MaplePrimes Questions

How to get the only solution x = (1/6)*sqrt(114)*a of this equation?
restart;
with(Student:-MultivariateCalculus);
u := `<,>`(-(1/4)*a, -(1/12)*sqrt(3)*a, -x);
v := `<,>`(-(1/2)*a, (1/6)*sqrt(3)*a, (1/2)*x);
`assuming`([solve(Angle(u, v) = arccos(2*sqrt(26)*(1/13)), x)], [And(a > 0, x > 0)])

Experts,

 

I have a series as follows: 

b := (sum((x[i]-xbar)^3, i = 1 .. n))/(n*[(sum((x[i]-xbar)^2, i = 1 .. n))/(n-1)]^1.5)

(b is skewness of x)

Taking the derivatives:

 

c1:=diff(b, xbar);

c2:=diff(b, x[i]);
 

now I want to evaluate c1 and c2 with a matrix input:

 

x:=<<0.556960605000000>,<3.39039994000000>,<2.09005200300000>,<0.645104568000000>,<5.31340491600000>,<3.32743462200000>,<0.635452131000000>,<1.56878297000000>,<0.282764039000000>,<1.02862059900000>,<3.14927606700000>,<0.654644768000000>,<1.30502450500000>,<2.13887537900000>,<2.11803658900000>,<7.29488570500000>,<0.478693554000000>>

where xbar is the mean value of x

 

Can you please help me

 

Thanks

 

 

 

 

 

i have two expressions. S1 and S2 are functions of sigma and tau. but i need derivative of sigma and tau with respect to S1 and S2. what should i do ? could any one help?


 

restart

S1 := -4*sqrt(sigma1^2 + 4*tau^2)*tau^2/((sigma1 + sqrt(sigma1^2 + 4*tau^2))^2*(1 + 4*abs(tau/(sigma1 + sqrt(sigma1^2 + 4*tau^2)))^2))

-4*(sigma1^2+4*tau^2)^(1/2)*tau^2/((sigma1+(sigma1^2+4*tau^2)^(1/2))^2*(1+4*abs(tau/(sigma1+(sigma1^2+4*tau^2)^(1/2)))^2))

(1)

S2 := 4*sqrt(sigma1^2 + 4*tau^2)*tau^2/((-sigma1 + sqrt(sigma1^2 + 4*tau^2))^2*(1 + 4*abs(tau/(-sigma1 + sqrt(sigma1^2 + 4*tau^2)))^2))

4*(sigma1^2+4*tau^2)^(1/2)*tau^2/((-sigma1+(sigma1^2+4*tau^2)^(1/2))^2*(1+4*abs(tau/(-sigma1+(sigma1^2+4*tau^2)^(1/2)))^2))

(2)

 

 

 


 

Download chain_rule_derivative.mw

Hey guys im still quite new to maple so bear with me on this one. 

Im trying to make it so when i press a button an some mathcontainers are going though some if statements, and then printing out the answer.

 

Heres the code 

 

use DocumentTools in 

Do(indkomst = %MathContainer2);
Do(fradrag = %MathContainer4);

if indkomst <= 44000 then 
    
    Do(%MathContainer3 = 0.08*indkomst);

elif 44000 < 0.92*indkomst and indomst <= 44000+fradrag then
    
    Do(%MathContainer3 = 0.08*indkomst + 0.0908*(0.92*indkomst - 44000));

elif 44000+fradrag < 0.92*indkomst and indkomst <= 467300 then

    Do(%MathContainer3 = 0.08*indkomst + 0.0908*(0.92*indkomst - 44000) + 0.276*(0.92*indkomst - 44000 - fradrag));

elif 0.92*indkomst > 467300 then

    Do(%MathContainer3 = 0.08*indkomst + 0.0908*(0.92*indkomst - 44000) + 0.276*(0.92*indkomst - 44000 - fradrag) + 0.15*(0.92*indkomst - 467300));
    
end if;

end use; 
 

It correctly chooses what statement to use, but it just cant determine if its true or false, how do i fix this?

I'm trying to solve this to set of equations :

EQ1:=-1958143.922*k*wr+2468.8339*k^3*wr-0.9481118254e16*k^2-114000.8376*k^4:

EQ2 :=-1186578.220*R*k^2*wr-312683.0293*k^5-288960.9621*k^3*R:

using a loop for different value of R in the range this range (wr=0..10,k=0..10)

eqns:={EQ1,EQ2}:
for i from 1 by 1 to 101 do R:=(i-1):S:=fsolve(eqns,{k, wr},{wr=0..10,k=0..10}):v(i):=(subs(S,(wr)));w(i):=(subs(S,(k)))end do:

but i get this instead :

Error, invalid input: subs received fsolve({-312683.0293*k^5, -1958143.922*k*wr+2468.8339*k^3*wr-0.9481118254e16*k^2-114000.8376*k^4}, {k, wr}, {k = 0 .. 10, wr = 0 .. 10}), which is not valid for its 1st argument

is there another way to solves this equations more easly .

Hello guys, 

I have a probelm with computing an integral by maple. I dont know why maple cannot compute.

 

integral.mw

Thank you for your attention

Best

I do not understand why Maple can simplify this expression below when told that n is integer and also positive using a "," to separate the assumptions, but does simpify the same expression when using "and" to build the assumptions.

Here is an example

restart;
result:=int(x*cos(n*Pi/5*x),x=0..5)
simplify(result) assuming n::integer and n>0

But this works

simplify(result) assuming n::integer, n>0

What are the semantic differences between writing assuming "n::integer and n>0" and "n::integer,n>0" ? I thought these would be the same, but clearly they are not.

Maple 2019.1 on windows.

1/0;
Error, numeric exception: division by zero
lastexception;
            0, "numeric exception: division by zero"
lastexception; # ???
            Typesetting:-Typeset, "invalid input: %1 expects %2 arguments, but received %3", type, 2, 3

 

So, printing lastexception produces a new error!
When typesetting=standard, it's OK.

 

Hello my Maple friends! :)
I was wondering if there is any command in Maple that can help me find the equation of a surface from it´s parametric form and the other way around, a parametric form from a surface equation!
For example, if
x :=(s, t) -> s cos(t)
y :=(s, t) -> s sin(t)
z :=(s, t) -> s^2

then S: x^2+y^2=z

Thank you for your help.
English is not my mother tongue; please excuse any errors on my part.

I have two data sets (time series) that appear to have similar profiles and am looking to find a way to establish a correlation measure. The linear (Pearson) coefficient is around 0.89, but since this particular function is nonlinear, can anyone suggest a method or routine that can be used to obtain this correlation?

Thank you!

 

Correlation.mw

Hello, would you please help with this problem

 I need to solve the system using polynomial coefficients

thank you 


 

restart

``

eq1 := diff(A(r), r, r)+(diff(A(r), r))/r+A(r)/r^2-a*r*A(r)+b*r^2*f*B(r)

diff(diff(A(r), r), r)+(diff(A(r), r))/r+A(r)/r^2-a*r*A(r)+b*r^2*f*B(r)

(1)

eq2 := diff(B(r), r, r)+(diff(B(r), r))/r+B(r)/r^2-c*r*A(r)+d*r^2*B(r)

diff(diff(B(r), r), r)+(diff(B(r), r))/r+B(r)/r^2-c*r*A(r)+d*r^2*B(r)

(2)

``

``

dsolve({eq1, eq2}, {A(r), B(r)});

{A(r) = DESol({-(-b*c*f*r^7+a*d*r^7-d*r^4+2*a*r^3-17)*_Y(r)/r^4-(-d*r^5-a*r^4-3*r)*(diff(_Y(r), r))/r^4-(-d*r^6+a*r^5-r^2)*(diff(diff(_Y(r), r), r))/r^4-2*(diff(diff(diff(_Y(r), r), r), r))/r+diff(diff(diff(diff(_Y(r), r), r), r), r)}, {_Y(r)}), B(r) = (a*r^3*A(r)-(diff(diff(A(r), r), r))*r^2-(diff(A(r), r))*r-A(r))/(b*f*r^4)}

(3)

dsolve({eq1, eq2}, {A(r), B(r)}, 'formal_series', 'coeffs' = 'polynomial')

Error, (in dsolve/FORMALSERIES) the first argument must be a homogeneous linear ode with polynomial coefficients

 

``

``

``


 

Download dsolve.mwdsolve.mw


 

``

restart;

N := 2

2

(1)

H1 := B*H(Zeta)/A+C*H(Zeta)/A+E/A

B*H(Zeta)/A+C*H(Zeta)/A+E/A

(2)

expand(subs(diff(H(Zeta), Zeta) = B*H(Zeta)/A+C*H(Zeta)/A+E/A, diff(H1, Zeta)))

B^2*H(Zeta)/A^2+2*B*C*H(Zeta)/A^2+B*E/A^2+C^2*H(Zeta)/A^2+C*E/A^2

(3)

s := sum(alpha[i]*(d+H(Zeta))^i, i = -N .. N)+sum(beta[i]*(d+H(Zeta))^(-i), i = 1 .. N)

alpha[-2]/(d+H(Zeta))^2+alpha[-1]/(d+H(Zeta))+alpha[0]+alpha[1]*(d+H(Zeta))+alpha[2]*(d+H(Zeta))^2+beta[1]/(d+H(Zeta))+beta[2]/(d+H(Zeta))^2

(4)

``

s1 := expand(subs(diff(H(Zeta), Zeta) = B*H(Zeta)/A+C*H(Zeta)/A+E/A, diff(s, Zeta)))

-2*alpha[-2]*B*H(Zeta)/((d+H(Zeta))^3*A)-2*alpha[-2]*C*H(Zeta)/((d+H(Zeta))^3*A)-2*alpha[-2]*E/((d+H(Zeta))^3*A)-alpha[-1]*B*H(Zeta)/((d+H(Zeta))^2*A)-alpha[-1]*C*H(Zeta)/((d+H(Zeta))^2*A)-alpha[-1]*E/((d+H(Zeta))^2*A)+alpha[1]*B*H(Zeta)/A+alpha[1]*C*H(Zeta)/A+alpha[1]*E/A+2*alpha[2]*d*B*H(Zeta)/A+2*alpha[2]*d*C*H(Zeta)/A+2*alpha[2]*d*E/A+2*alpha[2]*B*H(Zeta)^2/A+2*alpha[2]*C*H(Zeta)^2/A+2*alpha[2]*H(Zeta)*E/A-beta[1]*B*H(Zeta)/((d+H(Zeta))^2*A)-beta[1]*C*H(Zeta)/((d+H(Zeta))^2*A)-beta[1]*E/((d+H(Zeta))^2*A)-2*beta[2]*B*H(Zeta)/((d+H(Zeta))^3*A)-2*beta[2]*C*H(Zeta)/((d+H(Zeta))^3*A)-2*beta[2]*E/((d+H(Zeta))^3*A)

(5)

s2 := expand(subs(diff(H(Zeta), Zeta) = B*H(Zeta)/A+C*H(Zeta)/A+E/A, diff(s1, Zeta)))

alpha[1]*B^2*H(Zeta)/A^2+alpha[1]*B*E/A^2+alpha[1]*C^2*H(Zeta)/A^2+alpha[1]*C*E/A^2+6*alpha[-2]*E^2/((d+H(Zeta))^4*A^2)+2*alpha[-1]*E^2/((d+H(Zeta))^3*A^2)+4*alpha[2]*B^2*H(Zeta)^2/A^2+4*alpha[2]*C^2*H(Zeta)^2/A^2+2*beta[1]*E^2/((d+H(Zeta))^3*A^2)+6*beta[2]*E^2/((d+H(Zeta))^4*A^2)+2*alpha[2]*E^2/A^2+6*alpha[2]*E*B*H(Zeta)/A^2+6*alpha[2]*E*C*H(Zeta)/A^2-2*alpha[-2]*B^2*H(Zeta)/((d+H(Zeta))^3*A^2)-2*alpha[-2]*B*E/((d+H(Zeta))^3*A^2)-2*alpha[-2]*C^2*H(Zeta)/((d+H(Zeta))^3*A^2)-2*alpha[-2]*C*E/((d+H(Zeta))^3*A^2)-alpha[-1]*B^2*H(Zeta)/((d+H(Zeta))^2*A^2)-alpha[-1]*B*E/((d+H(Zeta))^2*A^2)-alpha[-1]*C^2*H(Zeta)/((d+H(Zeta))^2*A^2)-alpha[-1]*C*E/((d+H(Zeta))^2*A^2)+2*alpha[2]*d*B^2*H(Zeta)/A^2+2*alpha[2]*d*B*E/A^2+2*alpha[2]*d*C^2*H(Zeta)/A^2+2*alpha[2]*d*C*E/A^2+8*alpha[2]*B*H(Zeta)^2*C/A^2-beta[1]*B^2*H(Zeta)/((d+H(Zeta))^2*A^2)-beta[1]*B*E/((d+H(Zeta))^2*A^2)-beta[1]*C^2*H(Zeta)/((d+H(Zeta))^2*A^2)-beta[1]*C*E/((d+H(Zeta))^2*A^2)-2*beta[2]*B^2*H(Zeta)/((d+H(Zeta))^3*A^2)-2*beta[2]*B*E/((d+H(Zeta))^3*A^2)-2*beta[2]*C^2*H(Zeta)/((d+H(Zeta))^3*A^2)-2*beta[2]*C*E/((d+H(Zeta))^3*A^2)+6*alpha[-2]*B^2*H(Zeta)^2/((d+H(Zeta))^4*A^2)+6*alpha[-2]*C^2*H(Zeta)^2/((d+H(Zeta))^4*A^2)+2*alpha[-1]*B^2*H(Zeta)^2/((d+H(Zeta))^3*A^2)+2*alpha[-1]*C^2*H(Zeta)^2/((d+H(Zeta))^3*A^2)+2*beta[1]*B^2*H(Zeta)^2/((d+H(Zeta))^3*A^2)+2*beta[1]*C^2*H(Zeta)^2/((d+H(Zeta))^3*A^2)+6*beta[2]*B^2*H(Zeta)^2/((d+H(Zeta))^4*A^2)+6*beta[2]*C^2*H(Zeta)^2/((d+H(Zeta))^4*A^2)+2*alpha[1]*B*C*H(Zeta)/A^2+4*alpha[-1]*B*H(Zeta)^2*C/((d+H(Zeta))^3*A^2)+4*beta[1]*B*H(Zeta)^2*C/((d+H(Zeta))^3*A^2)+12*beta[2]*B*H(Zeta)^2*C/((d+H(Zeta))^4*A^2)-4*alpha[-2]*B*C*H(Zeta)/((d+H(Zeta))^3*A^2)+12*alpha[-2]*E*B*H(Zeta)/((d+H(Zeta))^4*A^2)+12*alpha[-2]*E*C*H(Zeta)/((d+H(Zeta))^4*A^2)-2*alpha[-1]*B*C*H(Zeta)/((d+H(Zeta))^2*A^2)+4*alpha[-1]*E*B*H(Zeta)/((d+H(Zeta))^3*A^2)+4*alpha[-1]*E*C*H(Zeta)/((d+H(Zeta))^3*A^2)+4*alpha[2]*d*B*C*H(Zeta)/A^2-2*beta[1]*B*C*H(Zeta)/((d+H(Zeta))^2*A^2)+4*beta[1]*E*B*H(Zeta)/((d+H(Zeta))^3*A^2)+4*beta[1]*E*C*H(Zeta)/((d+H(Zeta))^3*A^2)-4*beta[2]*B*C*H(Zeta)/((d+H(Zeta))^3*A^2)+12*beta[2]*E*B*H(Zeta)/((d+H(Zeta))^4*A^2)+12*beta[2]*E*C*H(Zeta)/((d+H(Zeta))^4*A^2)+12*alpha[-2]*B*H(Zeta)^2*C/((d+H(Zeta))^4*A^2)

(6)

s22 := expand(subs(diff(H(Zeta), Zeta) = B*H(Zeta)/A+C*H(Zeta)/A+E/A, s^2))

2*alpha[-2]*alpha[1]*d/(d+H(Zeta))^2+2*alpha[-2]*alpha[1]*H(Zeta)/(d+H(Zeta))^2+2*alpha[-2]*alpha[2]*d^2/(d+H(Zeta))^2+2*alpha[-2]*alpha[2]*H(Zeta)^2/(d+H(Zeta))^2+2*alpha[-1]*alpha[1]*d/(d+H(Zeta))+2*alpha[-1]*alpha[1]*H(Zeta)/(d+H(Zeta))+2*alpha[-1]*alpha[2]*d^2/(d+H(Zeta))+2*alpha[-1]*alpha[2]*H(Zeta)^2/(d+H(Zeta))+4*alpha[0]*alpha[2]*d*H(Zeta)+6*alpha[1]*d^2*alpha[2]*H(Zeta)+6*alpha[1]*d*alpha[2]*H(Zeta)^2+2*alpha[1]*d*beta[1]/(d+H(Zeta))+2*alpha[1]*d*beta[2]/(d+H(Zeta))^2+2*alpha[1]*H(Zeta)*beta[1]/(d+H(Zeta))+2*alpha[1]*H(Zeta)*beta[2]/(d+H(Zeta))^2+2*alpha[2]*d^2*beta[1]/(d+H(Zeta))+2*alpha[2]*d^2*beta[2]/(d+H(Zeta))^2+2*alpha[2]*H(Zeta)^2*beta[1]/(d+H(Zeta))+2*alpha[2]*H(Zeta)^2*beta[2]/(d+H(Zeta))^2+alpha[-2]^2/(d+H(Zeta))^4+alpha[-1]^2/(d+H(Zeta))^2+alpha[0]^2+alpha[1]^2*d^2+alpha[1]^2*H(Zeta)^2+alpha[2]^2*d^4+alpha[2]^2*H(Zeta)^4+beta[1]^2/(d+H(Zeta))^2+beta[2]^2/(d+H(Zeta))^4+4*alpha[2]^2*d^3*H(Zeta)+2*alpha[0]*alpha[1]*d+2*alpha[-1]*beta[2]/(d+H(Zeta))^3+4*alpha[2]^2*d*H(Zeta)^3+2*alpha[0]*alpha[2]*d^2+2*alpha[-1]*alpha[0]/(d+H(Zeta))+2*alpha[0]*beta[1]/(d+H(Zeta))+2*alpha[-2]*alpha[-1]/(d+H(Zeta))^3+2*beta[1]*beta[2]/(d+H(Zeta))^3+2*alpha[-2]*beta[2]/(d+H(Zeta))^4+2*alpha[-2]*alpha[0]/(d+H(Zeta))^2+2*alpha[0]*beta[2]/(d+H(Zeta))^2+2*alpha[0]*alpha[2]*H(Zeta)^2+2*alpha[-1]*beta[1]/(d+H(Zeta))^2+2*alpha[0]*alpha[1]*H(Zeta)+2*alpha[1]^2*d*H(Zeta)+2*alpha[1]*d^3*alpha[2]+2*alpha[1]*H(Zeta)^3*alpha[2]+6*alpha[2]^2*d^2*H(Zeta)^2+2*alpha[-2]*beta[1]/(d+H(Zeta))^3+4*alpha[-2]*alpha[2]*d*H(Zeta)/(d+H(Zeta))^2+4*alpha[-1]*alpha[2]*d*H(Zeta)/(d+H(Zeta))+4*alpha[2]*d*H(Zeta)*beta[1]/(d+H(Zeta))+4*alpha[2]*d*H(Zeta)*beta[2]/(d+H(Zeta))^2

(7)

``

eq := expand(K+(1+w)*s-a*s22-b*V*s2)

alpha[-2]/(d+H(Zeta))^2+alpha[-1]/(d+H(Zeta))+beta[1]/(d+H(Zeta))+beta[2]/(d+H(Zeta))^2+alpha[0]+2*w*alpha[2]*d*H(Zeta)-4*a*alpha[2]^2*d^3*H(Zeta)-2*a*alpha[0]*alpha[1]*d-2*a*alpha[-1]*beta[2]/(d+H(Zeta))^3-4*a*alpha[2]^2*d*H(Zeta)^3-2*a*alpha[0]*alpha[2]*d^2-2*a*alpha[-1]*alpha[0]/(d+H(Zeta))-2*a*alpha[0]*beta[1]/(d+H(Zeta))-2*a*alpha[-2]*alpha[-1]/(d+H(Zeta))^3-2*a*beta[1]*beta[2]/(d+H(Zeta))^3-2*a*alpha[-2]*beta[2]/(d+H(Zeta))^4-2*a*alpha[-2]*alpha[0]/(d+H(Zeta))^2-2*a*alpha[0]*beta[2]/(d+H(Zeta))^2-2*a*alpha[0]*alpha[2]*H(Zeta)^2-2*a*alpha[-1]*beta[1]/(d+H(Zeta))^2-2*a*alpha[0]*alpha[1]*H(Zeta)-2*a*alpha[1]^2*d*H(Zeta)-2*a*alpha[1]*d^3*alpha[2]-2*a*alpha[1]*H(Zeta)^3*alpha[2]-6*a*alpha[2]^2*d^2*H(Zeta)^2-2*a*alpha[-2]*beta[1]/(d+H(Zeta))^3-4*b*V*beta[1]*E*B*H(Zeta)/((d+H(Zeta))^3*A^2)-12*b*V*beta[2]*B*H(Zeta)^2*C/((d+H(Zeta))^4*A^2)-12*b*V*alpha[-2]*E*C*H(Zeta)/((d+H(Zeta))^4*A^2)-4*b*V*beta[1]*E*C*H(Zeta)/((d+H(Zeta))^3*A^2)-12*b*V*beta[2]*E*C*H(Zeta)/((d+H(Zeta))^4*A^2)-4*b*V*alpha[-1]*E*C*H(Zeta)/((d+H(Zeta))^3*A^2)-4*b*V*alpha[2]*d*B*C*H(Zeta)/A^2-4*b*V*beta[1]*B*H(Zeta)^2*C/((d+H(Zeta))^3*A^2)-12*b*V*alpha[-2]*E*B*H(Zeta)/((d+H(Zeta))^4*A^2)+4*b*V*alpha[-2]*B*C*H(Zeta)/((d+H(Zeta))^3*A^2)+2*b*V*beta[1]*B*C*H(Zeta)/((d+H(Zeta))^2*A^2)+2*b*V*alpha[-1]*B*C*H(Zeta)/((d+H(Zeta))^2*A^2)-4*b*V*alpha[-1]*B*H(Zeta)^2*C/((d+H(Zeta))^3*A^2)-12*b*V*beta[2]*E*B*H(Zeta)/((d+H(Zeta))^4*A^2)+4*b*V*beta[2]*B*C*H(Zeta)/((d+H(Zeta))^3*A^2)-12*b*V*alpha[-2]*B*H(Zeta)^2*C/((d+H(Zeta))^4*A^2)-4*b*V*alpha[-1]*E*B*H(Zeta)/((d+H(Zeta))^3*A^2)+K+alpha[1]*d+alpha[1]*H(Zeta)+alpha[2]*d^2+alpha[2]*H(Zeta)^2+w*alpha[0]-a*alpha[0]^2-6*b*V*alpha[2]*E*B*H(Zeta)/A^2-6*b*V*alpha[2]*E*C*H(Zeta)/A^2+2*b*V*alpha[-2]*B^2*H(Zeta)/((d+H(Zeta))^3*A^2)+2*b*V*alpha[-2]*B*E/((d+H(Zeta))^3*A^2)+2*b*V*alpha[-2]*C^2*H(Zeta)/((d+H(Zeta))^3*A^2)+2*b*V*alpha[-2]*C*E/((d+H(Zeta))^3*A^2)+b*V*alpha[-1]*B^2*H(Zeta)/((d+H(Zeta))^2*A^2)+b*V*alpha[-1]*B*E/((d+H(Zeta))^2*A^2)+b*V*alpha[-1]*C^2*H(Zeta)/((d+H(Zeta))^2*A^2)+b*V*alpha[-1]*C*E/((d+H(Zeta))^2*A^2)-2*b*V*alpha[2]*d*B^2*H(Zeta)/A^2-2*b*V*alpha[2]*d*B*E/A^2-2*b*V*alpha[2]*d*C^2*H(Zeta)/A^2-2*b*V*alpha[2]*d*C*E/A^2-8*b*V*alpha[2]*B*H(Zeta)^2*C/A^2+b*V*beta[1]*B^2*H(Zeta)/((d+H(Zeta))^2*A^2)+b*V*beta[1]*B*E/((d+H(Zeta))^2*A^2)+b*V*beta[1]*C^2*H(Zeta)/((d+H(Zeta))^2*A^2)+b*V*beta[1]*C*E/((d+H(Zeta))^2*A^2)+2*b*V*beta[2]*B^2*H(Zeta)/((d+H(Zeta))^3*A^2)+2*b*V*beta[2]*B*E/((d+H(Zeta))^3*A^2)+2*b*V*beta[2]*C^2*H(Zeta)/((d+H(Zeta))^3*A^2)+2*b*V*beta[2]*C*E/((d+H(Zeta))^3*A^2)-6*b*V*alpha[-2]*B^2*H(Zeta)^2/((d+H(Zeta))^4*A^2)-6*b*V*alpha[-2]*C^2*H(Zeta)^2/((d+H(Zeta))^4*A^2)-2*b*V*alpha[-1]*B^2*H(Zeta)^2/((d+H(Zeta))^3*A^2)-2*b*V*alpha[-1]*C^2*H(Zeta)^2/((d+H(Zeta))^3*A^2)-2*b*V*beta[1]*B^2*H(Zeta)^2/((d+H(Zeta))^3*A^2)-2*b*V*beta[1]*C^2*H(Zeta)^2/((d+H(Zeta))^3*A^2)-6*b*V*beta[2]*B^2*H(Zeta)^2/((d+H(Zeta))^4*A^2)-6*b*V*beta[2]*C^2*H(Zeta)^2/((d+H(Zeta))^4*A^2)-2*b*V*alpha[1]*B*C*H(Zeta)/A^2-a*alpha[1]^2*H(Zeta)^2-a*alpha[1]^2*d^2-a*beta[1]^2/(d+H(Zeta))^2+w*alpha[-1]/(d+H(Zeta))-a*alpha[-2]^2/(d+H(Zeta))^4-a*beta[2]^2/(d+H(Zeta))^4+w*beta[1]/(d+H(Zeta))+w*alpha[1]*d-a*alpha[2]^2*H(Zeta)^4-a*alpha[2]^2*d^4+w*alpha[2]*d^2-a*alpha[-1]^2/(d+H(Zeta))^2+w*alpha[2]*H(Zeta)^2+w*alpha[1]*H(Zeta)+w*beta[2]/(d+H(Zeta))^2+w*alpha[-2]/(d+H(Zeta))^2+2*alpha[2]*d*H(Zeta)-2*a*alpha[-2]*alpha[1]*d/(d+H(Zeta))^2-2*a*alpha[-2]*alpha[1]*H(Zeta)/(d+H(Zeta))^2-2*a*alpha[-2]*alpha[2]*d^2/(d+H(Zeta))^2-2*a*alpha[-2]*alpha[2]*H(Zeta)^2/(d+H(Zeta))^2-2*a*alpha[-1]*alpha[1]*d/(d+H(Zeta))-2*a*alpha[-1]*alpha[1]*H(Zeta)/(d+H(Zeta))-2*a*alpha[-1]*alpha[2]*d^2/(d+H(Zeta))-2*a*alpha[-1]*alpha[2]*H(Zeta)^2/(d+H(Zeta))-4*a*alpha[0]*alpha[2]*d*H(Zeta)-6*a*alpha[1]*d^2*alpha[2]*H(Zeta)-6*a*alpha[1]*d*alpha[2]*H(Zeta)^2-2*a*alpha[1]*d*beta[1]/(d+H(Zeta))-2*a*alpha[1]*d*beta[2]/(d+H(Zeta))^2-2*a*alpha[1]*H(Zeta)*beta[1]/(d+H(Zeta))-2*a*alpha[1]*H(Zeta)*beta[2]/(d+H(Zeta))^2-2*a*alpha[2]*d^2*beta[1]/(d+H(Zeta))-2*a*alpha[2]*d^2*beta[2]/(d+H(Zeta))^2-2*a*alpha[2]*H(Zeta)^2*beta[1]/(d+H(Zeta))-2*a*alpha[2]*H(Zeta)^2*beta[2]/(d+H(Zeta))^2-2*b*V*alpha[2]*E^2/A^2-4*a*alpha[-2]*alpha[2]*d*H(Zeta)/(d+H(Zeta))^2-4*a*alpha[-1]*alpha[2]*d*H(Zeta)/(d+H(Zeta))-4*a*alpha[2]*d*H(Zeta)*beta[1]/(d+H(Zeta))-4*a*alpha[2]*d*H(Zeta)*beta[2]/(d+H(Zeta))^2-b*V*alpha[1]*B^2*H(Zeta)/A^2-b*V*alpha[1]*B*E/A^2-b*V*alpha[1]*C^2*H(Zeta)/A^2-b*V*alpha[1]*C*E/A^2-6*b*V*alpha[-2]*E^2/((d+H(Zeta))^4*A^2)-2*b*V*alpha[-1]*E^2/((d+H(Zeta))^3*A^2)-4*b*V*alpha[2]*B^2*H(Zeta)^2/A^2-4*b*V*alpha[2]*C^2*H(Zeta)^2/A^2-2*b*V*beta[1]*E^2/((d+H(Zeta))^3*A^2)-6*b*V*beta[2]*E^2/((d+H(Zeta))^4*A^2)

(8)

collect(eq, [H, d], recursive):

eqq := subs(H(Zeta) = H, eq)

alpha[0]-2*a*alpha[0]*alpha[1]*d-2*a*alpha[0]*alpha[2]*d^2-2*a*alpha[1]*d^3*alpha[2]+2*w*alpha[2]*d*H-4*a*alpha[2]^2*d^3*H-2*a*alpha[-1]*beta[2]/(d+H)^3-4*a*alpha[2]^2*d*H^3-2*a*alpha[-1]*alpha[0]/(d+H)-2*a*alpha[0]*beta[1]/(d+H)-2*a*alpha[-2]*alpha[-1]/(d+H)^3-2*a*beta[1]*beta[2]/(d+H)^3-2*a*alpha[-2]*beta[2]/(d+H)^4-2*a*alpha[-2]*alpha[0]/(d+H)^2-2*a*alpha[0]*beta[2]/(d+H)^2-2*a*alpha[0]*alpha[2]*H^2-2*a*alpha[-1]*beta[1]/(d+H)^2-2*a*alpha[0]*alpha[1]*H-2*a*alpha[1]^2*d*H-2*a*alpha[1]*H^3*alpha[2]-6*a*alpha[2]^2*d^2*H^2-2*a*alpha[-2]*beta[1]/(d+H)^3+alpha[-2]/(d+H)^2+alpha[-1]/(d+H)+beta[1]/(d+H)+beta[2]/(d+H)^2+alpha[1]*H+alpha[2]*H^2-2*a*alpha[-2]*alpha[1]*d/(d+H)^2-2*a*alpha[-2]*alpha[1]*H/(d+H)^2-2*a*alpha[-2]*alpha[2]*d^2/(d+H)^2-2*a*alpha[-2]*alpha[2]*H^2/(d+H)^2-2*a*alpha[-1]*alpha[1]*d/(d+H)-2*a*alpha[-1]*alpha[1]*H/(d+H)-2*a*alpha[-1]*alpha[2]*d^2/(d+H)-2*a*alpha[-1]*alpha[2]*H^2/(d+H)-4*a*alpha[0]*alpha[2]*d*H-6*a*alpha[1]*d^2*alpha[2]*H-6*a*alpha[1]*d*alpha[2]*H^2-2*a*alpha[1]*d*beta[1]/(d+H)-2*a*alpha[1]*d*beta[2]/(d+H)^2-2*a*alpha[1]*H*beta[1]/(d+H)-2*a*alpha[1]*H*beta[2]/(d+H)^2-2*a*alpha[2]*d^2*beta[1]/(d+H)-2*a*alpha[2]*d^2*beta[2]/(d+H)^2-2*a*alpha[2]*H^2*beta[1]/(d+H)-2*a*alpha[2]*H^2*beta[2]/(d+H)^2-4*b*V*alpha[-1]*B*H^2*C/((d+H)^3*A^2)-12*b*V*beta[2]*E*B*H/((d+H)^4*A^2)+4*b*V*beta[2]*B*C*H/((d+H)^3*A^2)-12*b*V*alpha[-2]*B*H^2*C/((d+H)^4*A^2)-4*b*V*alpha[-1]*E*B*H/((d+H)^3*A^2)-12*b*V*beta[2]*B*H^2*C/((d+H)^4*A^2)-4*b*V*beta[1]*E*C*H/((d+H)^3*A^2)-12*b*V*alpha[-2]*E*C*H/((d+H)^4*A^2)-4*b*V*beta[1]*E*B*H/((d+H)^3*A^2)-12*b*V*beta[2]*E*C*H/((d+H)^4*A^2)-4*b*V*alpha[-1]*E*C*H/((d+H)^3*A^2)-4*b*V*alpha[2]*d*B*C*H/A^2-4*b*V*beta[1]*B*H^2*C/((d+H)^3*A^2)-12*b*V*alpha[-2]*E*B*H/((d+H)^4*A^2)+4*b*V*alpha[-2]*B*C*H/((d+H)^3*A^2)+2*b*V*beta[1]*B*C*H/((d+H)^2*A^2)+2*b*V*alpha[-1]*B*C*H/((d+H)^2*A^2)-a*alpha[1]^2*H^2+w*beta[2]/(d+H)^2-a*beta[2]^2/(d+H)^4+w*alpha[-2]/(d+H)^2-a*alpha[-1]^2/(d+H)^2+w*beta[1]/(d+H)-a*alpha[-2]^2/(d+H)^4+2*alpha[2]*d*H-a*alpha[2]^2*H^4+w*alpha[2]*H^2+w*alpha[-1]/(d+H)+w*alpha[1]*H-a*beta[1]^2/(d+H)^2+K+alpha[1]*d+alpha[2]*d^2+w*alpha[0]-a*alpha[0]^2-6*b*V*alpha[2]*E*B*H/A^2-6*b*V*alpha[2]*E*C*H/A^2+2*b*V*alpha[-2]*B^2*H/((d+H)^3*A^2)+2*b*V*alpha[-2]*B*E/((d+H)^3*A^2)+2*b*V*alpha[-2]*C^2*H/((d+H)^3*A^2)+2*b*V*alpha[-2]*C*E/((d+H)^3*A^2)+b*V*alpha[-1]*B^2*H/((d+H)^2*A^2)+b*V*alpha[-1]*B*E/((d+H)^2*A^2)+b*V*alpha[-1]*C^2*H/((d+H)^2*A^2)+b*V*alpha[-1]*C*E/((d+H)^2*A^2)-2*b*V*alpha[2]*d*B^2*H/A^2-2*b*V*alpha[2]*d*C^2*H/A^2-8*b*V*alpha[2]*B*H^2*C/A^2+b*V*beta[1]*B^2*H/((d+H)^2*A^2)+b*V*beta[1]*B*E/((d+H)^2*A^2)+b*V*beta[1]*C^2*H/((d+H)^2*A^2)+b*V*beta[1]*C*E/((d+H)^2*A^2)+2*b*V*beta[2]*B^2*H/((d+H)^3*A^2)+2*b*V*beta[2]*B*E/((d+H)^3*A^2)+2*b*V*beta[2]*C^2*H/((d+H)^3*A^2)+2*b*V*beta[2]*C*E/((d+H)^3*A^2)-6*b*V*alpha[-2]*B^2*H^2/((d+H)^4*A^2)-6*b*V*alpha[-2]*C^2*H^2/((d+H)^4*A^2)-2*b*V*alpha[-1]*B^2*H^2/((d+H)^3*A^2)-2*b*V*alpha[-1]*C^2*H^2/((d+H)^3*A^2)-2*b*V*beta[1]*B^2*H^2/((d+H)^3*A^2)-2*b*V*beta[1]*C^2*H^2/((d+H)^3*A^2)-6*b*V*beta[2]*B^2*H^2/((d+H)^4*A^2)-6*b*V*beta[2]*C^2*H^2/((d+H)^4*A^2)-2*b*V*alpha[1]*B*C*H/A^2-2*b*V*alpha[2]*d*B*E/A^2-2*b*V*alpha[2]*d*C*E/A^2-a*alpha[1]^2*d^2+w*alpha[1]*d-a*alpha[2]^2*d^4+w*alpha[2]*d^2-2*b*V*alpha[2]*E^2/A^2-4*a*alpha[-2]*alpha[2]*d*H/(d+H)^2-4*a*alpha[-1]*alpha[2]*d*H/(d+H)-4*a*alpha[2]*d*H*beta[1]/(d+H)-4*a*alpha[2]*d*H*beta[2]/(d+H)^2-b*V*alpha[1]*B^2*H/A^2-b*V*alpha[1]*C^2*H/A^2-6*b*V*alpha[-2]*E^2/((d+H)^4*A^2)-2*b*V*alpha[-1]*E^2/((d+H)^3*A^2)-4*b*V*alpha[2]*B^2*H^2/A^2-4*b*V*alpha[2]*C^2*H^2/A^2-2*b*V*beta[1]*E^2/((d+H)^3*A^2)-6*b*V*beta[2]*E^2/((d+H)^4*A^2)-b*V*alpha[1]*B*E/A^2-b*V*alpha[1]*C*E/A^2

(9)

collect(eqq, {d+H})

Error, (in collect) cannot collect d+H

 

``

NULL

``


 

Download SHAFEEG2.mwSHAFEEG2.mw

Hey.. AoA,
How to combine a specific rows of two different Matrix?

Hi, I have a procedure named f1. In it, it calls another procedure f couple of times. procedure f does not have recursive calls implemented.

I have no idea what caused the error. Could anyone give a hint?

Thanks a million in advance,

Best,

Jie

First 671 672 673 674 675 676 677 Last Page 673 of 2425