MaplePrimes Questions

that in Kip Thorne's book Maple is mentioned through out ?

Kip Thorne and Roger Blandford : "Modern Classical Physics: Optics, Fluids, Plasmas, Elasticity, Relativity, and Statistical Physics"

also, courtesy of Caltech in Chapter 24

restart;
alias(u = u(x, z, t), f = f(x, z, t));
                              u, f
u := (f+sqrt(R))*exp(I*R*x);
                    /     (1/2)\           
                    \f + R     / exp(I R x)
pde1 := I*(diff(u, z))+diff(u, x, x)+diff(u, t, t)+u*abs(u)*abs(u)-(u*abs(u)*abs(u))*abs(u)*abs(u);
    / d   \              / d  / d   \\           
  I |--- f| exp(I R x) + |--- |--- f|| exp(I R x)
    \ dz  /              \ dx \ dx  //           

           / d   \                /     (1/2)\  2           
     + 2 I |--- f| R exp(I R x) - \f + R     / R  exp(I R x)
           \ dx  /                                          

       / d  / d   \\           
     + |--- |--- f|| exp(I R x)
       \ dt \ dt  //           

                                                            2
       /     (1/2)\                           2 |     (1/2)| 
     + \f + R     / exp(I R x) (exp(-Im(R x)))  |f + R     | 

                                                            4
       /     (1/2)\                           4 |     (1/2)| 
     - \f + R     / exp(I R x) (exp(-Im(R x)))  |f + R     | 

simplify(%);
         / d   \              / d  / d   \\           
       I |--- f| exp(I R x) + |--- |--- f|| exp(I R x)
         \ dz  /              \ dx \ dx  //           

                / d   \                 2             
          + 2 I |--- f| R exp(I R x) - R  exp(I R x) f
                \ dx  /                               

             (5/2)              / d  / d   \\           
          - R      exp(I R x) + |--- |--- f|| exp(I R x)
                                \ dt \ dt  //           

                                               2  
                                   |     (1/2)|   
          + exp(I R x - 2 Im(R x)) |f + R     |  f

                                               2       
                                   |     (1/2)|   (1/2)
          + exp(I R x - 2 Im(R x)) |f + R     |  R     

                                               4  
                                   |     (1/2)|   
          - exp(I R x - 4 Im(R x)) |f + R     |  f

                                               4       
                                   |     (1/2)|   (1/2)
          - exp(I R x - 4 Im(R x)) |f + R     |  R     
collect(%, exp(I*R*x));
  /  (5/2)       / d   \      2       / d   \   / d  / d   \\
  |-R      + 2 I |--- f| R - R  f + I |--- f| + |--- |--- f||
  \              \ dx  /              \ dz  /   \ dx \ dx  //

       / d  / d   \\\           
     + |--- |--- f||| exp(I R x)
       \ dt \ dt  ///           

                                          2  
                              |     (1/2)|   
     + exp(I R x - 2 Im(R x)) |f + R     |  f

                                          2       
                              |     (1/2)|   (1/2)
     + exp(I R x - 2 Im(R x)) |f + R     |  R     

                                          4  
                              |     (1/2)|   
     - exp(I R x - 4 Im(R x)) |f + R     |  f

                                          4       
                              |     (1/2)|   (1/2)
     - exp(I R x - 4 Im(R x)) |f + R     |  R     
 

Hi Dears

I need some random zero-dimensional binomial ideals (20 ideals or more) with two, three, or four ... generators with 4 variables atmost. Then I want to regenerate each of them such that some of their generators are not binomial and the obtained ideals are equal to the first corresponding original binomial ideals. How can do I this automatically?

As a simple example let I be an ideal generated by {x-1, y-1, z-1} which is zero-dim. We can obtain J=<x-z, x+z-2, y+z-2> that is equal to I.

Thank you in advance.

Dear all

I have the following code that  compute a parameter labeled by A. 

I used some input vectors and my aim is to get A <1 

A_less_than_one.mw

I tried to change some values of input vectors but unfortunattely I can not have A<1 

Maybe I have a mistake in the code or something else 

Thank you for your help 

I have a very simple procedure that I wrote to get information for an inequality using data from two lists, upon which I can create a pointplot . Now I know people will see what I have done and probably cringe, and believe me I do as well. I know it is not efficient and there is probably a numerous number of ways to do it better but my procedural skills for Maple are lacking. 

From my file you will see what I am attempting to do,nonetheless I will mention it here. I have two lists X,W. for each value in I want to fine the value in W that yields F(X,L)<G(X,L) where F(X,L) is a complicated integral that I have to evalute numerically, I have tried using unapply as outline in https://www.mapleprimes.com/questions/229070-How-Can-I-Speed-Up-This-Numerical-Integral it however only made my problem worse. For small lists it seems to be reasonable but for larger precision it is not the useful. I have looked through the ?do help page and some other resources but to no avail. From what I have seen though I believe I should be using the until command in do but I can't figure it out with having two lists. 

Any help,tips or tricks will be greatly appreciated.

NumericScale.mw