MaplePrimes Questions

Hi so the Maple 2017 software froze on the loading screen I have a MacBook Air 2018, I tried restarting my Mac but it says I have to Quit out of Maple 2017, however it isn't allowing me to do so, the software won't quit. Is there anyone that can help me out??? I would gladly appreciate it.

Hi everyone

 

Im new to MaplePrimes aswell as to Maple.

I have a task where i shoud plot the following shape (with a hole in the centre) using the plot3d function:

 

 

 

 

 

 

 

All i have accomplished in the last hours is the following file A1.0.mw:

As you can see i havent been able to get rid off the surface in the centre nor the spikes on the edge...
 

  • In order to fix the issue regarding the centre I assume I have to exclude the range -2..2 from x, but havent been able to do so.
  • Regarding the spikes on the edge Im honestly pretty much clueless why they appear in the first place.

 

After several hours of trying on my own, I really need your help please!

A1.0.mw
 

f := (x, y) -> ((((((x^2)+(y^2))^(1/2))-4))/(((((x^2)+(y^2))^(1/2))-2)*((((x^2)+(y^2))^(1/2))-6)))+15;
plot3d(f, -6..6, -sqrt(-x^2+36) .. sqrt(-x^2+36), grid=[400,400], view=0..30);

proc (x, y) options operator, arrow; ((y^2+x^2)^(1/2)-4)/(((y^2+x^2)^(1/2)-2)*((y^2+x^2)^(1/2)-6))+15 end proc

 

 

 


 

Download A1.0.mw
 

 

 

Hi,

I want to figure out if the Student license offered by Maplesoft for Maple 2019 is perpetual or is just lasts for a year? If it lasts for just 12 months, is there another license I should get which isn't as expensive as the full license? I need it for my personal research. 

restart;
Solve({(6*(-8*L*alpha^2*a[1]^3+2*L*a[1]^3-2*a[1]^3))*d-24*L*alpha^2*a[0]*a[1]^2+6*L*a[0]*a[1]^2-6*a[0]*a[1]^2+12*alpha^2*k^2*lambda*v*a[1]-12*alpha^2*k^2*lambda*a[1]-3*k^2*lambda*v*a[1]+3*k^2*lambda*a[1]+(3*(8*alpha^2*k^2*v^2*a[1]-16*alpha^2*k^2*v*a[1]+8*alpha^2*k^2*a[1]-2*k^2*v^2*a[1]+4*k^2*v*a[1]-2*k^2*a[1]))*d = 0, (-8*L*alpha^2*a[1]^3+2*L*a[1]^3-2*a[1]^3)*d^6+(-24*L*alpha^2*a[0]*a[1]^2+6*L*a[0]*a[1]^2-6*a[0]*a[1]^2)*d^5+(-24*L*alpha^2*a[0]^2*a[1]-24*L*alpha^2*a[1]^2*a[2]-4*alpha^4*a[1]+6*L*a[0]^2*a[1]+6*L*a[1]^2*a[2]-4*alpha^2*beta*a[1]+alpha^2*a[1]-6*a[0]^2*a[1]-6*a[1]^2*a[2]+beta*a[1])*d^4+(4*alpha^2*k^2*lambda*mu*a[1]-8*L*alpha^2*a[0]^3-48*L*alpha^2*a[0]*a[1]*a[2]-4*alpha^4*a[0]-k^2*lambda*mu*a[1]+2*L*a[0]^3+12*L*a[0]*a[1]*a[2]-4*alpha^2*beta*a[0]+alpha^2*a[0]-2*a[0]^3-12*a[0]*a[1]*a[2]+beta*a[0])*d^3+(-24*L*alpha^2*a[0]^2*a[2]-24*L*alpha^2*a[1]*a[2]^2-4*alpha^4*a[2]+6*L*a[0]^2*a[2]+6*L*a[1]*a[2]^2-4*alpha^2*beta*a[2]+alpha^2*a[2]-6*a[0]^2*a[2]-6*a[1]*a[2]^2+beta*a[2])*d^2+(-4*alpha^2*k^2*lambda*mu*a[2]-24*L*alpha^2*a[0]*a[2]^2+k^2*lambda*mu*a[2]+6*L*a[0]*a[2]^2-6*a[0]*a[2]^2)*d+8*alpha^2*k^2*mu^2*a[2]-2*a[2]^3-2*k^2*mu^2*a[2]-8*L*alpha^2*a[2]^3+2*L*a[2]^3 = 0, (6*(-8*L*alpha^2*a[1]^3+2*L*a[1]^3-2*a[1]^3))*d^5+(5*(-24*L*alpha^2*a[0]*a[1]^2+6*L*a[0]*a[1]^2-6*a[0]*a[1]^2))*d^4+(4*(-24*L*alpha^2*a[0]^2*a[1]-24*L*alpha^2*a[1]^2*a[2]-4*alpha^4*a[1]+6*L*a[0]^2*a[1]+6*L*a[1]^2*a[2]-4*alpha^2*beta*a[1]+alpha^2*a[1]-6*a[0]^2*a[1]-6*a[1]^2*a[2]+beta*a[1]))*d^3+(3*(4*alpha^2*k^2*lambda*mu*a[1]-8*L*alpha^2*a[0]^3-48*L*alpha^2*a[0]*a[1]*a[2]-4*alpha^4*a[0]-k^2*lambda*mu*a[1]+2*L*a[0]^3+12*L*a[0]*a[1]*a[2]-4*alpha^2*beta*a[0]+alpha^2*a[0]-2*a[0]^3-12*a[0]*a[1]*a[2]+beta*a[0]))*d^2+(4*alpha^2*k^2*lambda^2*a[1]+8*alpha^2*k^2*mu*v*a[1]-8*alpha^2*k^2*mu*a[1]-k^2*lambda^2*a[1]-2*k^2*mu*v*a[1]+2*k^2*mu*a[1])*d^3+(2*(-24*L*alpha^2*a[0]^2*a[2]-24*L*alpha^2*a[1]*a[2]^2-4*alpha^4*a[2]+6*L*a[0]^2*a[2]+6*L*a[1]*a[2]^2-4*alpha^2*beta*a[2]+alpha^2*a[2]-6*a[0]^2*a[2]-6*a[1]*a[2]^2+beta*a[2]))*d+12*alpha^2*k^2*lambda*mu*a[2]-24*L*alpha^2*a[0]*a[2]^2-3*k^2*lambda*mu*a[2]+6*L*a[0]*a[2]^2-6*a[0]*a[2]^2+(-4*alpha^2*k^2*lambda^2*a[2]-8*alpha^2*k^2*mu*v*a[2]+8*alpha^2*k^2*mu*a[2]+k^2*lambda^2*a[2]+2*k^2*mu*v*a[2]-2*k^2*mu*a[2])*d = 0, (15*(-8*L*alpha^2*a[1]^3+2*L*a[1]^3-2*a[1]^3))*d^2+(5*(-24*L*alpha^2*a[0]*a[1]^2+6*L*a[0]*a[1]^2-6*a[0]*a[1]^2))*d+(3*(12*alpha^2*k^2*lambda*v*a[1]-12*alpha^2*k^2*lambda*a[1]-3*k^2*lambda*v*a[1]+3*k^2*lambda*a[1]))*d+(3*(8*alpha^2*k^2*v^2*a[1]-16*alpha^2*k^2*v*a[1]+8*alpha^2*k^2*a[1]-2*k^2*v^2*a[1]+4*k^2*v*a[1]-2*k^2*a[1]))*d^2+8*alpha^2*k^2*mu*v*a[1]-6*a[0]^2*a[1]-6*a[1]^2*a[2]-4*alpha^4*a[1]+4*alpha^2*k^2*lambda^2*a[1]-8*alpha^2*k^2*mu*a[1]-2*k^2*mu*v*a[1]-24*L*alpha^2*a[0]^2*a[1]-24*L*alpha^2*a[1]^2*a[2]-k^2*lambda^2*a[1]+2*k^2*mu*a[1]+6*L*a[0]^2*a[1]+6*L*a[1]^2*a[2]-4*alpha^2*beta*a[1]+alpha^2*a[1]+beta*a[1] = 0, (15*(-8*L*alpha^2*a[1]^3+2*L*a[1]^3-2*a[1]^3))*d^4+(10*(-24*L*alpha^2*a[0]*a[1]^2+6*L*a[0]*a[1]^2-6*a[0]*a[1]^2))*d^3+(6*(-24*L*alpha^2*a[0]^2*a[1]-24*L*alpha^2*a[1]^2*a[2]-4*alpha^4*a[1]+6*L*a[0]^2*a[1]+6*L*a[1]^2*a[2]-4*alpha^2*beta*a[1]+alpha^2*a[1]-6*a[0]^2*a[1]-6*a[1]^2*a[2]+beta*a[1]))*d^2+(12*alpha^2*k^2*lambda*v*a[1]-12*alpha^2*k^2*lambda*a[1]-3*k^2*lambda*v*a[1]+3*k^2*lambda*a[1])*d^3+(3*(4*alpha^2*k^2*lambda*mu*a[1]-8*L*alpha^2*a[0]^3-48*L*alpha^2*a[0]*a[1]*a[2]-4*alpha^4*a[0]-k^2*lambda*mu*a[1]+2*L*a[0]^3+12*L*a[0]*a[1]*a[2]-4*alpha^2*beta*a[0]+alpha^2*a[0]-2*a[0]^3-12*a[0]*a[1]*a[2]+beta*a[0]))*d+(3*(4*alpha^2*k^2*lambda^2*a[1]+8*alpha^2*k^2*mu*v*a[1]-8*alpha^2*k^2*mu*a[1]-k^2*lambda^2*a[1]-2*k^2*mu*v*a[1]+2*k^2*mu*a[1]))*d^2+(-12*alpha^2*k^2*lambda*v*a[2]+12*alpha^2*k^2*lambda*a[2]+3*k^2*lambda*v*a[2]-3*k^2*lambda*a[2])*d+8*alpha^2*k^2*mu*v*a[2]-6*a[0]^2*a[2]-6*a[1]*a[2]^2-4*alpha^4*a[2]+4*alpha^2*k^2*lambda^2*a[2]-8*alpha^2*k^2*mu*a[2]-2*k^2*mu*v*a[2]-24*L*alpha^2*a[0]^2*a[2]-24*L*alpha^2*a[1]*a[2]^2-k^2*lambda^2*a[2]+2*k^2*mu*a[2]+6*L*a[0]^2*a[2]+6*L*a[1]*a[2]^2-4*alpha^2*beta*a[2]+alpha^2*a[2]+beta*a[2] = 0, (20*(-8*L*alpha^2*a[1]^3+2*L*a[1]^3-2*a[1]^3))*d^3+(10*(-24*L*alpha^2*a[0]*a[1]^2+6*L*a[0]*a[1]^2-6*a[0]*a[1]^2))*d^2+(4*(-24*L*alpha^2*a[0]^2*a[1]-24*L*alpha^2*a[1]^2*a[2]-4*alpha^4*a[1]+6*L*a[0]^2*a[1]+6*L*a[1]^2*a[2]-4*alpha^2*beta*a[1]+alpha^2*a[1]-6*a[0]^2*a[1]-6*a[1]^2*a[2]+beta*a[1]))*d+(8*alpha^2*k^2*v^2*a[1]-16*alpha^2*k^2*v*a[1]+8*alpha^2*k^2*a[1]-2*k^2*v^2*a[1]+4*k^2*v*a[1]-2*k^2*a[1])*d^3+(3*(4*alpha^2*k^2*lambda^2*a[1]+8*alpha^2*k^2*mu*v*a[1]-8*alpha^2*k^2*mu*a[1]-k^2*lambda^2*a[1]-2*k^2*mu*v*a[1]+2*k^2*mu*a[1]))*d+(3*(12*alpha^2*k^2*lambda*v*a[1]-12*alpha^2*k^2*lambda*a[1]-3*k^2*lambda*v*a[1]+3*k^2*lambda*a[1]))*d^2+(-8*alpha^2*k^2*v^2*a[2]+16*alpha^2*k^2*v*a[2]-8*alpha^2*k^2*a[2]+2*k^2*v^2*a[2]-4*k^2*v*a[2]+2*k^2*a[2])*d+4*alpha^2*k^2*lambda*v*a[2]+2*L*a[0]^3-4*alpha^4*a[0]-48*L*alpha^2*a[0]*a[1]*a[2]+4*alpha^2*k^2*lambda*mu*a[1]-4*alpha^2*k^2*lambda*a[2]-k^2*lambda*v*a[2]-k^2*lambda*mu*a[1]+12*L*a[0]*a[1]*a[2]+k^2*lambda*a[2]-8*L*alpha^2*a[0]^3-12*a[0]*a[1]*a[2]-4*alpha^2*beta*a[0]+alpha^2*a[0]+beta*a[0]-2*a[0]^3 = 0, 8*alpha^2*k^2*v^2*a[1]-8*L*alpha^2*a[1]^3-16*alpha^2*k^2*v*a[1]+8*alpha^2*k^2*a[1]-2*k^2*v^2*a[1]+2*L*a[1]^3+4*k^2*v*a[1]-2*k^2*a[1]-2*a[1]^3 = 0}, {alpha, a[0], a[1], a[2]});
     / /  /          2     3           3         3\  
Solve|{ 6 \-8 L alpha  a[1]  + 2 L a[1]  - 2 a[1] / d
     \ \                                             

               2          2                2              2
   - 24 L alpha  a[0] a[1]  + 6 L a[0] a[1]  - 6 a[0] a[1] 

             2  2                         2  2            
   + 12 alpha  k  lambda v a[1] - 12 alpha  k  lambda a[1]

        2                    2                 /       2  2  2   
   - 3 k  lambda v a[1] + 3 k  lambda a[1] + 3 \8 alpha  k  v  a[

               2  2                 2  2           2  2     
  1] - 16 alpha  k  v a[1] + 8 alpha  k  a[1] - 2 k  v  a[1]

        2             2     \        /          2     3
   + 4 k  v a[1] - 2 k  a[1]/ d = 0, \-8 L alpha  a[1] 

             3         3\  6
   + 2 L a[1]  - 2 a[1] / d 

     /           2          2                2              2\  5   
   + \-24 L alpha  a[0] a[1]  + 6 L a[0] a[1]  - 6 a[0] a[1] / d  + 

  /           2     2                  2     2     
  \-24 L alpha  a[0]  a[1] - 24 L alpha  a[1]  a[2]

            4                2                2     
   - 4 alpha  a[1] + 6 L a[0]  a[1] + 6 L a[1]  a[2]

            2                  2              2     
   - 4 alpha  beta a[1] + alpha  a[1] - 6 a[0]  a[1]

           2                 \  4   /       2  2               
   - 6 a[1]  a[2] + beta a[1]/ d  + \4 alpha  k  lambda mu a[1]

              2     3             2               
   - 8 L alpha  a[0]  - 48 L alpha  a[0] a[1] a[2]

            4         2                          3
   - 4 alpha  a[0] - k  lambda mu a[1] + 2 L a[0] 

                                  2                  2     
   + 12 L a[0] a[1] a[2] - 4 alpha  beta a[0] + alpha  a[0]

           3                                \  3   /
   - 2 a[0]  - 12 a[0] a[1] a[2] + beta a[0]/ d  + \
           2     2                  2          2          4     
-24 L alpha  a[0]  a[2] - 24 L alpha  a[1] a[2]  - 4 alpha  a[2]

             2                     2          2          
   + 6 L a[0]  a[2] + 6 L a[1] a[2]  - 4 alpha  beta a[2]

          2              2                   2            \  2   
   + alpha  a[2] - 6 a[0]  a[2] - 6 a[1] a[2]  + beta a[2]/ d  + 

  /        2  2                            2          2
  \-4 alpha  k  lambda mu a[2] - 24 L alpha  a[0] a[2] 

      2                               2              2\  
   + k  lambda mu a[2] + 6 L a[0] a[2]  - 6 a[0] a[2] / d

            2  2   2              3      2   2     
   + 8 alpha  k  mu  a[2] - 2 a[2]  - 2 k  mu  a[2]

              2     3           3        /          2     3
   - 8 L alpha  a[2]  + 2 L a[2]  = 0, 6 \-8 L alpha  a[1] 

             3         3\  5
   + 2 L a[1]  - 2 a[1] / d 

       /           2          2                2              2\ 
   + 5 \-24 L alpha  a[0] a[1]  + 6 L a[0] a[1]  - 6 a[0] a[1] / 

   4     /           2     2                  2     2     
  d  + 4 \-24 L alpha  a[0]  a[1] - 24 L alpha  a[1]  a[2]

            4                2                2     
   - 4 alpha  a[1] + 6 L a[0]  a[1] + 6 L a[1]  a[2]

            2                  2              2     
   - 4 alpha  beta a[1] + alpha  a[1] - 6 a[0]  a[1]

           2                 \  3     /       2  2               
   - 6 a[1]  a[2] + beta a[1]/ d  + 3 \4 alpha  k  lambda mu a[1]

              2     3             2               
   - 8 L alpha  a[0]  - 48 L alpha  a[0] a[1] a[2]

            4         2                          3
   - 4 alpha  a[0] - k  lambda mu a[1] + 2 L a[0] 

                                  2                  2     
   + 12 L a[0] a[1] a[2] - 4 alpha  beta a[0] + alpha  a[0]

           3                                \  2   /       2  2 
   - 2 a[0]  - 12 a[0] a[1] a[2] + beta a[0]/ d  + \4 alpha  k  

        2               2  2                    2  2        
  lambda  a[1] + 8 alpha  k  mu v a[1] - 8 alpha  k  mu a[1]

      2       2           2                2        \  3     /
   - k  lambda  a[1] - 2 k  mu v a[1] + 2 k  mu a[1]/ d  + 2 \
           2     2                  2          2          4     
-24 L alpha  a[0]  a[2] - 24 L alpha  a[1] a[2]  - 4 alpha  a[2]

             2                     2          2          
   + 6 L a[0]  a[2] + 6 L a[1] a[2]  - 4 alpha  beta a[2]

          2              2                   2            \  
   + alpha  a[2] - 6 a[0]  a[2] - 6 a[1] a[2]  + beta a[2]/ d

             2  2                            2          2
   + 12 alpha  k  lambda mu a[2] - 24 L alpha  a[0] a[2] 

        2                               2              2   /
   - 3 k  lambda mu a[2] + 6 L a[0] a[2]  - 6 a[0] a[2]  + \
        2  2       2               2  2          
-4 alpha  k  lambda  a[2] - 8 alpha  k  mu v a[2]

            2  2            2       2           2          
   + 8 alpha  k  mu a[2] + k  lambda  a[2] + 2 k  mu v a[2]

        2        \           /          2     3           3
   - 2 k  mu a[2]/ d = 0, 15 \-8 L alpha  a[1]  + 2 L a[1] 

           3\  2
   - 2 a[1] / d 

       /           2          2                2              2\       
   + 5 \-24 L alpha  a[0] a[1]  + 6 L a[0] a[1]  - 6 a[0] a[1] / d + 3 

  /        2  2                         2  2            
  \12 alpha  k  lambda v a[1] - 12 alpha  k  lambda a[1]

        2                    2            \       /       2  2  2 
   - 3 k  lambda v a[1] + 3 k  lambda a[1]/ d + 3 \8 alpha  k  v  

                 2  2                 2  2           2  2     
  a[1] - 16 alpha  k  v a[1] + 8 alpha  k  a[1] - 2 k  v  a[1]

        2             2     \  2          2  2          
   + 4 k  v a[1] - 2 k  a[1]/ d  + 8 alpha  k  mu v a[1]

           2              2               4     
   - 6 a[0]  a[1] - 6 a[1]  a[2] - 4 alpha  a[1]

            2  2       2               2  2        
   + 4 alpha  k  lambda  a[1] - 8 alpha  k  mu a[1]

        2                       2     2     
   - 2 k  mu v a[1] - 24 L alpha  a[0]  a[1]

               2     2         2       2           2        
   - 24 L alpha  a[1]  a[2] - k  lambda  a[1] + 2 k  mu a[1]

             2                2               2          
   + 6 L a[0]  a[1] + 6 L a[1]  a[2] - 4 alpha  beta a[1]

          2                          /          2     3
   + alpha  a[1] + beta a[1] = 0, 20 \-8 L alpha  a[1] 

             3         3\  3
   + 2 L a[1]  - 2 a[1] / d 

        /           2          2                2              2\ 
   + 10 \-24 L alpha  a[0] a[1]  + 6 L a[0] a[1]  - 6 a[0] a[1] / 

   2     /           2     2                  2     2     
  d  + 4 \-24 L alpha  a[0]  a[1] - 24 L alpha  a[1]  a[2]

            4                2                2     
   - 4 alpha  a[1] + 6 L a[0]  a[1] + 6 L a[1]  a[2]

            2                  2              2     
   - 4 alpha  beta a[1] + alpha  a[1] - 6 a[0]  a[1]

           2                 \     /       2  2  2     
   - 6 a[1]  a[2] + beta a[1]/ d + \8 alpha  k  v  a[1]

             2  2                 2  2           2  2     
   - 16 alpha  k  v a[1] + 8 alpha  k  a[1] - 2 k  v  a[1]

        2             2     \  3     /       2  2       2     
   + 4 k  v a[1] - 2 k  a[1]/ d  + 3 \4 alpha  k  lambda  a[1]

            2  2                    2  2        
   + 8 alpha  k  mu v a[1] - 8 alpha  k  mu a[1]

      2       2           2                2        \       /   
   - k  lambda  a[1] - 2 k  mu v a[1] + 2 k  mu a[1]/ d + 3 \12 

       2  2                         2  2            
  alpha  k  lambda v a[1] - 12 alpha  k  lambda a[1]

        2                    2            \  2   /
   - 3 k  lambda v a[1] + 3 k  lambda a[1]/ d  + \
        2  2  2                2  2                 2  2     
-8 alpha  k  v  a[2] + 16 alpha  k  v a[2] - 8 alpha  k  a[2]

        2  2           2             2     \  
   + 2 k  v  a[2] - 4 k  v a[2] + 2 k  a[2]/ d

            2  2                         3          4     
   + 4 alpha  k  lambda v a[2] + 2 L a[0]  - 4 alpha  a[0]

               2                         2  2               
   - 48 L alpha  a[0] a[1] a[2] + 4 alpha  k  lambda mu a[1]

            2  2                2              
   - 4 alpha  k  lambda a[2] - k  lambda v a[2]

      2                                         2            
   - k  lambda mu a[1] + 12 L a[0] a[1] a[2] + k  lambda a[2]

              2     3                              2          
   - 8 L alpha  a[0]  - 12 a[0] a[1] a[2] - 4 alpha  beta a[0]

          2                          3         /          2     3
   + alpha  a[0] + beta a[0] - 2 a[0]  = 0, 15 \-8 L alpha  a[1] 

             3         3\  4
   + 2 L a[1]  - 2 a[1] / d 

        /           2          2                2              2\ 
   + 10 \-24 L alpha  a[0] a[1]  + 6 L a[0] a[1]  - 6 a[0] a[1] / 

   3     /           2     2                  2     2     
  d  + 6 \-24 L alpha  a[0]  a[1] - 24 L alpha  a[1]  a[2]

            4                2                2     
   - 4 alpha  a[1] + 6 L a[0]  a[1] + 6 L a[1]  a[2]

            2                  2              2     
   - 4 alpha  beta a[1] + alpha  a[1] - 6 a[0]  a[1]

           2                 \  2   /        2  2              
   - 6 a[1]  a[2] + beta a[1]/ d  + \12 alpha  k  lambda v a[1]

             2  2                  2              
   - 12 alpha  k  lambda a[1] - 3 k  lambda v a[1]

        2            \  3     /       2  2               
   + 3 k  lambda a[1]/ d  + 3 \4 alpha  k  lambda mu a[1]

              2     3             2               
   - 8 L alpha  a[0]  - 48 L alpha  a[0] a[1] a[2]

            4         2                          3
   - 4 alpha  a[0] - k  lambda mu a[1] + 2 L a[0] 

                                  2                  2     
   + 12 L a[0] a[1] a[2] - 4 alpha  beta a[0] + alpha  a[0]

           3                                \       /       2  2 
   - 2 a[0]  - 12 a[0] a[1] a[2] + beta a[0]/ d + 3 \4 alpha  k  

        2               2  2                    2  2        
  lambda  a[1] + 8 alpha  k  mu v a[1] - 8 alpha  k  mu a[1]

      2       2           2                2        \  2   /
   - k  lambda  a[1] - 2 k  mu v a[1] + 2 k  mu a[1]/ d  + \
         2  2                         2  2            
-12 alpha  k  lambda v a[2] + 12 alpha  k  lambda a[2]

        2                    2            \  
   + 3 k  lambda v a[2] - 3 k  lambda a[2]/ d

            2  2                   2                   2
   + 8 alpha  k  mu v a[2] - 6 a[0]  a[2] - 6 a[1] a[2] 

            4               2  2       2     
   - 4 alpha  a[2] + 4 alpha  k  lambda  a[2]

            2  2              2          
   - 8 alpha  k  mu a[2] - 2 k  mu v a[2]

               2     2                  2          2
   - 24 L alpha  a[0]  a[2] - 24 L alpha  a[1] a[2] 

      2       2           2                   2     
   - k  lambda  a[2] + 2 k  mu a[2] + 6 L a[0]  a[2]

                  2          2                  2     
   + 6 L a[1] a[2]  - 4 alpha  beta a[2] + alpha  a[2]

                           2  2  2                 2     3
   + beta a[2] = 0, 8 alpha  k  v  a[1] - 8 L alpha  a[1] 

             2  2                 2  2           2  2     
   - 16 alpha  k  v a[1] + 8 alpha  k  a[1] - 2 k  v  a[1]

             3      2             2              3    \   
   + 2 L a[1]  + 4 k  v a[1] - 2 k  a[1] - 2 a[1]  = 0 }, 
                                                      /   

                           \
  {alpha, a[0], a[1], a[2]}|
                           /

Dear Users!

Hope you would be fine. I want to export .dat file from 2D plots in attached file. But facing some problem. Please have a look and try to fix it.

Many thanks

2._SP_alpha_varies.mw

Special request:

@Carl Love

@acer

@Kitonum

Maple is very good in solving PDE's. But this specific solution seems way too complicated when compared to Matematica solution, which I verified using Maple pdetest to be correct.

Is there a way to make Maple produce the simpler solution to this pde? simplify does nothing on the solution. May be by using a good HINT or such other option? 
 

restart;

pde:=(a*y+b*x+c)*diff(w(x,y),x)-(b*y+k*x+s)*diff(w(x,y),y)=0;

(a*y+b*x+c)*(diff(w(x, y), x))-(b*y+k*x+s)*(diff(w(x, y), y)) = 0

sol:=pdsolve(pde,w(x,y))

w(x, y) = _F1(1/(a^3*k^2*y^2-2*a^2*b^2*k*y^2+2*a^2*b*k^2*x*y+a^2*k^3*x^2+a*b^4*y^2-4*a*b^3*k*x*y-2*a*b^2*k^2*x^2+2*b^5*x*y+b^4*k*x^2+2*a^2*c*k^2*y+2*a^2*k^2*s*x-4*a*b^2*c*k*y-4*a*b^2*k*s*x+2*b^4*c*y+2*b^4*s*x+a^2*k*s^2-a*b^2*s^2-2*a*b*c*k*s+a*c^2*k^2+2*b^3*c*s-b^2*c^2*k)^(1/2))

mma_solution := w(x,y)= _F1( (2*s*x+k*x^2+2*c*y+2*b*x*y+a*y^2)/a );

w(x, y) = _F1((a*y^2+2*b*x*y+k*x^2+2*c*y+2*s*x)/a)

pdetest(mma_solution,pde)

0

 


Here is screen shot showing the other solution

Download q1.mw

 

 


hello!

I'm new in Maple!!

I am try simulate the termal flux in composite material using heat equation and perfect contact between the materials. But I can't enter the fourier condiction and my code don't work!!

Any help??

 

> restart; with(plots); with(PDEtools); with(plottool
> eq1 := diff(u1(x, t), x, x) = k1*(diff(u1(x, t), t));
                    d  / d          \      / d          \
                   --- |--- u1(x, t)| = k1 |--- u1(x, t)|
                    dx \ dx         /      \ dt         /
> eq2 := diff(u2(x, t), x, x) = k1*(diff(u2(x, t), t));
                    d  / d          \      / d          \
                   --- |--- u2(x, t)| = k1 |--- u2(x, t)|
                    dx \ dx         /      \ dt         /
> L := 10; v1 := 20; v2 := 10; k1 = 10; k2 := 20;
                                     10
                                     20
                                     10
                                   k1 = 10
                                     20
> bc1 := u1(0, t) = v1, u1(x, 0) = 0;
                         u1(0, t) = 20, u1(x, 0) = 0
> bc2 := u2(0, t) = v2, u2(x, 0) = 0;
                         u2(0, t) = 10, u2(x, 0) = 0
> sol1 := pdsolve({bc1, eq1});
Warning: System is inconsistent

 

 

 

Hello,
I would like to display a complete trigonometric circle.like the attached photo. How to do it? Thanks 

TrigonometricCircle.mw

 

It is necessary that the expressions are combined in a new function. So as I'm trying not is obtained.
 

restart; x := 5; y := 10; f := proc (x, y) options operator, arrow; x+y end proc; f2 := proc (x, y) options operator, arrow; x^2+y^3 end proc; f3 := proc (x, y) options operator, arrow; f+f2 end proc; f3(x, y)

5

 

10

 

proc (x, y) options operator, arrow; x+y end proc

 

proc (x, y) options operator, arrow; x^2+y^3 end proc

 

proc (x, y) options operator, arrow; f+f2 end proc

 

f+f2

(1)

``


 

Download testmaple.mw

Dear Users!

Hope you would be fine. I want to export dat file for 3D plot in maple and want to replot it any perfessional software like tecplot, origin.

u:=sin(x+y):
plot3d(sin(x+y), x = 0 .. 2*Pi, y = 0 .. 2*Pi);
How can I export the data in 3D. Thanks in advance for you help.

Apostrophe '  is always interpreted as a "differentiate command", i.e., A' is always translated  to diff(A(x),x).

Is it possible to override this behaviour, it is to say, is there a way for using A' as a variable name?

In euclidean geometry of triangles, A' is a common name given to some points built from vertex A of a triangle ABC.

Thanks in advance,

César Lozada

 

 

 

 

 

 

 

 

 

Please check this code and fix the error. And help me with the below two questions.

1- In the above image, I'm getting the error when I'm to plot my solutions.

2- How to get information from this system?

      The values of x_1 and corresponding y_1 and so on and errors etc

This is a downloadable link to my worksheet [Practice.mw]

Thanks!

How do I get Maple to factorize this simple expression without too much effort?

f:=3/2 + sqrt(8*k + 2) + 2*k

I want to create a distribution table and then find expected value,variance and standard deviation.

For example : X=-1,P(X)=0.2
                       X=0,P(X)=0.25
                       X=1,P(X)=0.35

                       X=2,P(X)=0.2

E(X) would then equal -1*0.2+0*0.25+1*0.35+2*0.2.

How can I do all of this with Maple ? 

How should linearization a nonlinear equation with maple?

First 684 685 686 687 688 689 690 Last Page 686 of 2425