MaplePrimes Questions

Dear all 
I have a PDE, with unknown u(t,x,t) ,  zero boundary condition and initial condition given

I converted the equaiton using finite difference to get a system of algebraic equation 

The system is solved at each time step 
I think i have a problem to update the solution inside the loop. 

I hope find the problem or why the numerical solution is different to exact solution at last time 

System_finite_difference.mw

Thank you for your help 

Hi Everyone; I have plotted two different expressions separately and then shown them in a single graph. From the final display, we can observe that the peak of one expression, A is larger than that of another expression B. Now, the question is, how do I calculate the decrease or increase in the percentage of both curves? This means the peak of expression A is 20%, 8%, or 7% decreases or increases as of expression A.

Help_percentage_inccrease_or_decrease.mw

more explanation, each curve has its maximum point at some value of x, need to calculate that point for each curve. Then, we combined all curves we observed that the peak of each curve is smaller than others, so I am interested to observing that difference in percentage at the maximum value of x.

for reference, I uploading a file of which idea I want to implement for my problem. This is not my problem, but I want to implement it like this.

For_reference.mw

I have written a maple-code that is visualizing cycles or periods of inverse numbers in any base in a coloured plot.

For example 1/13=0,76923 076923 ... (so period-lenght is 6, the cycle-digits are visualized)

Now I would like to run the Maple Code wich produces the plot (via display-comand) on an ipad.

The ipad will be located in a museum or galerie. In the most easily way the user just touch a button on the ipad-screen and the maple-code produces a random plot which is displayed. Later some choosable parameters for the plot are added.

I have make some tests with embedded components in Maple.

So my idea is to do this with maple-player. I read about Maple Player features:

- Interact with applications that make use of embedded components, such as sliders, buttons, and math entry boxes. Maple will perform the computations and display updated results and visualizations

Questions:

1) how do I run Maple code in Maple Player (a little example with a button- and a plot-component will help)

2) do I need to upgrade Maple 2021  to do that ?

3) What does a mapleplayer license cost for each ipad ?

Thanks for support :)

Delay differential equations in Chebfun lists 15 examples "taken from the literature". Many of them can be (numerically) solved in Maple without difficulty, yet when I attempt to solve the  in the above link, Maple's internal solver `dsolve/numeric` just halts with an error. 

plots:-odeplot(dsolve({D(u)(t) + u(t)**2 + 2*u(1/2*t) = 1/2*exp(t), u(0) = u(1/3)}, type = numeric, range = 0 .. 1/3), size = ["default", "golden"]);
Error, (in dsolve/numeric) delay equations are not supported for bvp solvers

Even if I guess an initial (or final) value artificially, the solution is still less reliable (For instance, what is the approximate endpoint value? 0.26344 or 0.2668?): 

restart;
dde := D(u)(t) + u(t)**2 + u(t/2)*2 = exp(t)/2:
x__0 := 2668/10000:
sol0 := dsolve([dde, u(0) = x__0], type = numeric, 'delaymax' = 1/6, range = 0 .. 1/3):
plots['odeplot'](sol0, [[t, u(t)], [t, x__0]], 'size' = ["default", "golden"]);

x__1 := 26344/100000:
sol1 := dsolve([dde, u(1/3) = x__1], type = numeric, 'delaymax' = 1/6, range = 0 .. 1/3):
plots['odeplot'](sol1, [[t, u(t)], [t, x__1]], size = ["default", "golden"]);

Compare:  (Note that the reference numerical solution implies that its minimum should be no less than 0.258 (Is this incorrect?).).

And actually, the only known constraint is simply u(0)=u(⅓) (so neither value is known beforehand). Can Maple process this boundary condition automatically (that is, without the need for manual preprocessing and in absence of any other prior information)?
I have read the help page How to | Numeric Delay Differential Equations and Numerical Solution of Difficult ODE Boundary Value Problems, but it appears that those techniques are more or less ineffective here. So, how do I solve such a "first order nonlinear 'BVP' with pantograph delay" in Maple?

I'm unsure how to fix the error with sin, the help guide suggests using the command Describe (Sin)

#Clear memory.
restart;

#Initialise variables and arrays.
h:=((pi/20)^2);
n:=15;
k:=0.1;
m:=10;
t:=Array(0..m):
x:=Array(0..n):
u:=Array(0..n,0..m):

#Initialise the x array and the initial u(x,0) boundary.
   for i from 0 to n do
x[i]:=i*h;
u[i,0]:=x[i];
end do:

#Initialise the t array and the u(x,t)side boundaries.
  for j from 0 to m do
t[j]:=j*k;
u[0,j]:=0;
u[n,j]:=pi/2;
end do:

#Use the 2D explicit finite difference method.
for j from 0 to m-1 do
    for i from 1 to n-1 do
      u[i,j+1]:=(400*u[i-1,j]-400*u[i,j]+400*u[i+1,j]+1)/(pi^2)*(4*sin(2*x));
  end do;
end do:

#Display the u(x,t) values.
printf("2D Explicit Finite Difference Method\n");
printf("------------------------------------\n");
printf(" x\t\t t\t\t u\n");
for i from 0 to n do
    printf("% 9.4f\t% 9.4f\t% 9.4f\n",x[i],t[m],u[i,m]);
end do;

(1/400)*pi^2

 

15

 

.1

 

10

 

Error, invalid input: sin expects its 1st argument, x, to be of type algebraic, but received Array(0..15, [0,1/200*pi^2,1/100*pi^2,3/200*pi^2,1/50*pi^2,1/40*pi^2,3/100*pi^2,7/200*pi^2,1/25*pi^2,9/200*pi^2,1/20*pi^2,11/200*pi^2,3/50*pi^2,13/200*pi^2,7/100*pi^2,3/40*pi^2])

 

2D Explicit Finite Difference Method
------------------------------------
 x                 t                 u
   0.0000           1.0000           0.0000

 

Error, (in fprintf) number expected for floating point format

 

NULL

Download Asst_2_Q3bcd.mw

#Clear memory.
restart;

#Initialise variables and arrays.
h:=0.1;
n:=10;
x:=Array(0..n):
y:=Array(0..n):
x[0]:=0;
y[0]:=2;
yd:=-1;

#Initialise the x array.
for i from 1 to n do
    x[i]:=x[0]+i*h;
end do:

#Calculate the first y value.
y[1]:=(203*y[0]-22*yd+4)/220:

#Calculate the remaining y values.
for i from 1 to n-1 do
    y[i+1]:=203*y[i]-110*y[i-1]+4*exp^(-3*x[i])/110;
end do:

#Display the x and y arrays.
printf("1D Explicit Finite Difference Method\n");
printf("------------------------------------\n");
printf("x\t\ty\n");
for i from 0 to n do
     printf("%f\t %f\n",x[i],y[i]);
end do;

 

.1

 

10

 

0

 

2

 

-1

 

1D Explicit Finite Difference Method
------------------------------------
x                y
0.000000         2.000000
0.100000         1.963636
0.200000         

 

Error, (in fprintf) number expected for floating point format

 

NULL

Download Asst_2_Q1c.mw

I dont understand the cause of this error, can anyone please assist?

Hi,

I am trying to write a procedure that takes two intervals of real numbers (in interval notation) and checks if one is a subset of the other. For example, isSubset([-5,2],[-10,infinity)) would return true, but isSubset([-5,2],(-5,infinity)) would return false. Any idea how to go about this? I am having difficulty knowing where to start.

Thanks!

Dear all

I have an equation, I would like to collect or regroup all similar terms 

MCode.mw

Thank you 

Hello!!

Matrice: (x,y)=(-2,-3),(-1,2),(3,4),(1,-2)

When plotting 3 lines with points are ok, but the fourth line os missing! All 4 points are there

How to include the 4th line?

Kjell

For instance, “[1, 2, 3]”, “[``([1, 2]), uneval([3])]”, and “[[1, 2], [3, 'NULL']]” are fully rectangular. “[1, 2, [3]]”, “[`[]`(1, 2), [3]]”, and “[[1, 2], [3, NULL]]” are considered nonrectangular, but if we temporarily freeze the "ragged" parts or regard them as a depth-1 container, the corresponding expressions will seem rectangular. `type(…, list(Non(list)))` and `type(…, listlist(Non(list)))` check these, but they do not work for general cases.
To be specific, the desired output should be something like

IsRectangular([[[l, 2], [3, 4]], [[5, 6], [7, 8]]]);
 = 
                            true, 3

IsRectangular([[[O, l, 2], [3, 4]], [[5, 6], [7, 8]]]);
 = 
                            false, 2

IsRectangular([[[[l], 2], [3, 4]], [[5, 6], [7, 8]]], 3);
 = 
                            true, 3

IsRectangular([[O, [l, 2], [3, 4]], [[5, 6], [7, 8]]], 2);
 = 
                            false, 1

The results above can be obtained by some observations. However, if the input has deeper levels, evaluating this will be a punishing work: 

test__1 := [[[[[[[[-288],[-287],[-286]],[[-285],[-284],[-283]],[[-282],[-281],[-280]],[[-279],[-278],[-277]]]],[[[[-276],[-275],[-274]],[[-273],[-272],[-271]],[[-270],[-269],[-268]],[[-267],[-266],[-265]]]],[[[[-264],[-263],[-262]],[[-261],[-260],[-259]],[[-258],[-257],[-256]],[[-255],[-254],[-253]]]]],[[[[[-252],[-251],[-250]],[[-249],[-248],[-247]],[[-246],[-245],[-244]],[[-243],[-242],[-241]]]],[[[[-240],[-239],[-238]],[[-237],[-236],[-235]],[[-234],[-233],[-232]],[[-231],[-230],[-229]]]],[[[[-228],[-227],[-226]],[[-225],[-224],[-223]],[[-222],[-221],[-220]],[[-219],[-218],[-217]]]]]],[[[[[[-216],[-215],[-214]],[[-213],[-212],[-211]],[[-210],[-209],[-208]],[[-207],[-206],[-205]]]],[[[[-204],[-203],[-202]],[[-201],[-200],[-199]],[[-198],[-197],[-196]],[[-195],[-194],[-193]]]],[[[[-192],[-191],[-190]],[[-189],[-188],[-187]],[[-186],[-185],[-184]],[[-183],[-182],[-181]]]]],[[[[[-180],[-179],[-178]],[[-177],[-176],[-175]],[[-174],[-173],[-172]],[[-171],[-170],[-169]]]],[[[[-168],[-167],[-166]],[[-165],[-164],[-163]],[[-162],[-161],[-160]],[[-159],[-158],[-157]]]],[[[[-156],[-155],[-154]],[[-153],[-152],[-151]],[[-150],[-149],[-148]],[[-147],[-146],[-145]]]]]],[[[[[[-144],[-143],[-142]],[[-141],[-140],[-139]],[[-138],[-137],[-136]],[[-135],[-134],[-133]]]],[[[[-132],[-131],[-130]],[[-129],[-128],[-127]],[[-126],[-125],[-124]],[[-123],[-122],[-121]]]],[[[[-120],[-119],[-118]],[[-117],[-116],[-115]],[[-114],[-113],[-112]],[[-111],[-110],[-109]]]]],[[[[[-108],[-107],[-106]],[[-105],[-104],[-103]],[[-102],[-101],[-100]],[[-99],[-98],[-97]]]],[[[[-96],[-95],[-94]],[[-93],[-92],[-91]],[[-90],[-89],[-88]],[[-87],[-86],[-85]]]],[[[[-84],[-83],[-82]],[[-81],[-80],[-79]],[[-78],[-77],[-76]],[[-75],[-74],[-73]]]]]],[[[[[[-72],[-71],[-70]],[[-69],[-68],[-67]],[[-66],[-65],[-64]],[[-63],[-62],[-61]]]],[[[[-60],[-59],[-58]],[[-57],[-56],[-55]],[[-54],[-53],[-52]],[[-51],[-50],[-49]]]],[[[[-48],[-47],[-46]],[[-45],[-44],[-43]],[[-42],[-41],[-40]],[[-39],[-38],[-37]]]]],[[[[[-36],[-35],[-34]],[[-33],[-32],[-31]],[[-30],[-29],[-28]],[[-27],[-26],[-25]]]],[[[[-24],[-23],[-22]],[[-21],[-20],[-19]],[[-18],[-17],[-16]],[[-15],[-14],[-13]]]],[[[[-12],[-11],[-10]],[[-9],[-8],[-7]],[[-6],[-5],[-4]],[[-3],[-2],[-1],[-0]]]]]]],[[[[[[[0],[1],[2]],[[3],[4],[5]],[[6],[7],[8]],[[9],[10],[11]]]],[[[[12],[13],[14]],[[15],[16],[17]],[[18],[19],[20]],[[21],[22],[23]]]],[[[[24],[25],[26]],[[27],[28],[29]],[[30],[31],[32]],[[33],[34],[35]]]]],[[[[[36],[37],[38]],[[39],[40],[41]],[[42],[43],[44]],[[45],[46],[47]]]],[[[[48],[49],[50]],[[51],[52],[53]],[[54],[55],[56]],[[57],[58],[59]]]],[[[[60],[61],[62]],[[63],[64],[65]],[[66],[67],[68]],[[69],[70],[71]]]]]],[[[[[[72],[73],[74]],[[75],[76],[77]],[[78],[79],[80]],[[81],[82],[83]]]],[[[[84],[85],[86]],[[87],[88],[89]],[[90],[91],[92]],[[93],[94],[95]]]],[[[[96],[97],[98]],[[99],[100],[101]],[[102],[103],[104]],[[105],[106],[107]]]]],[[[[[108],[109],[110]],[[111],[112],[113]],[[114],[115],[116]],[[117],[118],[119]]]],[[[[120],[121],[122]],[[123],[124],[125]],[[126],[127],[128]],[[129],[130],[131]]]],[[[[132],[133],[134]],[[135],[136],[137]],[[138],[139],[140]],[[141],[142],[143]]]]]],[[[[[[144],[145],[146]],[[147],[148],[149]],[[150],[151],[152]],[[153],[154],[155]]]],[[[[156],[157],[158]],[[159],[160],[161]],[[162],[163],[164]],[[165],[166],[167]]]],[[[[168],[169],[170]],[[171],[172],[173]],[[174],[175],[176]],[[177],[178],[179]]]]],[[[[[180],[181],[182]],[[183],[184],[185]],[[186],[187],[188]],[[189],[190],[191]]]],[[[[192],[193],[194]],[[195],[196],[197]],[[198],[199],[200]],[[201],[202],[203]]]],[[[[204],[205],[206]],[[207],[208],[209]],[[210],[211],[212]],[[213],[214],[215]]]]]],[[[[[[216],[217],[218]],[[219],[220],[221]],[[222],[223],[224]],[[225],[226],[227]]]],[[[[228],[229],[230]],[[231],[232],[233]],[[234],[235],[236]],[[237],[238],[239]]]],[[[[240],[241],[242]],[[243],[244],[245]],[[246],[247],[248]],[[249],[250],[251]]]]],[[[[[252],[253],[254]],[[255],[256],[257]],[[258],[259],[260]],[[261],[262],[263]]]],[[[[264],[265],[266]],[[267],[268],[269]],[[270],[271],[272]],[[273],[274],[275]]]],[[[[276],[277],[278]],[[279],[280],[281]],[[282],[283],[284]],[[285],[286],[287]]]]]]]]:
test__2 := [[[[[[[[-288],[-287],[-286]],[[-285],[-284],[-283]],[[-282],[-281],[-280]],[[-279],[-278],[-277]]]],[[[[-276],[-275],[-274]],[[-273],[-272],[-271]],[[-270],[-269],[-268]],[[-267],[-266],[-265]]]],[[[[-264],[-263],[-262]],[[-261],[-260],[-259]],[[-258],[-257],[-256]],[[-255],[-254],[-253]]]]],[[[[[-252],[-251],[-250]],[[-249],[-248],[-247]],[[-246],[-245],[-244]],[[-243],[-242],[-241]]]],[[[[-240],[-239],[-238]],[[-237],[-236],[-235]],[[-234],[-233],[-232]],[[-231],[-230],[-229]]]],[[[[-228],[-227],[-226]],[[-225],[-224],[-223]],[[-222],[-221],[-220]],[[-219],[-218],[-217]]]]]],[[[[[[-216],[-215],[-214]],[[-213],[-212],[-211]],[[-210],[-209],[-208]],[[-207],[-206],[-205]]]],[[[[-204],[-203],[-202]],[[-201],[-200],[-199]],[[-198],[-197],[-196]],[[-195],[-194],[-193]]]],[[[[-192],[-191],[-190]],[[-189],[-188],[-187]],[[-186],[-185],[-184]],[[-183],[-182],[-181]]]]],[[[[[-180],[-179],[-178]],[[-177],[-176],[-175]],[[-174],[-173],[-172]],[[-171],[-170],[-169]]]],[[[[-168],[-167],[-166]],[[-165],[-164],[-163]],[[-162],[-161],[-160]],[[-159],[-158],[-157]]]],[[[[-156],[-155],[-154]],[[-153],[-152],[-151]],[[-150],[-149],[-148]],[[-147],[-146],[-145]]]]]],[[[[[[-144],[-143],[-142]],[[-141],[-140],[-139]],[[-138],[-137],[-136]],[[-135],[-134],[-133]]]],[[[[-132],[-131],[-130]],[[-129],[-128],[-127]],[[-126],[-125],[-124]],[[-123],[-122],[-121]]]],[[[[-120],[-119],[-118]],[[-117],[-116],[-115]],[[-114],[-113],[-112]],[[-111],[-110],[-109]]]]],[[[[[-108],[-107],[-106]],[[-105],[-104],[-103]],[[-102],[-101],[-100]],[[-99],[-98],[-97]]]],[[[[-96],[-95],[-94]],[[-93],[-92],[-91]],[[-90],[-89],[-88]],[[-87],[-86],[-85]]]],[[[[-84],[-83],[-82]],[[-81],[-80],[-79]],[[-78],[-77],[-76]],[[-75],[-74],[-73]]]]]],[[[[[[-72],[-71],[-70]],[[-69],[-68],[-67]],[[-66],[-65],[-64]],[[-63],[-62],[-61]]]],[[[[-60],[-59],[-58]],[[-57],[-56],[-55]],[[-54],[-53],[-52]],[[-51],[-50],[-49]]]],[[[[-48],[-47],[-46]],[[-45],[-44],[-43]],[[-42],[-41],[-40]],[[-39],[-38],[-37]]]]],[[[[[-36],[-35],[-34]],[[-33],[-32],[-31]],[[-30],[-29],[-28]],[[-27],[-26],[-25]]]],[[[[-24],[-23],[-22]],[[-21],[-20],[-19]],[[-18],[-17],[-16]],[[-15],[-14],[-13]]]],[[[[-12],[-11],[-10]],[[-9],[-8],[-7]],[[-6],[-5],[-4]],[[-3],[-2,0],[-0]]]]]]],[[[[[[[-1],[1],[2]],[[3],[4],[5]],[[6],[7],[8]],[[9],[10],[11]]]],[[[[12],[13],[14]],[[15],[16],[17]],[[18],[19],[20]],[[21],[22],[23]]]],[[[[24],[25],[26]],[[27],[28],[29]],[[30],[31],[32]],[[33],[34],[35]]]]],[[[[[36],[37],[38]],[[39],[40],[41]],[[42],[43],[44]],[[45],[46],[47]]]],[[[[48],[49],[50]],[[51],[52],[53]],[[54],[55],[56]],[[57],[58],[59]]]],[[[[60],[61],[62]],[[63],[64],[65]],[[66],[67],[68]],[[69],[70],[71]]]]]],[[[[[[72],[73],[74]],[[75],[76],[77]],[[78],[79],[80]],[[81],[82],[83]]]],[[[[84],[85],[86]],[[87],[88],[89]],[[90],[91],[92]],[[93],[94],[95]]]],[[[[96],[97],[98]],[[99],[100],[101]],[[102],[103],[104]],[[105],[106],[107]]]]],[[[[[108],[109],[110]],[[111],[112],[113]],[[114],[115],[116]],[[117],[118],[119]]]],[[[[120],[121],[122]],[[123],[124],[125]],[[126],[127],[128]],[[129],[130],[131]]]],[[[[132],[133],[134]],[[135],[136],[137]],[[138],[139],[140]],[[141],[142],[143]]]]]],[[[[[[144],[145],[146]],[[147],[148],[149]],[[150],[151],[152]],[[153],[154],[155]]]],[[[[156],[157],[158]],[[159],[160],[161]],[[162],[163],[164]],[[165],[166],[167]]]],[[[[168],[169],[170]],[[171],[172],[173]],[[174],[175],[176]],[[177],[178],[179]]]]],[[[[[180],[181],[182]],[[183],[184],[185]],[[186],[187],[188]],[[189],[190],[191]]]],[[[[192],[193],[194]],[[195],[196],[197]],[[198],[199],[200]],[[201],[202],[203]]]],[[[[204],[205],[206]],[[207],[208],[209]],[[210],[211],[212]],[[213],[214],[215]]]]]],[[[[[[216],[217],[218]],[[219],[220],[221]],[[222],[223],[224]],[[225],[226],[227]]]],[[[[228],[229],[230]],[[231],[232],[233]],[[234],[235],[236]],[[237],[238],[239]]]],[[[[240],[241],[242]],[[243],[244],[245]],[[246],[247],[248]],[[249],[250],[251]]]]],[[[[[252],[253],[254]],[[255],[256],[257]],[[258],[259],[260]],[[261],[262],[263]]]],[[[[264],[265],[266]],[[267],[268],[269]],[[270],[271],[272]],[[273],[274],[275]]]],[[[[276],[277],[278]],[[279],[280],[281]],[[282],[283],[284]],[[285],[286],[287]]]]]]]]:
test__3 := [[[[[[[[-288],[-287],[-286]],[[-285],[-284],[-283]],[[-282],[-281],[-280]],[[-279],[-278],[-277]]]],[[[[-276],[-275],[-274]],[[-273],[-272],[-271]],[[-270],[-269],[-268]],[[-267],[-266],[-265]]]],[[[[-264],[-263],[-262]],[[-261],[-260],[-259]],[[-258],[-257],[-256]],[[-255],[-254],[-253]]]]],[[[[[-252],[-251],[-250]],[[-249],[-248],[-247]],[[-246],[-245],[-244]],[[-243],[-242],[-241]]]],[[[[-240],[-239],[-238]],[[-237],[-236],[-235]],[[-234],[-233],[-232]],[[-231],[-230],[-229]]]],[[[[-228],[-227],[-226]],[[-225],[-224],[-223]],[[-222],[-221],[-220]],[[-219],[-218],[-217]]]]]],[[[[[[-216],[-215],[-214]],[[-213],[-212],[-211]],[[-210],[-209],[-208]],[[-207],[-206],[-205]]]],[[[[-204],[-203],[-202]],[[-201],[-200],[-199]],[[-198],[-197],[-196]],[[-195],[-194],[-193]]]],[[[[-192],[-191],[-190]],[[-189],[-188],[-187]],[[-186],[-185],[-184]],[[-183],[-182],[-181]]]]],[[[[[-180],[-179],[-178]],[[-177],[-176],[-175]],[[-174],[-173],[-172]],[[-171],[-170],[-169]]]],[[[[-168],[-167],[-166]],[[-165],[-164],[-163]],[[-162],[-161],[-160]],[[-159],[-158],[-157]]]],[[[[-156],[-155],[-154]],[[-153],[-152],[-151]],[[-150],[-149],[-148]],[[-147],[-146],[-145]]]]]],[[[[[[-144],[-143],[-142]],[[-141],[-140],[-139]],[[-138],[-137],[-136]],[[-135],[-134],[-133]]]],[[[[-132],[-131],[-130]],[[-129],[-128],[-127]],[[-126],[-125],[-124]],[[-123],[-122],[-121]]]],[[[[-120],[-119],[-118]],[[-117],[-116],[-115]],[[-114],[-113],[-112]],[[-111],[-110],[-109]]]]],[[[[[-108],[-107],[-106]],[[-105],[-104],[-103]],[[-102],[-101],[-100]],[[-99],[-98],[-97]]]],[[[[-96],[-95],[-94]],[[-93],[-92],[-91]],[[-90],[-89],[-88]],[[-87],[-86],[-85]]]],[[[[-84],[-83],[-82]],[[-81],[-80],[-79]],[[-78],[-77],[-76]],[[-75],[-74],[-73]]]]]],[[[[[[-72],[-71],[-70]],[[-69],[-68],[-67]],[[-66],[-65],[-64]],[[-63],[-62],[-61]]]],[[[[-60],[-59],[-58]],[[-57],[-56],[-55]],[[-54],[-53],[-52]],[[-51],[-50],[-49]]]],[[[[-48],[-47],[-46]],[[-45],[-44],[-43]],[[-42],[-41],[-40]],[[-39],[-38],[-37]]]]],[[[[[-36],[-35],[-34]],[[-33],[-32],[-31]],[[-30],[-29],[-28]],[[-27],[-26],[-25]]]],[[[[-24],[-23],[-22]],[[-21],[-20],[-19]],[[-18],[-17],[-16]],[[-15],[-14],[-13]]]],[[[[-12],[-11],[-10]],[[-9],[-8],[-7]],[[-6],[-5],[-4]],[[-3],[-2,-0]]]]]]],[[[[[[-1],[[1],[2]],[[3],[4],[5]],[[6],[7],[8]],[[9],[10],[11]]]],[[[[12],[13],[14]],[[15],[16],[17]],[[18],[19],[20]],[[21],[22],[23]]]],[[[[24],[25],[26]],[[27],[28],[29]],[[30],[31],[32]],[[33],[34],[35]]]]],[[[[[36],[37],[38]],[[39],[40],[41]],[[42],[43],[44]],[[45],[46],[47]]]],[[[[48],[49],[50]],[[51],[52],[53]],[[54],[55],[56]],[[57],[58],[59]]]],[[[[60],[61],[62]],[[63],[64],[65]],[[66],[67],[68]],[[69],[70],[71]]]]]],[[[[[[72],[73],[74]],[[75],[76],[77]],[[78],[79],[80]],[[81],[82],[83]]]],[[[[84],[85],[86]],[[87],[88],[89]],[[90],[91],[92]],[[93],[94],[95]]]],[[[[96],[97],[98]],[[99],[100],[101]],[[102],[103],[104]],[[105],[106],[107]]]]],[[[[[108],[109],[110]],[[111],[112],[113]],[[114],[115],[116]],[[117],[118],[119]]]],[[[[120],[121],[122]],[[123],[124],[125]],[[126],[127],[128]],[[129],[130],[131]]]],[[[[132],[133],[134]],[[135],[136],[137]],[[138],[139],[140]],[[141],[142],[143]]]]]],[[[[[[144],[145],[146]],[[147],[148],[149]],[[150],[151],[152]],[[153],[154],[155]]]],[[[[156],[157],[158]],[[159],[160],[161]],[[162],[163],[164]],[[165],[166],[167]]]],[[[[168],[169],[170]],[[171],[172],[173]],[[174],[175],[176]],[[177],[178],[179]]]]],[[[[[180],[181],[182]],[[183],[184],[185]],[[186],[187],[188]],[[189],[190],[191]]]],[[[[192],[193],[194]],[[195],[196],[197]],[[198],[199],[200]],[[201],[202],[203]]]],[[[[204],[205],[206]],[[207],[208],[209]],[[210],[211],[212]],[[213],[214],[215]]]]]],[[[[[[216],[217],[218]],[[219],[220],[221]],[[222],[223],[224]],[[225],[226],[227]]]],[[[[228],[229],[230]],[[231],[232],[233]],[[234],[235],[236]],[[237],[238],[239]]]],[[[[240],[241],[242]],[[243],[244],[245]],[[246],[247],[248]],[[249],[250],[251]]]]],[[[[[252],[253],[254]],[[255],[256],[257]],[[258],[259],[260]],[[261],[262],[263]]]],[[[[264],[265],[266]],[[267],[268],[269]],[[270],[271],[272]],[[273],[274],[275]]]],[[[[276],[277],[278]],[[279],[280],[281]],[[282],[283],[284]],[[285],[286],[287]]]]]]]]:

Is there a generalized test procedure (e.g., ListTools:-IsRectangular) that effectively works for any nested list of an arbitrary nesting level? 

HI every one ! i want to know how can i calculate tt component and rr component in Einstein eq or Energy-Momentum eq.please give me a cod for drive component of any equation in maple

restart;
Pr:=0.71: n:=-1:

eta0:=0.0699;

EQ1:=diff(H(x), x ) - x*diff(F(x), x ) ;
 

EQ2:=(1+x^2)*diff(F(x), x$2) + (3*x + x*F(x)-H(x))*diff(F(x), x) + F(x)^2 + G(x)^2 +2*P(x) + x*diff(P(x), x) ;

EQ3:=(1+x^2)*diff(G(x), x$2) + (3*x + x*F(x)-H(x))*diff(G(x), x) ;

EQ4:=(1+x^2)*diff(H(x), x$2) + (3*x + x*F(x)-H(x))*diff(H(x), x) + (1+F(x))*H(x)- diff(P(x), x);

EQ5:=(1+x^2)*diff(theta(x), x$2) + x*(1-2*n)*diff(theta(x), x) + n^2*theta(x) - Pr*( n*F(x)*theta(x) + ( H(x)-x*F(x) )*diff(theta(x), x)  ) ;


EQ:={EQ1=0, EQ2=0,EQ3=0,EQ4=0 ,EQ5=0}:


IC:={ F(0)=0, G(0)=12, H(0)=0, theta(0)= 1, F(eta0)=0, G(eta0)=12, H(eta0)=0, theta(eta0)= 0, P(0)=0};
 

sol:= dsolve(EQ union IC,numeric,output=Array([0,0.0699]));

ques.mw

This is most likely a simple question for the power users of this forum, but I do not manage to find a solution. I have date in an Excel file. The first column consists of dates (mm/dd/yyyy) and the second of time (hh:mm). I can easily concatenate both in Maple using cat("9/7/2023", "10:22") but how can I convert the obtained string into a date+time that Maple understands? 

Thank you in advance for your help.

 

 

I create a system of equations (with 9 linear equations and 7 variables).
I get 7 equations from the multiplication of a matrix M with a transposed vector of the 7 variables equals the transposed vector of the 7 variables. Other two simple equations are necessary because they are restrictions. Those two equations a re very simple and thave the 7 variable sin it.
To start I have been trying with fsolve but i haven't been able to solve it yet, as I also get the error: "Error, (in fsolve) number of equations, 9, does not match number of variables, 7"
Have you andy idea to solve this problem? Thanks in advance.
First 170 171 172 173 174 175 176 Last Page 172 of 2427