu(r)*r^2 end proc

(44)

f62 := proc (r) options operator, arrow; alpha*(lambda(r)+mu(r))*r^2 end proc;

proc (r) options operator, arrow; alpha*(lambda(r)+mu(r))*r^2 end proc

(45)

f63 := proc (r) options operator, arrow; (diff(mu(r), r))*r^2+mu(r)*r end proc;

proc (r) options operator, arrow; (diff(mu(r), r))*r^2+mu(r)*r end proc

(46)

f64 := proc (r) options operator, arrow; alpha*[(diff(mu(r), r))*r^2+(lambda(r)+mu(r))*r] end proc;

proc (r) options operator, arrow; alpha*[(diff(mu(r), r))*r^2+(lambda(r)+mu(r))*r] end proc

(47)

f65 := proc (r) options operator, arrow; -n*alpha*(lambda(r)+mu(r))*r end proc;

proc (r) options operator, arrow; -n*alpha*(lambda(r)+mu(r))*r end proc

(48)

f66 := proc (r) options operator, arrow; [-(n^2+2*alpha^2*r^2)*mu(r)-alpha^2*lambda(r)*r^2+omega^2*rho*r^2] end proc;

proc (r) options operator, arrow; [-(n^2+2*alpha^2*r^2)*mu(r)-alpha^2*lambda(r)*r^2+omega^2*rho*r^2] end proc

(49)

``

DJ := proc (x, n) options operator, arrow; diff(BesselJ(n, x), x) end proc;

proc (x, n) options operator, arrow; diff(BesselJ(n, x), x) end proc

(50)

DY := proc (x, n) options operator, arrow; diff(BesselY(n, x), x) end proc;

proc (x, n) options operator, arrow; diff(BesselY(n, x), x) end proc

(51)

``

g11 := proc (r) options operator, arrow; (lambda(r)+2*mu(r))*subs(x = beta*r1, DJ(x, n)) end proc;

proc (r) options operator, arrow; (lambda(r)+2*mu(r))*subs(x = beta*r1, DJ(x, n)) end proc

(52)

g12 := proc (r) options operator, arrow; -(lambda(r)+2*mu(r))*subs(x = beta*r1, DY(x, n)) end proc;

proc (r) options operator, arrow; -(lambda(r)+2*mu(r))*subs(x = beta*r1, DY(x, n)) end proc

(53)

````

g13 := proc (r) options operator, arrow; lambda(r)*subs(x = beta*r1, DJ(x, n))/r+omega^2*rho1*subs(x = beta*r1, BesselJ(n, x))/beta end proc;

proc (r) options operator, arrow; lambda(r)*subs(x = beta*r1, DJ(x, n))/r+omega^2*rho1*subs(x = beta*r1, BesselJ(n, x))/beta end proc

(54)

g14 := proc (r) options operator, arrow; -lambda(r)*subs(x = beta*r1, DY(x, n))/r-omega^2*rho1*subs(x = beta*r1, BesselY(n, x))/beta end proc;

proc (r) options operator, arrow; -lambda(r)*subs(x = beta*r1, DY(x, n))/r-omega^2*rho1*subs(x = beta*r1, BesselY(n, x))/beta end proc

(55)

g15 := proc (r) options operator, arrow; -n*lambda(r)*subs(x = beta*r1, DY(x, n))/r end proc;

proc (r) options operator, arrow; -n*lambda(r)*subs(x = beta*r1, DY(x, n))/r end proc

(56)

BesselY(0, 5)-(1/5)*BesselY(1, 5)

(57)

g16 := proc (r) options operator, arrow; -n*lambda(r)*subs(x = beta*r1, DJ(x, n))/r end proc;

proc (r) options operator, arrow; -n*lambda(r)*subs(x = beta*r1, DJ(x, n))/r end proc

(58)

 

g17 := proc (r) options operator, arrow; -alpha*lambda(r)*subs(x = beta*r1, DY(x, n)) end proc;

proc (r) options operator, arrow; -alpha*lambda(r)*subs(x = beta*r1, DY(x, n)) end proc

(59)

g18 := proc (r) options operator, arrow; -alpha*lambda(r)*subs(x = beta*r1, DJ(x, n)) end proc

proc (r) options operator, arrow; -alpha*lambda(r)*subs(x = beta*r1, DJ(x, n)) end proc

(60)

q1 := proc (r) options operator, arrow; piecewise(`mod`(n, 2) = 0, 2*i^n*A*omega*rho1/(Pi*beta*r1), `mod`(n, 2) <> 0, 0) end proc

proc (r) options operator, arrow; piecewise(`mod`(n, 2) = 0, 2*i^n*A*omega*rho1/(Pi*beta*r1), `mod`(n, 2) <> 0, 0) end proc

(61)

g21 := proc (r) options operator, arrow; (lambda(r)+2*mu(r))*subs(x = beta*r1, DY(x, n)) end proc;

proc (r) options operator, arrow; (lambda(r)+2*mu(r))*subs(x = beta*r1, DY(x, n)) end proc

(62)

g22 := proc (r) options operator, arrow; (lambda(r)+2*mu(r))*subs(x = beta*r1, DJ(x, n)) end proc;

proc (r) options operator, arrow; (lambda(r)+2*mu(r))*subs(x = beta*r1, DJ(x, n)) end proc

(63)

g23 := proc (r) options operator, arrow; lambda(r)*subs(x = beta*r1, DY(x, n))/r+omega^2*rho1*subs(x = beta*r1, BesselY(n, x))/beta end proc;

proc (r) options operator, arrow; lambda(r)*subs(x = beta*r1, DY(x, n))/r+omega^2*rho1*subs(x = beta*r1, BesselY(n, x))/beta end proc

(64)

g24 := proc (r) options operator, arrow; -lambda(r)*subs(x = beta*r1, DJ(x, n))/r-omega^2*rho1*subs(x = beta*r1, BesselJ(n, x))/beta end proc;

proc (r) options operator, arrow; -lambda(r)*subs(x = beta*r1, DJ(x, n))/r-omega^2*rho1*subs(x = beta*r1, BesselJ(n, x))/beta end proc

(65)

g25 := proc (r) options operator, arrow; n*lambda(r)*subs(x = beta*r1, DJ(x, n))/r end proc;

proc (r) options operator, arrow; n*lambda(r)*subs(x = beta*r1, DJ(x, n))/r end proc

(66)

g26 := proc (r) options operator, arrow; -n*lambda(r)*subs(x = beta*r1, DY(x, n))/r end proc;

proc (r) options operator, arrow; -n*lambda(r)*subs(x = beta*r1, DY(x, n))/r end proc

(67)

g27 := proc (r) options operator, arrow; alpha*lambda(r)*subs(x = beta*r1, DJ(x, n)) end proc;

proc (r) options operator, arrow; alpha*lambda(r)*subs(x = beta*r1, DJ(x, n)) end proc

(68)

g28 := proc (r) options operator, arrow; -alpha*lambda(r)*subs(x = beta*r1, DY(x, n)) end proc

proc (r) options operator, arrow; -alpha*lambda(r)*subs(x = beta*r1, DY(x, n)) end proc

(69)

q2 := proc (r) options operator, arrow; piecewise(`mod`(n, 2) <> 0, 2*i^n*A*omega*rho1/(i*Pi*beta*r1), `mod`(n, 2) = 0, 0) end proc

proc (r) options operator, arrow; piecewise(`mod`(n, 2) <> 0, 2*i^n*A*omega*rho1/(i*Pi*beta*r1), `mod`(n, 2) = 0, 0) end proc

(70)

g31 := proc (r) options operator, arrow; mu(r) end proc;

proc (r) options operator, arrow; mu(r) end proc

(71)

g32 := proc (r) options operator, arrow; -n*mu(r)/r end proc;

proc (r) options operator, arrow; -n*mu(r)/r end proc

(72)

g33 := proc (r) options operator, arrow; -mu(r)/r end proc;

proc (r) options operator, arrow; -mu(r)/r end proc

(73)

g41 := proc (r) options operator, arrow; mu(r) end proc;

proc (r) options operator, arrow; mu(r) end proc

(74)

g42 := proc (r) options operator, arrow; n*mu(r)/r end proc;

proc (r) options operator, arrow; n*mu(r)/r end proc

(75)

g43 := proc (r) options operator, arrow; -mu(r)/r end proc;

proc (r) options operator, arrow; -mu(r)/r end proc

(76)

g51 := proc (r) options operator, arrow; mu(r) end proc;

proc (r) options operator, arrow; mu(r) end proc

(77)

g52 := proc (r) options operator, arrow; -alpha*mu(r) end proc;

proc (r) options operator, arrow; -alpha*mu(r) end proc

(78)

g61 := proc (r) options operator, arrow; mu(r) end proc;

proc (r) options operator, arrow; mu(r) end proc

(79)

g62 := proc (r) options operator, arrow; alpha*mu(r) end proc;

proc (r) options operator, arrow; alpha*mu(r) end proc

(80)

``

sys := (diff(x1(r), `$`(r, 2)))*f11(r)+(diff(x1(r), r))*f12(r)+(diff(y2(r), r))*f13(r)+(diff(y3(r), y3))*f14(r)+x1(r)*f15(r)+y2(r)*f16(r)+y3(r)*f17(r) = 0, (diff(y1(r), `$`(r, 2)))*f21(r)+(diff(y1(r), r))*f22(r)+(diff(x2(r), `$`(r, 1)))*f23(r)+(diff(x3(r), r))*f24(r)+y1(r)*f25(r)+x2(r)*f26(r)+x3(r)*f27(r) = 0, (diff(x2(r), `$`(r, 2)))*f31(r)+(diff(y1(r), r))*f32(r)+(diff(x2(r), `$`(r, 1)))*f33(r)+y1(r)*f34(r)+x2(r)*f35(r)+x3(r)*f36(r) = 0, (diff(y2(r), `$`(r, 2)))*f41(r)+(diff(x1(r), r))*f42(r)+(diff(y2(r), r))*f43(r)+x1(r)*f44(r)+y2(r)*f45(r)+y3(r)*f46(r) = 0, (diff(x3(r), `$`(r, 2)))*f51(r)+(diff(y1(r), r))*f52(r)+(diff(x3(r), r))*f53(r)+y1(r)*f54(r)+x2(r)*f55(r)+x3(r)*f56(r) = 0, (diff(y3(r), `$`(r, 2)))*f61(r)+(diff(x1(r), r))*f62(r)+(diff(y3(r), r))*f63(r)+x1(r)*f64(r)+y2(r)*f65(r)+y3(r)*f66(r) = 0;

11*(diff(diff(x1(r), r), r))*r^3+(diff(x1(r), r))*[22*r^2]-7*(diff(y2(r), r))*r^2+x1(r)*[-4*(3+r^2)*r+49*r^2]+y2(r)*[12*r]-3*y3(r)*r^2 = 0, 11*(diff(diff(y1(r), r), r))*r^3+(diff(y1(r), r))*[22*r^2]+7*(diff(x2(r), r))*r^2+7*(diff(x3(r), r))*r^3+y1(r)*[-4*(3+r^2)*r+49*r^2]+x2(r)*[-12*r]+3*x3(r)*r^2 = 0, 4*(diff(diff(x2(r), r), r))*r^3-7*(diff(y1(r), r))*r^2+8*(diff(x2(r), r))*r^2-19*y1(r)*r+x2(r)*[-7*r-4*(3+r^2)*r+49*r^2]-7*x3(r)*r^2 = 0, 4*(diff(diff(y2(r), r), r))*r^3+7*(diff(x1(r), r))*r^2+8*(diff(y2(r), r))*r^2+19*x1(r)*r+y2(r)*[-7*r-4*(3+r^2)*r+49*r^2]-7*y3(r)*r^2 = 0, 4*(diff(diff(x3(r), r), r))*r^3-7*(diff(y1(r), r))*r^3+8*(diff(x3(r), r))*r^2+y1(r)*[-11*r^2]-7*x2(r)*r^2+x3(r)*[-4*(1+2*r^2)*r-3*r^3+49*r^2] = 0, 4*(diff(diff(y3(r), r), r))*r^3+7*(diff(x1(r), r))*r^3+8*(diff(y3(r), r))*r^2+x1(r)*[11*r^2]-7*y2(r)*r^2+y3(r)*[-4*(1+2*r^2)*r-3*r^3+49*r^2] = 0

(81)

a11 := (D(x1))(r1);

(D(x1))(5)

(82)

a12 := (D(y1))(r1);

(D(y1))(5)

(83)

a21 := (D(x2))(r1);

(D(x2))(5)

(84)

a22 := (D(y2))(r1);

(D(y2))(5)

(85)

a31 := (D(x3))(r1);

(D(x3))(5)

(86)

a32 := (D(y3))(r1);

(D(y3))(5)

(87)

Inits := a11*evalf(g11(r1))+a12*evalf(g12(r1))+x1(r1)*evalf(g13(r1))+y1(r1)*evalf(g14(r1))+x2(r1)*evalf(g15(r1))+y2(r1)*evalf(g16(r1))+x3(r1)*evalf(g17(r1))+y3(r1)*evalf(g18(r1)) = evalf(q1(r1)), a11*evalf(g21(r1))+a12*evalf(g22(r1))+x1(r1)*evalf(g23(r1))+y1(r1)*evalf(g24(r1))+x2(r1)*evalf(g25(r1))+y2(r1)*evalf(g26(r1))+x3(r1)*evalf(g27(r1))+y3(r1)*evalf(g28(r1)) = evalf(q2(r1)), a21*g31(r1)+y1(r1)*g32(r1)+x2(r1)*g33(r1) = 0, a22*g41(r1)+x1(r1)*g42(r1)+y2(r1)*g43(r1) = 0, a31*g51(r1)+y1(r1)*g52(r1) = 0, a32*g61(r1)+x1(r1)*g62(r1) = 0, x1(r2) = 0, x2(r2) = 0, x3(r2) = 0, y1(r2) = 0, y2(r2) = 0, y3(r2) = 0;

-6.164451908*(D(x1))(5)+18.59496397*(D(y1))(5)-64.54175380*x1(5)-27.96690534*y1(5)+1.014270762*x2(5)+.3362428313*y2(5)+5.071353808*x3(5)+1.681214157*y3(5) = 0., -18.59496397*(D(x1))(5)-6.164451908*(D(y1))(5)+27.96690534*x1(5)+64.54175380*y1(5)-.3362428313*x2(5)+1.014270762*y2(5)-1.681214157*x3(5)+5.071353808*y3(5) = 28.52056579, 20*(D(x2))(5)-4*y1(5)-4*x2(5) = 0, 20*(D(y2))(5)+4*x1(5)-4*y2(5) = 0, 20*(D(x3))(5)-20*y1(5) = 0, 20*(D(y3))(5)+20*x1(5) = 0, x1(3) = 0, x2(3) = 0, x3(3) = 0, y1(3) = 0, y2(3) = 0, y3(3) = 0

(88)

dde := dsolve({Inits, sys}, numeric)

Error, (in fproc) unable to store '[0.183848448391796e-1]+0.389981557194716e-2' when datatype=float[8]

 

NULL


 

Download ODU.mw

 

Dear maple experts,

as far as I know premultiplication of matrix A with matrix B is only possible if the number of columns of A is equal to the number of rows of B (matrices are conformable). Not so in Maple: strange.mw

I expected an error message, so I would receive feedback that I made an error.

what's going on?

kind regards,

Harry Garst

 

typematch({2}, set({x :: integer, y :: even}), 's'), s;

 

Hello dear!

Hope everyone is fine. I am facing problem to fins the inverse transfrom in the attached file. Please find the attachment and fix the problem. Thanks in advance

Help.mw

Dears,

Let C a square in the n-diemnsional Euclidean space. Somebody know how to divide C into 2^{n} congruent subsquares? 

For instance, for n=2 and  say C:=[0,1]x[0,1], the unit closed square, we will obtain the 2^{2}=4 subsquares [0,1/4]x[0,1/4], [0,1/4]x[1/2], [1/2,1]x[0,1/4] and [1/2,1]x[1/2,1].  

Many thanks in advance for your comments!!

Hello everybody!

I have Z which is a function of (b,p)! and two parameters g and d :

Z=p*b*d+2*g^p^2*b^2-2*sqrt(p*g*(b-1)*(b*g*p-b*p-g*p-4*d+p))

I want to plot Z vs. g (1<g<4) and explore with d, note that in plot i want Z to be maximum (it is obvious that we must find b and p optimal and then find Z optimal). in maximization consider we have this constraints: {b <= 1, 1-2*d/(p*(sqrt(g)+1)) <= b}

thank you in advance for your help!

I just started using Maple for civil engineering calculations and cant figure out how to manage units.  And all of the civil engineering Maple document examples I have seen are done as unitless calculations, sidestepping that issue.  Are there any examples available that show how to manage units to be more usable for civil engineering?  An example where I am having trouble involves pressure:

If I define f:=60 ksi; the result is displayed as 60,000 lbf/in^2

But if I apply that pressure over an area,

F:= f * 1 inch^2;   the result is displayed as "1930442.91 poundals"  And poundals is a totally foreign unit to me and anyone who might look at my calculations.

I would like to be able to display that as either lbf or kip but neither is on the list of options if I right click 'poundals' and try to 'affix units'.  I'm hoping there is an easy way to do this.  It was extremely easy in mathcad but I had to ditch mathcad because it is now crazy expensive.

thanks

Nick

 

 

 

Hi everyone

I have a problem with differentiating an equation. I have the following code:


(sum((x(i)-M)^3, i = 1 .. n))/(n*((sum((x(i)-M)^2, i = 1 .. n))/(n-1))^(3/2));


The values of x(i) is available in Excel and I want to import that. For this case, I copy the column and paste in maple and it seems work fine. But, I want to calculate the differentiate of the summation with respect to x(i) and M and find the answer. I don't know how to write the code appropriately.

In other words, how could I differetiate the following function with respect to x(i) and put the values from excel into it.

(sum((x(i)-M)^3, i = 1 .. n))/(n*((sum((x(i)-M)^2, i = 1 .. n))/(n-1))^(3/2));

 

Thank you so much for your kind attentions  in advance

 

I have been working some plots using piecewise, and this seem to always result in graphs with very jagged edges

Example: https://i.imgur.com/ZBOSDsL.png

The function its plotting is this one:

f:=unapply(piecewise(x^2+y^2 <= 1 and x>=0, 4*x*y^2-x^2, undefined),x,y):

Now I assume this happens because of the piecewise part. How do I smoothen the edges?

Hi there,

I am doing an exercise which asked me to perform a taylor expansion for an arbitrary function of 2 variables (x,y) around an arbitrary point (x0,y0). Here's what I've got:
Question.mw


In the above,s and u are any 2 functions of interest.x0 and y0 are the coordinates of the point of expansion.I guess there was something wrong with s and u.What should I type in,in order to make any bi-variate functions as parameters in my procedure?
 

Hello. 

I would like to know if Maple can or cannot evaluate the integral below. It can be done analytically and also in Mathematica. It is not an uncommon type of integral being related to a Fourier transform of a Hankel function.

restart;
assume(alpha>0);assume(beta>0);assume(s>0);
gr:=(beta,r)->(1/8*I)*(-HankelH1(1, beta*r)-(2*I)*BesselK(1, beta*r)/Pi)/beta^2;
int(cos(alpha*s)*gr(beta,s),s=0..infinity);

Many thanks

 

"(a)(b"

"(a)(b"

(1)

Copy the string, paste into a new cell, delete and retype the opening quote.

""(a)(`b"`"

Error, unable to delimit strings/identifiers

""(a)(`b"`"

 

Copy the string from the first cell, add f() around it.

"f("(a)(`b"`)"

Error, unable to delimit strings/identifiers

"f("(a)(`b"`)"

 

Download 2dstring.mw

Dear all

Hope everything is fine with everything. I want to draw the graph of the u(x,0.5) and T(x,0.5) for different values of alpha like alpha =0.4,0.6,0.8 while keeping Gr, R and Pr are fixed. Please solve the following problem I shall be vary thankful to you. Thanks in advance

with the following BCs

Is there a way to determine the coordinates of all the vertices of a cuboid using geom3d?

See WC06_Vertices_of_a_Cuboid.mwWC06_Vertices_of_a_Cuboid.mw attached.

The graphic of the cuboid is created with

A:=(cuboid([1,1,2],[3,4,5]), orientation [27,78],lightmodel = light4, shading = none, transparency =.85,scaling = constrained, axesfont = [bold, roman, 18], axes = normal):

And the vertices are self-evident, for example 

B:= pointplot3d({[3,1,5]}, symbol = solidsphere, symbolsize = 18, color = red):

One geom3d ....

geom3d[point](P,1,1,2): geom3d[point(Q,3,4,5): geom3d[distance](P,Q); 

gives the lengths of the diagonal of the box.  Is there a way to get geom3d to list the coordinates of the 8 vertices of a cubeoid?

First 911 912 913 914 915 916 917 Last Page 913 of 2428