MaplePrimes Questions

Hi guys,

I want to solve the matrix equation. suppose we have a matrix A 4*4 which only first array of it (1,1) is equal to n and another matrix such as S which is again 4*4 and generally, we don't know its arrays and we want A and S satisfy the following equation:

S*A*inverse(S)=A

how we can find out arrays of S?

A=Matrix([[1,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0]])

S=Matrix([[a,b,c,d],[e,f,g,h],[I,j,k,l],[m,n,o,p]])

 

thanks

 

 

I have a .mla file, filename.mla, in a folder and typed with(filename), but Maple says "Error, invalid input: with expects its 1st argument, pname, to be of type {`module`, package}, but received convex". So how to use a  .mla file in Maple exactly?

 

Thanks a lot.

Years ago i used maple as in a worksheet

Nowadys there are two ways to use Maple: in document mode and worksheet mode ?

Very confusing this and it seems that the old worksheet mode has nothing to do with the document mode
 

Now in Maple i don't now how to use the worksheet mode anymore.
Can this worksheet mode used togehter with the document mode?

This is real troublesome exercise  to use Maple, why should i use the document mode and offers it the same functionality as in the worksheet mode ?

 

 

I am trying to isolate theta/V in this equation, but Maple will only allow me to solve for either theta or V. Is there a way to make Maple solve for the expression instead of the variable?

I have attached the Maple document below. It contains some other stuff but it is mostly this equation I am interested in. It can be found near the bottom. I hope someone can help.

Best regards

Opdelt_TF_Maple.mw

Why does Maple product history page   stop at Maple 6, year 2000?

Maple starterd in 1984. There are more versions before version 6. I think this official Maple page should list every release made in Maple and do not understand why it stop at version 6 only.

Wikipedia has more complete and detailed history of Maple products, starting with version 1 in 1982, with minor versions also shown than Maple own official web page gives.

btw, Wilipedia says version 6 was released in December 6, 1999. But Maple official page says version 6 was released in 2000.  

 

 

Any help why this code fail

restart;
PDE := diff(u(x,y), y$2 ) + diff(u(x,y), x$2) = 0;
BC:= u(x,0)=0, u(x,100)=100, u(0,y)=0, u(10,y)=0;
sol:=pdsolve([PDE,BC],numeric);

gives

Error, (in pdsolve/numeric/process_PDEs) PDEs can only contain dependent variables with direct dependence on the independent variables of the problem, got {u(0, y), u(10, y), u(x, 0), u(x, 100)}
 

But sol:=pdsolve([PDE,BC])  works OK and gives analytical solution.

What error Am I doing in the above code in this case?

Maple 2020 with Physics 642

Is there any possibility to define which units are used in components, like MathContainers?

I would like to have kN/m, I get mm2*kg/m3*m/s2...

I'd like to find chromatic number of some graphs. But I find a strange thing of function ChromaticNumber. 

with(GraphTheory):
g1:=Graph(4):
DrawGraph(g1);
ChromaticNumber(g1)

It is Ok!

But when I use following codes, an error will be issued.

with(GraphTheory):
graphsof4 := [NonIsomorphicGraphs(4, output = graphs, outputform = graph)]:
DrawGraph(graphsof4[1]);
ChromaticNumber(graphsof4[1]);

 

 

 

 

 

I try to take a partial derivative of compound expressions. Usage of diff, Diff, substitution variables instead of time-variant variables (subs) couldn't help me.

restart; PDEtools[declare](`θ__l`(t), `β__l`(t), `θ__si`(t), `β__si`(t), psi(t), x(t), z(t)); PDEtools[declare](prime = t); V__1lx := diff(x(t), t)-(1/2)*l__b*sin(psi(t))*(diff(psi(t), t))-l__1c*sin(`θ__l`(t)-psi(t))*(diff(`θ__l`(t), t)-(diff(psi(t), t))); V__1lz := diff(z(t), t)-(1/2)*l__b*cos(psi(t))*(diff(psi(t), t))-l__1c*cos(`θ__l`(t)-psi(t))*(diff(`θ__l`(t), t)-(diff(psi(t), t))); V__1l := simplify(V__1lx^2+V__1lz^2, size); diff(V__1l, psi); Diff(V__1l, psi)

Diff((diff(x(t), t)-(1/2)*l__b*sin(psi(t))*(diff(psi(t), t))+l__1c*sin(-theta__l(t)+psi(t))*(diff(theta__l(t), t)-(diff(psi(t), t))))^2+(diff(z(t), t)-(1/2)*l__b*cos(psi(t))*(diff(psi(t), t))-l__1c*cos(-theta__l(t)+psi(t))*(diff(theta__l(t), t)-(diff(psi(t), t))))^2, psi)

(1)

``


Download DiffExpr.mw

Should I use implicitdiff? If yes, how does it work?

Also, I don't understand, why the derivative of theta_l is displayed so strange, as if the derivative is taken from the index l?

P.S. This question is a continuation of my last topic: https://www.mapleprimes.com/questions/229551-Operations-On-Several-Defined-Functions

Hello everyone! I was trying to draw a circle point by point using animate, but there's a catch: I'd like it to be created in front of the user, that is seeing every point being drawn in sequence.

Like this, but with the point leaving a trail behind him.

Can anyone help?

Hello,

I'm trying to evaluate if the matrizes are the same but i cant figure out why it say they are different.

 

restart;
with(DEtools);
DEplot(diff(y(t), t$2)-3*(diff(y(t), t))+2*y(t) = exp(t), [[y(0) = 0, (D(y))(0) = 2]], stepsize = .1, linecolor = black, thickness = 2);

 

Is there a way to enter a formula into the coloums to generate the output?
I did the Table of Values by Hand which will take a long time for real data.

Thanks in Advance

``

Example: Verifying Inverse Functions Numerically

 

"ex17f6(x):=(x-5)/(2):"

"ex17g6(x):=2 x+5:"

y3:

ex17f6(ex17g6(x))

x

(1.1)

y4:

ex17g6(ex17f6(x))

x

(1.2)

NULLNULL

 

Table 1: Table of Values

x

y3

y4

-2

-2

-2

-1

-1

-1

0

0

0

1

1

1

2

2

2

3

3

3

4

4

4

 

NULL


 

Download InverseNum.mw

Why are these functions not graphed correctly?
 

Example: Verifying Inverse Functions Graphically

 

``

"ex17f5(x):=2 x^(3)-1:"

"ex17g5(x):=((x+1)/(2))^(1/(3)):"

 

``


 

Download inverseExample.mw

Hi everyone, I have problem solving a given optimization problem using the Karush Khun Tucke conditions. The working is as follows:

restart;
with(linalg);
f := 49*x[1]+94*x[2]+90*x[3]+24*x[4]+6*x[5]+63*x[6]+17*x[7]+65*x[8]+72*x[9]+40*x[10]+67*x[11]+99*x[12]+97*x[13]+53*x[14]+22*x[15]+47*x[16]+60*x[17]+36*x[18]+54*x[19]+67*x[20]+46*x[21]+55*x[22]+42*x[23]+70*x[24];
49 x[1] + 94 x[2] + 90 x[3] + 24 x[4] + 6 x[5] + 63 x[6]

   + 17 x[7] + 65 x[8] + 72 x[9] + 40 x[10] + 67 x[11] + 99 x[12]

   + 97 x[13] + 53 x[14] + 22 x[15] + 47 x[16] + 60 x[17]

   + 36 x[18] + 54 x[19] + 67 x[20] + 46 x[21] + 55 x[22]

   + 42 x[23] + 70 x[24]
g[1] := x[1]+x[2]+x[3]+x[4]+x[5]+x[6]+x[7]+x[8]+x[9]+x[10]+x[11]+x[12]-475;
  x[1] + x[2] + x[3] + x[4] + x[5] + x[6] + x[7] + x[8] + x[9]

     + x[10] + x[11] + x[12] - 475
g[2] := x[13]+x[14]+x[15]+x[16]+x[17]+x[18]+x[19]+x[20]+x[21]+x[22]+x[23]+x[24]-30;
 x[13] + x[14] + x[15] + x[16] + x[17] + x[18] + x[19] + x[20]

    + x[21] + x[22] + x[23] + x[24] - 30
for i from 3 to 26 do g[i] := -x[i] end do;
h[1] := 54-x[1];
                           54 - x[1]
h[2] := 30-x[2];
                           13 - x[2]
h[3] := 13-x[3];
                           13 - x[3]
h[4] := 41-x[4];
                           41 - x[4]
h[5] := 97-x[5];
                           97 - x[5]
h[6] := 11-x[6];
                           11 - x[6]
h[7] := 62-x[7];
                           62 - x[7]
h[8] := 59-x[8];
                           59 - x[8]
h[9] := 35-x[9];
                           35 - x[9]
h[10] := 42-x[10];
                           42 - x[10]
h[11] := 19-x[11];
                           19 - x[11]
h[12] := 12-x[12];
                           12 - x[12]
vars := [x[1], x[2], x[3], x[4], x[5], x[6], x[7], x[8], x[9], x[10], x[11], x[12], x[13], x[14], x[15], x[16], x[17], x[18], x[19], x[20], x[21], x[22], x[23], x[24]];
[x[1], x[2], x[3], x[4], x[5], x[6], x[7], x[8], x[9], x[10], 

  x[11], x[12], x[13], x[14], x[15], x[16], x[17], x[18], x[19], 

  x[20], x[21], x[22], x[23], x[24]]
H := Hessian(f, vars);
Hessian(49 x[1] + 94 x[2] + 90 x[3] + 24 x[4] + 6 x[5] + 63 x[6]

   + 17 x[7] + 65 x[8] + 72 x[9] + 40 x[10] + 67 x[11] + 99 x[12]

   + 97 x[13] + 53 x[14] + 22 x[15] + 47 x[16] + 60 x[17]

   + 36 x[18] + 54 x[19] + 67 x[20] + 46 x[21] + 55 x[22]

   + 42 x[23] + 70 x[24], [x[1], x[2], x[3], x[4], x[5], x[6], 

  x[7], x[8], x[9], x[10], x[11], x[12], x[13], x[14], x[15], 

  x[16], x[17], x[18], x[19], x[20], x[21], x[22], x[23], x[24]])
grad_f := Del(f, vars);
Del(49 x[1] + 94 x[2] + 90 x[3] + 24 x[4] + 6 x[5] + 63 x[6]

   + 17 x[7] + 65 x[8] + 72 x[9] + 40 x[10] + 67 x[11] + 99 x[12]

   + 97 x[13] + 53 x[14] + 22 x[15] + 47 x[16] + 60 x[17]

   + 36 x[18] + 54 x[19] + 67 x[20] + 46 x[21] + 55 x[22]

   + 42 x[23] + 70 x[24], [x[1], x[2], x[3], x[4], x[5], x[6], 

  x[7], x[8], x[9], x[10], x[11], x[12], x[13], x[14], x[15], 

  x[16], x[17], x[18], x[19], x[20], x[21], x[22], x[23], x[24]])
for i to 26 do grad_g[i] := Del(g[i], vars) end do;
for i to 12 do grad_h[i] := Del(h[i], vars) end do;
eq[1] := grad_f+sum(mu[i]*g[i], i = 13 .. 26)+sum(lambda[i]*h[j], j = 1 .. 12) = 0;
Error, (in sum) summation variable previously assigned, second argument evaluates to 13 = 13 .. 37
eq[2] := g[i] <= 0;
                          -x[13] <= 0
eq[3] := h[j] <= 0;
                           h[j] <= 0
eq[4] := mu[i] >= 0;
                          0 <= mu[13]
eq[5] := lambda[j] <= 0;
                         lambda[j] <= 0
eq[6] := mu[i]*g[i] = 0;
                       -mu[13] x[13] = 0
eval(solve({eq[1], eq[2], eq[3], eq[4], eq[5], eq[6]}, [vars, lambda[j], mu[i]]));
Error, invalid input: too many and/or wrong type of arguments passed to solve; first unused argument is [[x[1], x[2], x[3], x[4], x[5], x[6], x[7], x[8], x[9], x[10], x[11], x[12], x[13], x[14], x[15], x[16], x[17], x[18], x[19], x[20], x[21], x[22], x[23], x[24]], lambda[j], mu[13]]
 

First 555 556 557 558 559 560 561 Last Page 557 of 2428