MaplePrimes Questions

I have denotation like A[0], A[1], A[2], A[3]... But one package doesn't allow to use indexed variables.

I'd like to change denotation. For example, to A0, A1, A2, A3, but I don't know how to do it automatically...

Hello,

I would like to copy/ paste my maplesim model in microsoft visio.

The idea is to create a vectorial illustration for presentation.

I manage to do this with simulink but not with Maplesim.

Apparently, when I go in visio, there is no possibility to copy like a metafile.

Is there a possibility to copy the object of a Maplesim model in a software like visio or illustrator so as to be able to create vectorial illustration for presentation ?

Thank you for your help.

> restart:
> m:=2; k:=1.0931; a:=k-m; b:=k+m-1;
m := 2
k := 1.0931
a := -0.9069
b := 2.0931
> z:=(k*m)/10^(0.1*10);
z := 0.2186200000
> simplify(((10^(0.1*yo))^((b-a+2*p-1)/2)*z^((b-a+2*p+1)/2)*GAMMA((1-(b-a+2*p))/2))/(p!*GAMMA(p-a+1)*GAMMA(1+((1-(b-a+2*p))/2))));
1 / 
---------------------- \0.3183098861 sin(3.141592654 p + 3.141592654) exp(
GAMMA(p + 1.906900000) 

-3.040840432 - 1.520420216 p + 0.2302585095 yo) (exp(0.2302585095 yo)) GAMMA(
\
-1. - 1. p)/
> [seq(limit(.3183098861*sin(3.141592654*p+3.141592654)*exp(-3.040840432-1.520420216*p+.2302585095*yo)*(exp(.2302585095*yo))^p*GAMMA(-1.-1.*p)/GAMMA(p+1.906900000),p=k),k=0..10)]
Warning, inserted missing semicolon at end of statement, ...=k),k=0..10)];
[ / 1 / 
[limit|---------------------- \0.3183098861 sin(3.141592654 p + 3.141592654) 
[ \GAMMA(p + 1.906900000)


exp(-3.040840432 - 1.520420216 p + 0.2302585095 yo) (exp(0.2302585095 yo))

\ \ / 1 / 
GAMMA(-1. - 1. p)/, p = 0|, limit|---------------------- \0.3183098861 sin(
/ \GAMMA(p + 1.906900000)

3.141592654 p + 3.141592654) exp(-3.040840432 - 1.520420216 p

p \ \ 
+ 0.2302585095 yo) (exp(0.2302585095 yo)) GAMMA(-1. - 1. p)/, p = 1|, 
/

/ 1 / 
limit|---------------------- \0.3183098861 sin(3.141592654 p + 3.141592654) 
\GAMMA(p + 1.906900000)


exp(-3.040840432 - 1.520420216 p + 0.2302585095 yo) (exp(0.2302585095 yo))

\ \ / 1 / 
GAMMA(-1. - 1. p)/, p = 2|, limit|---------------------- \0.3183098861 sin(
/ \GAMMA(p + 1.906900000)

3.141592654 p + 3.141592654) exp(-3.040840432 - 1.520420216 p

p \ \ 
+ 0.2302585095 yo) (exp(0.2302585095 yo)) GAMMA(-1. - 1. p)/, p = 3|, 
/

/ 1 / 
limit|---------------------- \0.3183098861 sin(3.141592654 p + 3.141592654) 
\GAMMA(p + 1.906900000)


exp(-3.040840432 - 1.520420216 p + 0.2302585095 yo) (exp(0.2302585095 yo))

\ \ / 1 / 
GAMMA(-1. - 1. p)/, p = 4|, limit|---------------------- \0.3183098861 sin(
/ \GAMMA(p + 1.906900000)

3.141592654 p + 3.141592654) exp(-3.040840432 - 1.520420216 p

p \ \ 
+ 0.2302585095 yo) (exp(0.2302585095 yo)) GAMMA(-1. - 1. p)/, p = 5|, 
/

/ 1 / 
limit|---------------------- \0.3183098861 sin(3.141592654 p + 3.141592654) 
\GAMMA(p + 1.906900000)


exp(-3.040840432 - 1.520420216 p + 0.2302585095 yo) (exp(0.2302585095 yo))

\ \ / 1 / 
GAMMA(-1. - 1. p)/, p = 6|, limit|---------------------- \0.3183098861 sin(
/ \GAMMA(p + 1.906900000)

3.141592654 p + 3.141592654) exp(-3.040840432 - 1.520420216 p

p \ \ 
+ 0.2302585095 yo) (exp(0.2302585095 yo)) GAMMA(-1. - 1. p)/, p = 7|, 
/

/ 1 / 
limit|---------------------- \0.3183098861 sin(3.141592654 p + 3.141592654) 
\GAMMA(p + 1.906900000)


exp(-3.040840432 - 1.520420216 p + 0.2302585095 yo) (exp(0.2302585095 yo))

\ \ / 1 / 
GAMMA(-1. - 1. p)/, p = 8|, limit|---------------------- \0.3183098861 sin(
/ \GAMMA(p + 1.906900000)

3.141592654 p + 3.141592654) exp(-3.040840432 - 1.520420216 p

p \ \ 
+ 0.2302585095 yo) (exp(0.2302585095 yo)) GAMMA(-1. - 1. p)/, p = 9|, 
/

/ 1 / 
limit|---------------------- \0.3183098861 sin(3.141592654 p + 3.141592654) 
\GAMMA(p + 1.906900000)


exp(-3.040840432 - 1.520420216 p + 0.2302585095 yo) (exp(0.2302585095 yo))

\ \]
GAMMA(-1. - 1. p)/, p = 10|]
/]

 

 

 

 

 

why the solution is in limit approaches to form??? need to have a closed form expression. any help..????

I am trying to perform the following manipulation (This is a minimum working example).

 

a < b  < c;
(1)*2;

Error, invalid terms in product: a < b and b < c

 Can anyone tell if it is possible to manipulate inequalities exactly as it is the case with equations?

 

I have two Reissner Nordstrom black holes that are near extreme. How do I show they move? 

When i copy expression and past it in word, i can change the size of the picture whitout loosing the detials.

How can i export the expression to a file, such that when i will open it in word i could change the size without loosing details? much thnks :)

Dear Maple users,

My problem is as follows:

I have a factor base [2,3,5,7,11,33,34,35,36,37,38,39,40]

The numbers from 2 till 11 are primes, the rest is not. 

Then I have to factor (H+c1)(H+c2) in numbers of the factor base , where c1 and c2 go from 1 to some pre-defined limit. H=32 in my case.
And then I have to put the powers of the numbers of the factor base in a matrix. For example: (H+1)(H+1)=33² but also (H+1)(H+1)=3²*11².

That will become in matrix form [0 , 2, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0 ] but also (!) [0 , 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0 ].

This is not what I want! I want no double representations....

What I want is that (H+c1)(H+c2) should be represented in primes in the matrix if possible and else just represented as the other numbers.

 

hope you guys can help me!

Hi,

 

I have a system of equations containing curls, divergence and gradients of variables. 

How can I extract the coefficients of the equations (i.e. coefficients of d/dt rho, d/dx p) and form a matrix?

thanks.   

Dear all,

I have a question, why is the output of the inverse Laplace transformation if the signal is multiplied by itself not just convoluted in time domain:

restart:
with(inttrans):
u0(s):=laplace(u0(t),t,s):
ul(s):=laplace(ul(t),t,s):

invlaplace(u0(s)*ul(s),s,t);
invlaplace(u0(s)*u0(s),s,t);

 

Thanks!

 

hi

i am trying to solve nonlinear system of equations>

But i faced problems with fsolve command and solve command

appreciate your efforts

thank you.

i attached the problem if any one can help meto_ask.mw

resatart;

resatart

(1)

E[1]:=471.018201448812350417026549714*C[2]*C[1]+148.215735866021516352269641351*C[3]*C[1]+1819.06587325966981030289478684*C[1]^3+520.398873394086389608807266267*C[1]^2+91.6935836202883451116448236302*C[1]+50.4730912279207745584225849550*C[2]+19.9085633544913263914456592743*C[3]+7.37047428400435090736231078968+2058.68551751777751319606573790*C[1]^2*C[2]+538.947230507659865581021915944*C[1]^2*C[3]+5845.71206131980239307198520604*C[1]^3*C[2]+69.7127022912194568273754946252*C[2]*C[3]+714.578012051731012130317887974*C[2]^2*C[1]+1335.12741025874305723396688959*C[3]*C[1]^3+12157.6789376307684367951252086*C[1]^4*C[2]+2649.25449662999887750280740574*C[2]^2*C[1]^2+14295.0784862597862660994822740*C[1]^8+15419.2846919327017114194783308*C[1]^7+12988.7517416642139784208462738*C[1]^6+16.8382038872893957093383440000*C[2]^4+70.8332628196190412620305577015*C[2]^3+1.44270946696121179778587859413*C[3]^3+4510.00238293949012248750841678*C[1]^4+8603.52635510176910780764444620*C[1]^5+98.8104905773476764461233724605*C[2]^2+10.1537285012728093021569041975*C[3]^2+982.222581518989031760243574949*C[1]^11+4638.21478259707435511949025320*C[1]^10+10052.6606516341018431728672421*C[1]^9+407.687063314179709424921418616*C[3]*C[2]*C[1]+75.7719174928022814213736862098*C[3]^2*C[2]*C[1]+25.2573058309340935640075160001*C[3]*C[2]^3+6.31432645773352351256040203496*C[1]*C[3]^3+12.6286529154670467820037580001*C[2]^2*C[3]^2+2.10477548591117446366729300002*C[2]*C[3]^3+211.344764831208915814670185548*C[3]^2*C[1]^3+7.20005467320229588757253538206*C[1]^2*C[3]^3+111.061430002472320297142331967*C[1]*C[2]^4+238.500386718071412970815287708*C[1]^4*C[3]^2+2470.41109018725090594289626356*C[2]^3*C[1]^3+245.201283148587317451118521393*C[2]^4*C[1]^2+181.129142851463591068444931825*C[2]^4*C[1]^3+2988.37811797198976000003713722*C[3]*C[1]^6+109.721226223930092622823355221*C[1]^5*C[3]^2+11719.3084513103578461807709227*C[1]^5*C[2]^2+2768.20160910310649927384469736*C[1]^4*C[2]^3+565.318306286272203162846540832*C[1]^8*C[3]+10932.5561693883776137371116117*C[1]^8*C[2]+2904.27246127876533797534297274*C[1]^7*C[2]^2+1952.53821736667546565020861980*C[3]*C[1]^7+8861.99977348975008001821282156*C[2]^2*C[1]^6+1254.10257521815148306369855874*C[2]^3*C[1]^5+19097.0760464300655744068743926*C[1]^7*C[2]+2811.03926218004500859025906710*C[1]^9*C[2]+57.4530755155979171964227079426*C[1]*C[3]^2+836.065308595115722315610440362*C[3]*C[2]^2*C[1]^2+168.144436791995138074477654505*C[1]^2*C[2]*C[3]^2+111.061430002472320297142331967*C[3]*C[1]*C[2]^3+27.7653575006180800742855829918*C[1]*C[2]^2*C[3]^2+3287.26031145537499942195550694*C[3]*C[1]^4*C[2]+127.200206249638084450380203222*C[1]^3*C[2]*C[3]^2+1244.40467444431430442109001683*C[3]*C[1]^3*C[2]^2+122.600641574293658725559260697*C[3]*C[2]^3*C[1]^2+2976.40437278655359156395744743*C[3]*C[1]^5*C[2]+704.866518858564769916472506595*C[3]*C[1]^4*C[2]^2+1138.98062679722733273662076856*C[3]*C[1]^6*C[2]+2445.22760310248377117380837984*C[1]^3*C[2]*C[3]+1302.58340353182418292173788075*C[1]^2*C[2]*C[3]+358.002894560559015938580075092*C[1]*C[2]^2*C[3]+1346.85403641174851926917778882*C[2]^3*C[1]^2+21853.3314580455402045658443233*C[1]^6*C[2]+3064.67804343975531590307429378*C[1]^5*C[3]+18831.8659547488267980067894851*C[1]^5*C[2]+2386.63766423133333668246261663*C[1]^4*C[3]+10051.2504836101574266428345548*C[1]^4*C[2]^2+6283.05695591453291326103369848*C[1]^3*C[2]^2+76.6041006874638884531740720781*C[2]^2*C[3]+136.001112450833566039453512948*C[1]^2*C[3]^2+463.432730811777094292148621626*C[1]*C[2]^3+23.4791535727496075066511538019*C[2]*C[3]^2;

7.37047428400435090736231078968+407.687063314179709424921418616*C[3]*C[2]*C[1]+75.7719174928022814213736862098*C[3]^2*C[2]*C[1]+836.065308595115722315610440362*C[3]*C[2]^2*C[1]^2+168.144436791995138074477654505*C[1]^2*C[2]*C[3]^2+111.061430002472320297142331967*C[3]*C[1]*C[2]^3+27.7653575006180800742855829918*C[1]*C[2]^2*C[3]^2+3287.26031145537499942195550694*C[3]*C[1]^4*C[2]+127.200206249638084450380203222*C[1]^3*C[2]*C[3]^2+1244.40467444431430442109001683*C[3]*C[1]^3*C[2]^2+122.600641574293658725559260697*C[3]*C[2]^3*C[1]^2+2976.40437278655359156395744743*C[3]*C[1]^5*C[2]+704.866518858564769916472506595*C[3]*C[1]^4*C[2]^2+1138.98062679722733273662076856*C[3]*C[1]^6*C[2]+2445.22760310248377117380837984*C[1]^3*C[2]*C[3]+1302.58340353182418292173788075*C[1]^2*C[2]*C[3]+358.002894560559015938580075092*C[1]*C[2]^2*C[3]+471.018201448812350417026549714*C[2]*C[1]+148.215735866021516352269641351*C[3]*C[1]+2058.68551751777751319606573790*C[1]^2*C[2]+538.947230507659865581021915944*C[1]^2*C[3]+5845.71206131980239307198520604*C[1]^3*C[2]+69.7127022912194568273754946252*C[2]*C[3]+714.578012051731012130317887974*C[2]^2*C[1]+1335.12741025874305723396688959*C[3]*C[1]^3+12157.6789376307684367951252086*C[1]^4*C[2]+2649.25449662999887750280740574*C[2]^2*C[1]^2+25.2573058309340935640075160001*C[3]*C[2]^3+6.31432645773352351256040203496*C[1]*C[3]^3+12.6286529154670467820037580001*C[2]^2*C[3]^2+2.10477548591117446366729300002*C[2]*C[3]^3+211.344764831208915814670185548*C[3]^2*C[1]^3+7.20005467320229588757253538206*C[1]^2*C[3]^3+111.061430002472320297142331967*C[1]*C[2]^4+238.500386718071412970815287708*C[1]^4*C[3]^2+2470.41109018725090594289626356*C[2]^3*C[1]^3+245.201283148587317451118521393*C[2]^4*C[1]^2+181.129142851463591068444931825*C[2]^4*C[1]^3+2988.37811797198976000003713722*C[3]*C[1]^6+109.721226223930092622823355221*C[1]^5*C[3]^2+11719.3084513103578461807709227*C[1]^5*C[2]^2+2768.20160910310649927384469736*C[1]^4*C[2]^3+565.318306286272203162846540832*C[1]^8*C[3]+10932.5561693883776137371116117*C[1]^8*C[2]+2904.27246127876533797534297274*C[1]^7*C[2]^2+1952.53821736667546565020861980*C[3]*C[1]^7+8861.99977348975008001821282156*C[2]^2*C[1]^6+1254.10257521815148306369855874*C[2]^3*C[1]^5+19097.0760464300655744068743926*C[1]^7*C[2]+2811.03926218004500859025906710*C[1]^9*C[2]+57.4530755155979171964227079426*C[1]*C[3]^2+1346.85403641174851926917778882*C[2]^3*C[1]^2+21853.3314580455402045658443233*C[1]^6*C[2]+3064.67804343975531590307429378*C[1]^5*C[3]+18831.8659547488267980067894851*C[1]^5*C[2]+2386.63766423133333668246261663*C[1]^4*C[3]+10051.2504836101574266428345548*C[1]^4*C[2]^2+6283.05695591453291326103369848*C[1]^3*C[2]^2+76.6041006874638884531740720781*C[2]^2*C[3]+136.001112450833566039453512948*C[1]^2*C[3]^2+463.432730811777094292148621626*C[1]*C[2]^3+23.4791535727496075066511538019*C[2]*C[3]^2+14295.0784862597862660994822740*C[1]^8+15419.2846919327017114194783308*C[1]^7+12988.7517416642139784208462738*C[1]^6+16.8382038872893957093383440000*C[2]^4+70.8332628196190412620305577015*C[2]^3+1.44270946696121179778587859413*C[3]^3+8603.52635510176910780764444620*C[1]^5+10.1537285012728093021569041975*C[3]^2+982.222581518989031760243574949*C[1]^11+4638.21478259707435511949025320*C[1]^10+10052.6606516341018431728672421*C[1]^9+50.4730912279207745584225849550*C[2]+91.6935836202883451116448236302*C[1]+19.9085633544913263914456592743*C[3]+1819.06587325966981030289478684*C[1]^3+520.398873394086389608807266267*C[1]^2+98.8104905773476764461233724605*C[2]^2+4510.00238293949012248750841678*C[1]^4

(2)

E[2]:=197.620981154695352892246744921*C[2]*C[1]+69.7127022912194568273754946252*C[3]*C[1]+686.228505839259171065355245966*C[1]^3+235.509100724406175208513274857*C[1]^2+50.4730912279207745584225849550*C[1]+26.5447511393217685219275456990*C[2]+13.2723755696608842609637728496*C[3]+4.91364952266956727157487385979+714.578012051731012130317887974*C[1]^2*C[2]+203.843531657089854712460709308*C[1]^2*C[3]+1766.16966441999925166853827049*C[1]^3*C[2]+27.0766093367274914724184111932*C[2]*C[3]+212.499788458857123786091673104*C[2]^2*C[1]+434.194467843941394307245960251*C[3]*C[1]^3+3141.52847795726645663051684924*C[1]^4*C[2]+695.149096217665641438222932439*C[2]^2*C[1]^2+2387.13450580375819680085929907*C[1]^8+3121.90449400650574350940633190*C[1]^7+3138.64432579147113300113158085*C[1]^6+7.69445049045979625485801916864*C[2]^3+.961806311307474531857252396085*C[3]^3+1461.42801532995059826799630151*C[1]^4+2431.53578752615368735902504171*C[1]^5+27.0766093367274914724184111932*C[2]^2+6.76915233418187286810460279831*C[3]^2+281.103926218004500859025906710*C[1]^10+1214.72846326537529041523462352*C[1]^9+153.208201374927776906348144156*C[3]*C[2]*C[1]+25.2573058309340935640075160002*C[3]^2*C[2]*C[1]+2.10477548591117446366729300002*C[1]*C[3]^3+56.0481455973317126914925515018*C[3]^2*C[1]^3+31.8000515624095211125950508054*C[1]^4*C[3]^2+326.935044198116423268158028524*C[2]^3*C[1]^3+496.067395464425598593992907905*C[3]*C[1]^6+1660.92096546186389956430681841*C[1]^5*C[2]^2+181.129142851463591068444931825*C[1]^4*C[2]^3+726.068115319691334493835743184*C[1]^8*C[2]+162.711518113889618962374395509*C[3]*C[1]^7+627.051287609075741531849279370*C[2]^2*C[1]^6+2531.99993528278573714806080616*C[1]^7*C[2]+23.4791535727496075066511538019*C[1]*C[3]^2+166.592145003708480445713497950*C[3]*C[2]^2*C[1]^2+27.7653575006180800742855829918*C[1]^2*C[2]*C[3]^2+622.202337222157152210545008414*C[3]*C[1]^4*C[2]+122.600641574293658725559260697*C[3]*C[1]^3*C[2]^2+281.946607543425907966589002638*C[3]*C[1]^5*C[2]+557.376872396743814877073626908*C[1]^3*C[2]*C[3]+358.002894560559015938580075092*C[1]^2*C[2]*C[3]+75.7719174928022806920225480003*C[1]*C[2]^2*C[3]+222.122860004944640594284663933*C[2]^3*C[1]^2+3906.43615043678594872692364090*C[1]^6*C[2]+657.452062291074999884391101389*C[1]^5*C[3]+4020.50019344406297065713382194*C[1]^5*C[2]+611.306900775620942793452094961*C[1]^4*C[3]+1852.80831764043817945717219767*C[1]^4*C[2]^2+1346.85403641174851926917778882*C[1]^3*C[2]^2+11.5416757356896943822870287530*C[2]^2*C[3]+37.8859587464011407106868431049*C[1]^2*C[3]^2+67.3528155491575828373533760000*C[1]*C[2]^3+5.77083786784484719114351437650*C[2]*C[3]^2;

153.208201374927776906348144156*C[3]*C[2]*C[1]+25.2573058309340935640075160002*C[3]^2*C[2]*C[1]+166.592145003708480445713497950*C[3]*C[2]^2*C[1]^2+27.7653575006180800742855829918*C[1]^2*C[2]*C[3]^2+622.202337222157152210545008414*C[3]*C[1]^4*C[2]+122.600641574293658725559260697*C[3]*C[1]^3*C[2]^2+281.946607543425907966589002638*C[3]*C[1]^5*C[2]+557.376872396743814877073626908*C[1]^3*C[2]*C[3]+358.002894560559015938580075092*C[1]^2*C[2]*C[3]+75.7719174928022806920225480003*C[1]*C[2]^2*C[3]+197.620981154695352892246744921*C[2]*C[1]+69.7127022912194568273754946252*C[3]*C[1]+714.578012051731012130317887974*C[1]^2*C[2]+203.843531657089854712460709308*C[1]^2*C[3]+1766.16966441999925166853827049*C[1]^3*C[2]+27.0766093367274914724184111932*C[2]*C[3]+212.499788458857123786091673104*C[2]^2*C[1]+434.194467843941394307245960251*C[3]*C[1]^3+3141.52847795726645663051684924*C[1]^4*C[2]+695.149096217665641438222932439*C[2]^2*C[1]^2+2.10477548591117446366729300002*C[1]*C[3]^3+56.0481455973317126914925515018*C[3]^2*C[1]^3+31.8000515624095211125950508054*C[1]^4*C[3]^2+326.935044198116423268158028524*C[2]^3*C[1]^3+496.067395464425598593992907905*C[3]*C[1]^6+1660.92096546186389956430681841*C[1]^5*C[2]^2+181.129142851463591068444931825*C[1]^4*C[2]^3+726.068115319691334493835743184*C[1]^8*C[2]+162.711518113889618962374395509*C[3]*C[1]^7+627.051287609075741531849279370*C[2]^2*C[1]^6+2531.99993528278573714806080616*C[1]^7*C[2]+23.4791535727496075066511538019*C[1]*C[3]^2+222.122860004944640594284663933*C[2]^3*C[1]^2+3906.43615043678594872692364090*C[1]^6*C[2]+657.452062291074999884391101389*C[1]^5*C[3]+4020.50019344406297065713382194*C[1]^5*C[2]+611.306900775620942793452094961*C[1]^4*C[3]+1852.80831764043817945717219767*C[1]^4*C[2]^2+1346.85403641174851926917778882*C[1]^3*C[2]^2+11.5416757356896943822870287530*C[2]^2*C[3]+37.8859587464011407106868431049*C[1]^2*C[3]^2+67.3528155491575828373533760000*C[1]*C[2]^3+5.77083786784484719114351437650*C[2]*C[3]^2+4.91364952266956727157487385979+2387.13450580375819680085929907*C[1]^8+3121.90449400650574350940633190*C[1]^7+3138.64432579147113300113158085*C[1]^6+7.69445049045979625485801916864*C[2]^3+.961806311307474531857252396085*C[3]^3+2431.53578752615368735902504171*C[1]^5+6.76915233418187286810460279831*C[3]^2+281.103926218004500859025906710*C[1]^10+1214.72846326537529041523462352*C[1]^9+26.5447511393217685219275456990*C[2]+50.4730912279207745584225849550*C[1]+13.2723755696608842609637728496*C[3]+686.228505839259171065355245966*C[1]^3+235.509100724406175208513274857*C[1]^2+27.0766093367274914724184111932*C[2]^2+1461.42801532995059826799630151*C[1]^4

(3)

E[3]:=69.7127022912194568273754946252*C[2]*C[1]+20.3074570025456186043138083950*C[3]*C[1]+179.649076835886621860340638648*C[1]^3+74.1078679330107581761348206757*C[1]^2+19.9085633544913263914456592743*C[1]+13.2723755696608842609637728496*C[2]+6.63618778483044213048188642478*C[3]+2.45682476133478363578743692990+203.843531657089854712460709308*C[1]^2*C[2]+57.4530755155979171964227079426*C[1]^2*C[3]+434.194467843941394307245960251*C[1]^3*C[2]+13.5383046683637457362092055966*C[2]*C[3]+76.6041006874638884531740720781*C[2]^2*C[1]+90.6674083005557106929690086320*C[3]*C[1]^3+611.306900775620942793452094961*C[1]^4*C[2]+179.001447280279507969290037546*C[2]^2*C[1]^2+244.067277170834433206276077475*C[1]^8+426.911159710284251428576733889*C[1]^7+510.779673906625885983845715630*C[1]^6+3.84722524522989812742900958432*C[2]^3+.480903155653737265928626198044*C[3]^3+333.781852564685764308491722397*C[1]^4+477.327532846266667336492523326*C[1]^5+13.5383046683637457362092055966*C[2]^2+3.38457616709093643405230139915*C[3]^2+62.8131451429191336847607267591*C[1]^9+46.9583071454992150133023076038*C[3]*C[2]*C[1]+6.31432645773352339100187900006*C[3]^2*C[2]*C[1]+7.20005467320229588757253538206*C[3]^2*C[1]^3+40.8668805247645529085197535656*C[2]^3*C[1]^3+36.5737420746433642076077850736*C[3]*C[1]^6+140.973303771712953983294501319*C[1]^5*C[2]^2+162.711518113889618962374395509*C[1]^7*C[2]+4.32812840088363539335763578239*C[1]*C[3]^2+27.7653575006180800742855829918*C[3]*C[2]^2*C[1]^2+63.6001031248190422251901016108*C[3]*C[1]^4*C[2]+112.096291194663425382985103004*C[1]^3*C[2]*C[3]+75.7719174928022814213736862098*C[1]^2*C[2]*C[3]+25.2573058309340935640075160002*C[1]*C[2]^2*C[3]+55.5307150012361601485711659834*C[2]^3*C[1]^2+496.067395464425598593992907905*C[1]^6*C[2]+95.4001546872285651883261150834*C[1]^5*C[3]+657.452062291074999884391101389*C[1]^5*C[2]+105.672382415604457907335092774*C[1]^4*C[3]+311.101168611078576105272504207*C[1]^4*C[2]^2+278.688436198371907438536813454*C[1]^3*C[2]^2+5.77083786784484719114351437650*C[2]^2*C[3]+9.47148968660028526884060305244*C[1]^2*C[3]^2+25.2573058309340935640075160001*C[1]*C[2]^3+2.88541893392242359557175718826*C[2]*C[3]^2;

46.9583071454992150133023076038*C[3]*C[2]*C[1]+6.31432645773352339100187900006*C[3]^2*C[2]*C[1]+27.7653575006180800742855829918*C[3]*C[2]^2*C[1]^2+63.6001031248190422251901016108*C[3]*C[1]^4*C[2]+112.096291194663425382985103004*C[1]^3*C[2]*C[3]+75.7719174928022814213736862098*C[1]^2*C[2]*C[3]+25.2573058309340935640075160002*C[1]*C[2]^2*C[3]+69.7127022912194568273754946252*C[2]*C[1]+20.3074570025456186043138083950*C[3]*C[1]+203.843531657089854712460709308*C[1]^2*C[2]+57.4530755155979171964227079426*C[1]^2*C[3]+434.194467843941394307245960251*C[1]^3*C[2]+13.5383046683637457362092055966*C[2]*C[3]+76.6041006874638884531740720781*C[2]^2*C[1]+90.6674083005557106929690086320*C[3]*C[1]^3+611.306900775620942793452094961*C[1]^4*C[2]+179.001447280279507969290037546*C[2]^2*C[1]^2+7.20005467320229588757253538206*C[3]^2*C[1]^3+40.8668805247645529085197535656*C[2]^3*C[1]^3+36.5737420746433642076077850736*C[3]*C[1]^6+140.973303771712953983294501319*C[1]^5*C[2]^2+162.711518113889618962374395509*C[1]^7*C[2]+4.32812840088363539335763578239*C[1]*C[3]^2+55.5307150012361601485711659834*C[2]^3*C[1]^2+496.067395464425598593992907905*C[1]^6*C[2]+95.4001546872285651883261150834*C[1]^5*C[3]+657.452062291074999884391101389*C[1]^5*C[2]+105.672382415604457907335092774*C[1]^4*C[3]+311.101168611078576105272504207*C[1]^4*C[2]^2+278.688436198371907438536813454*C[1]^3*C[2]^2+5.77083786784484719114351437650*C[2]^2*C[3]+9.47148968660028526884060305244*C[1]^2*C[3]^2+25.2573058309340935640075160001*C[1]*C[2]^3+2.88541893392242359557175718826*C[2]*C[3]^2+2.45682476133478363578743692990+244.067277170834433206276077475*C[1]^8+426.911159710284251428576733889*C[1]^7+510.779673906625885983845715630*C[1]^6+3.84722524522989812742900958432*C[2]^3+.480903155653737265928626198044*C[3]^3+477.327532846266667336492523326*C[1]^5+3.38457616709093643405230139915*C[3]^2+62.8131451429191336847607267591*C[1]^9+13.2723755696608842609637728496*C[2]+19.9085633544913263914456592743*C[1]+6.63618778483044213048188642478*C[3]+179.649076835886621860340638648*C[1]^3+74.1078679330107581761348206757*C[1]^2+13.5383046683637457362092055966*C[2]^2+333.781852564685764308491722397*C[1]^4

(4)

fsolve({E[1]=0, E[2]=0,E[3]=0});

fsolve({46.9583071454992150133023076038*C[3]*C[2]*C[1]+6.31432645773352339100187900006*C[3]^2*C[2]*C[1]+27.7653575006180800742855829918*C[3]*C[2]^2*C[1]^2+63.6001031248190422251901016108*C[3]*C[1]^4*C[2]+112.096291194663425382985103004*C[1]^3*C[2]*C[3]+75.7719174928022814213736862098*C[1]^2*C[2]*C[3]+25.2573058309340935640075160002*C[1]*C[2]^2*C[3]+69.7127022912194568273754946252*C[2]*C[1]+20.3074570025456186043138083950*C[3]*C[1]+203.843531657089854712460709308*C[1]^2*C[2]+57.4530755155979171964227079426*C[1]^2*C[3]+434.194467843941394307245960251*C[1]^3*C[2]+13.5383046683637457362092055966*C[2]*C[3]+76.6041006874638884531740720781*C[2]^2*C[1]+90.6674083005557106929690086320*C[3]*C[1]^3+611.306900775620942793452094961*C[1]^4*C[2]+179.001447280279507969290037546*C[2]^2*C[1]^2+7.20005467320229588757253538206*C[3]^2*C[1]^3+40.8668805247645529085197535656*C[2]^3*C[1]^3+36.5737420746433642076077850736*C[3]*C[1]^6+140.973303771712953983294501319*C[1]^5*C[2]^2+162.711518113889618962374395509*C[1]^7*C[2]+4.32812840088363539335763578239*C[1]*C[3]^2+55.5307150012361601485711659834*C[2]^3*C[1]^2+496.067395464425598593992907905*C[1]^6*C[2]+95.4001546872285651883261150834*C[1]^5*C[3]+657.452062291074999884391101389*C[1]^5*C[2]+105.672382415604457907335092774*C[1]^4*C[3]+311.101168611078576105272504207*C[1]^4*C[2]^2+278.688436198371907438536813454*C[1]^3*C[2]^2+5.77083786784484719114351437650*C[2]^2*C[3]+9.47148968660028526884060305244*C[1]^2*C[3]^2+25.2573058309340935640075160001*C[1]*C[2]^3+2.88541893392242359557175718826*C[2]*C[3]^2+2.45682476133478363578743692990+244.067277170834433206276077475*C[1]^8+426.911159710284251428576733889*C[1]^7+510.779673906625885983845715630*C[1]^6+3.84722524522989812742900958432*C[2]^3+.480903155653737265928626198044*C[3]^3+477.327532846266667336492523326*C[1]^5+3.38457616709093643405230139915*C[3]^2+62.8131451429191336847607267591*C[1]^9+13.2723755696608842609637728496*C[2]+19.9085633544913263914456592743*C[1]+6.63618778483044213048188642478*C[3]+179.649076835886621860340638648*C[1]^3+74.1078679330107581761348206757*C[1]^2+13.5383046683637457362092055966*C[2]^2+333.781852564685764308491722397*C[1]^4 = 0, 153.208201374927776906348144156*C[3]*C[2]*C[1]+25.2573058309340935640075160002*C[3]^2*C[2]*C[1]+166.592145003708480445713497950*C[3]*C[2]^2*C[1]^2+27.7653575006180800742855829918*C[1]^2*C[2]*C[3]^2+622.202337222157152210545008414*C[3]*C[1]^4*C[2]+122.600641574293658725559260697*C[3]*C[1]^3*C[2]^2+281.946607543425907966589002638*C[3]*C[1]^5*C[2]+557.376872396743814877073626908*C[1]^3*C[2]*C[3]+358.002894560559015938580075092*C[1]^2*C[2]*C[3]+75.7719174928022806920225480003*C[1]*C[2]^2*C[3]+197.620981154695352892246744921*C[2]*C[1]+69.7127022912194568273754946252*C[3]*C[1]+714.578012051731012130317887974*C[1]^2*C[2]+203.843531657089854712460709308*C[1]^2*C[3]+1766.16966441999925166853827049*C[1]^3*C[2]+27.0766093367274914724184111932*C[2]*C[3]+212.499788458857123786091673104*C[2]^2*C[1]+434.194467843941394307245960251*C[3]*C[1]^3+3141.52847795726645663051684924*C[1]^4*C[2]+695.149096217665641438222932439*C[2]^2*C[1]^2+2.10477548591117446366729300002*C[1]*C[3]^3+56.0481455973317126914925515018*C[3]^2*C[1]^3+31.8000515624095211125950508054*C[1]^4*C[3]^2+326.935044198116423268158028524*C[2]^3*C[1]^3+496.067395464425598593992907905*C[3]*C[1]^6+1660.92096546186389956430681841*C[1]^5*C[2]^2+181.129142851463591068444931825*C[1]^4*C[2]^3+726.068115319691334493835743184*C[1]^8*C[2]+162.711518113889618962374395509*C[3]*C[1]^7+627.051287609075741531849279370*C[2]^2*C[1]^6+2531.99993528278573714806080616*C[1]^7*C[2]+23.4791535727496075066511538019*C[1]*C[3]^2+222.122860004944640594284663933*C[2]^3*C[1]^2+3906.43615043678594872692364090*C[1]^6*C[2]+657.452062291074999884391101389*C[1]^5*C[3]+4020.50019344406297065713382194*C[1]^5*C[2]+611.306900775620942793452094961*C[1]^4*C[3]+1852.80831764043817945717219767*C[1]^4*C[2]^2+1346.85403641174851926917778882*C[1]^3*C[2]^2+11.5416757356896943822870287530*C[2]^2*C[3]+37.8859587464011407106868431049*C[1]^2*C[3]^2+67.3528155491575828373533760000*C[1]*C[2]^3+5.77083786784484719114351437650*C[2]*C[3]^2+4.91364952266956727157487385979+2387.13450580375819680085929907*C[1]^8+3121.90449400650574350940633190*C[1]^7+3138.64432579147113300113158085*C[1]^6+7.69445049045979625485801916864*C[2]^3+.961806311307474531857252396085*C[3]^3+2431.53578752615368735902504171*C[1]^5+6.76915233418187286810460279831*C[3]^2+281.103926218004500859025906710*C[1]^10+1214.72846326537529041523462352*C[1]^9+26.5447511393217685219275456990*C[2]+50.4730912279207745584225849550*C[1]+13.2723755696608842609637728496*C[3]+686.228505839259171065355245966*C[1]^3+235.509100724406175208513274857*C[1]^2+27.0766093367274914724184111932*C[2]^2+1461.42801532995059826799630151*C[1]^4 = 0, 7.37047428400435090736231078968+407.687063314179709424921418616*C[3]*C[2]*C[1]+75.7719174928022814213736862098*C[3]^2*C[2]*C[1]+836.065308595115722315610440362*C[3]*C[2]^2*C[1]^2+168.144436791995138074477654505*C[1]^2*C[2]*C[3]^2+111.061430002472320297142331967*C[3]*C[1]*C[2]^3+27.7653575006180800742855829918*C[1]*C[2]^2*C[3]^2+3287.26031145537499942195550694*C[3]*C[1]^4*C[2]+127.200206249638084450380203222*C[1]^3*C[2]*C[3]^2+1244.40467444431430442109001683*C[3]*C[1]^3*C[2]^2+122.600641574293658725559260697*C[3]*C[2]^3*C[1]^2+2976.40437278655359156395744743*C[3]*C[1]^5*C[2]+704.866518858564769916472506595*C[3]*C[1]^4*C[2]^2+1138.98062679722733273662076856*C[3]*C[1]^6*C[2]+2445.22760310248377117380837984*C[1]^3*C[2]*C[3]+1302.58340353182418292173788075*C[1]^2*C[2]*C[3]+358.002894560559015938580075092*C[1]*C[2]^2*C[3]+471.018201448812350417026549714*C[2]*C[1]+148.215735866021516352269641351*C[3]*C[1]+2058.68551751777751319606573790*C[1]^2*C[2]+538.947230507659865581021915944*C[1]^2*C[3]+5845.71206131980239307198520604*C[1]^3*C[2]+69.7127022912194568273754946252*C[2]*C[3]+714.578012051731012130317887974*C[2]^2*C[1]+1335.12741025874305723396688959*C[3]*C[1]^3+12157.6789376307684367951252086*C[1]^4*C[2]+2649.25449662999887750280740574*C[2]^2*C[1]^2+25.2573058309340935640075160001*C[3]*C[2]^3+6.31432645773352351256040203496*C[1]*C[3]^3+12.6286529154670467820037580001*C[2]^2*C[3]^2+2.10477548591117446366729300002*C[2]*C[3]^3+211.344764831208915814670185548*C[3]^2*C[1]^3+7.20005467320229588757253538206*C[1]^2*C[3]^3+111.061430002472320297142331967*C[1]*C[2]^4+238.500386718071412970815287708*C[1]^4*C[3]^2+2470.41109018725090594289626356*C[2]^3*C[1]^3+245.201283148587317451118521393*C[2]^4*C[1]^2+181.129142851463591068444931825*C[2]^4*C[1]^3+2988.37811797198976000003713722*C[3]*C[1]^6+109.721226223930092622823355221*C[1]^5*C[3]^2+11719.3084513103578461807709227*C[1]^5*C[2]^2+2768.20160910310649927384469736*C[1]^4*C[2]^3+565.318306286272203162846540832*C[1]^8*C[3]+10932.5561693883776137371116117*C[1]^8*C[2]+2904.27246127876533797534297274*C[1]^7*C[2]^2+1952.53821736667546565020861980*C[3]*C[1]^7+8861.99977348975008001821282156*C[2]^2*C[1]^6+1254.10257521815148306369855874*C[2]^3*C[1]^5+19097.0760464300655744068743926*C[1]^7*C[2]+2811.03926218004500859025906710*C[1]^9*C[2]+57.4530755155979171964227079426*C[1]*C[3]^2+1346.85403641174851926917778882*C[2]^3*C[1]^2+21853.3314580455402045658443233*C[1]^6*C[2]+3064.67804343975531590307429378*C[1]^5*C[3]+18831.8659547488267980067894851*C[1]^5*C[2]+2386.63766423133333668246261663*C[1]^4*C[3]+10051.2504836101574266428345548*C[1]^4*C[2]^2+6283.05695591453291326103369848*C[1]^3*C[2]^2+76.6041006874638884531740720781*C[2]^2*C[3]+136.001112450833566039453512948*C[1]^2*C[3]^2+463.432730811777094292148621626*C[1]*C[2]^3+23.4791535727496075066511538019*C[2]*C[3]^2+14295.0784862597862660994822740*C[1]^8+15419.2846919327017114194783308*C[1]^7+12988.7517416642139784208462738*C[1]^6+16.8382038872893957093383440000*C[2]^4+70.8332628196190412620305577015*C[2]^3+1.44270946696121179778587859413*C[3]^3+8603.52635510176910780764444620*C[1]^5+10.1537285012728093021569041975*C[3]^2+982.222581518989031760243574949*C[1]^11+4638.21478259707435511949025320*C[1]^10+10052.6606516341018431728672421*C[1]^9+50.4730912279207745584225849550*C[2]+91.6935836202883451116448236302*C[1]+19.9085633544913263914456592743*C[3]+1819.06587325966981030289478684*C[1]^3+520.398873394086389608807266267*C[1]^2+98.8104905773476764461233724605*C[2]^2+4510.00238293949012248750841678*C[1]^4 = 0}, {C[1], C[2], C[3]})

(5)

solve({E[1]=0, E[2]=0, E[3]=0}, [C[1],C[2],C[3]]);

Warning,  computation interrupted

 

NULL


Download to_ask.mwto_ask.mw

I want to print 2+3= in the input and get exactly the same output.

And how can i do it in a program?

Hello people in mapleprimes,

I want to solve the next system of equation for B/A and C/A.

eq1:=A+B=F+G;
eq2:=k*(A-B)=kappa*(F-G);
eq3:=F*exp(I*kappa*a)+G*exp(-I*kappa*a)=C*exp(I*k*a);
eq4:=kappa*F*exp(I*kappa*a)-kappa*G*exp(-I*kappa*a)=k*C*exp(I*k*a);


But, though it is well-known, solve({eq1,eq2,eq3,eq4},{B/A,C/A})
does not work well, as the values I want to solve it for are
expressions: B/A and C/A not variables.

Then, you might thing the next works well.
eq:=subs({B=A/t,C=A/u},{eq1,eq2,eq3,eq4}):
solve(eq,{t,u});

But, this doesn't work well, with the answer was
only the ratio of t and u expressed as the following:

t = t, u = exp(I*k*a)*(exp(-I*kappa*a)*k^2-exp(I*kappa*a)*k^2-exp(-I*kappa*a)*kappa^2+exp(I*kappa*a)*kappa^2)*t/(4*kappa*k*exp(I*kappa*a)*exp(-I*kappa*a))

Isn't there nice way to solve the above system of equation, except that
sol1:=solve({eq3,eq4},{F,G});assign(sol1);
sol2:=solve({eq1,eq2},{A,B});assign(sol2);

Best wishes
taro

test.mw

restart; with(LinearAlgebra)

``

dF := -.525*exp(-7*t)+2.625*exp(-3*t)+.8*exp(-4*t);

-.525*exp(-7*t)+2.625*exp(-3*t)+.8*exp(-4*t)

(1)

``

e3 := `<,>`(1, 1, 1); E := proc (m) options operator, arrow; IdentityMatrix(m) end proc; beta := `<|>`(.1, .6, .3); S := `<|>`(`<,>`(-3, 1, 1), `<,>`(1, -5, 2), `<,>`(0, 2, -4)); S0 := -S.e3

beta := Vector[row](3, {(1) = .1, (2) = .6, (3) = .3})

 

S := Matrix(3, 3, {(1, 1) = -3, (1, 2) = 1, (1, 3) = 0, (2, 1) = 1, (2, 2) = -5, (2, 3) = 2, (3, 1) = 1, (3, 2) = 2, (3, 3) = -4})

 

S0 := Vector(3, {(1) = 2, (2) = 2, (3) = 1})

(2)

Z := `<|>`(x, y, z)

Z := Vector[row](3, {(1) = x, (2) = y, (3) = z})

(3)

ME := MatrixExponential(S+Typesetting:-delayDotProduct(S0, Z), t);

`[Length of output exceeds limit of 1000000]`

(4)

MEint := map(int, ME.dF, t = 0 .. infinity)

Error, (in int) wrong number (or type) of arguments: wrong type of integrand passed to definite integration.

 

`&beta;plus&Assign;solve`(Z = beta.MEint, Z)

"(RTABLE(18446744074195006390,VECTOR([x, y, z]),Vector[row])=RTABLE(18446744074193876574,VECTOR([.1, .6, .3]),Vector[row]).MEint) betaplus:=solve (RTABLE(18446744074195006390,VECTOR([x, y, z]),Vector[row]))"

(5)

``

1step- I want to integrate the (ME*dF) from t=0 to ∞ .

2step- Evaluate Z=<x,y,z> by solving Z=β*MEint.

Download test.mw

Hello,

I would like to ask for help with factorization, collection or decomposition of matricies. If I have the symbolic product of matrices:

A := Matrix(2, 2, {(1, 1) = a[11], (1, 2) = a[12], (2, 1) = a[21], (2, 2) = a[22]})

B := Matrix(2, 2, {(1, 1) = b[11], (1, 2) = b[12], (2, 1) = b[21], (2, 2) = b[22]})

then C:= A*B :

Matrix(2, 2, {(1, 1) = a[11]*b[11]+a[12]*b[21], (1, 2) = a[11]*b[12]+a[12]*b[22], (2, 1) = a[21]*b[11]+a[22]*b[21], (2, 2) = a[21]*b[12]+a[22]*b[22]})

and my question follows:

Can I factor this result C and get the imput matrices A and B ? Is any function for this operation ? I would like to use it for matrices 3 time 3 not only for 2 times 2.

Thank you for your help,

vidocq

 

After installing the 18.02 update to Maple 18, the inverse Laplace transform no longer works!

First 1354 1355 1356 1357 1358 1359 1360 Last Page 1356 of 2434