MaplePrimes Questions


 

restart;

with(PDEtools):

with(plot):

Error, invalid input: with expects its 1st argument, pname, to be of type {`module`, package}, but received plot

 

A1:=Matrix([[phi,(chi),conjugate(phi),conjugate(chi)],
          [chi,(phi),conjugate(chi),conjugate(phi)],
          [lambda*phi,-(lambda)*(chi),
           conjugate(lambda)*conjugate(phi),-conjugate(lambda)*conjugate(chi)],
          [lambda*chi,-(lambda)*(phi),
           conjugate(lambda)*conjugate(chi),-conjugate(lambda)*conjugate(phi)]]);

A1 := Matrix(4, 4, {(1, 1) = phi, (1, 2) = chi, (1, 3) = conjugate(phi), (1, 4) = conjugate(chi), (2, 1) = chi, (2, 2) = phi, (2, 3) = conjugate(chi), (2, 4) = conjugate(phi), (3, 1) = lambda*phi, (3, 2) = -lambda*chi, (3, 3) = conjugate(lambda)*conjugate(phi), (3, 4) = -conjugate(lambda)*conjugate(chi), (4, 1) = lambda*chi, (4, 2) = -lambda*phi, (4, 3) = conjugate(lambda)*conjugate(chi), (4, 4) = -conjugate(lambda)*conjugate(phi)})

(1)

d1 := LinearAlgebra:-Determinant(A1):

d1; length(%);

conjugate(lambda)^2*conjugate(phi)^2*chi^2-conjugate(lambda)^2*conjugate(phi)^2*phi^2-conjugate(lambda)^2*conjugate(chi)^2*chi^2+conjugate(lambda)^2*conjugate(chi)^2*phi^2+2*conjugate(lambda)*conjugate(phi)^2*chi^2*lambda+2*conjugate(lambda)*conjugate(phi)^2*lambda*phi^2-8*conjugate(lambda)*conjugate(phi)*conjugate(chi)*chi*lambda*phi+2*conjugate(lambda)*conjugate(chi)^2*chi^2*lambda+2*conjugate(lambda)*conjugate(chi)^2*lambda*phi^2+conjugate(phi)^2*chi^2*lambda^2-conjugate(phi)^2*lambda^2*phi^2-conjugate(chi)^2*chi^2*lambda^2+conjugate(chi)^2*lambda^2*phi^2

 

705

(2)

den:=simplify(d1,size); length(%);

-(-(conjugate(chi)-conjugate(phi))*(chi+phi)*conjugate(lambda)+lambda*(conjugate(chi)+conjugate(phi))*(chi-phi))*(-(conjugate(chi)+conjugate(phi))*(chi-phi)*conjugate(lambda)+lambda*(conjugate(chi)-conjugate(phi))*(chi+phi))

 

333

(3)

 

con1:=phi=exp(I*lambda*(x-t/(4*lambda^2)-w^2)):con2:=chi=exp(-I*lambda*(x-t/(4*lambda^2)-w^2)):

 

den1:=simplify(dsubs({con1,con2},den));

4*conjugate(lambda)^2*cos((1/4)*(4*w^2*lambda^2-4*x*lambda^2+conjugate((4*lambda^2*w^2-4*lambda^2*x+t)/lambda)*lambda+t)/lambda)^2-4*conjugate(lambda)^2*cos((1/4)*(-4*w^2*lambda^2+4*x*lambda^2+conjugate((4*lambda^2*w^2-4*lambda^2*x+t)/lambda)*lambda-t)/lambda)^2+8*conjugate(lambda)*cos((1/4)*(4*w^2*lambda^2-4*x*lambda^2+conjugate((4*lambda^2*w^2-4*lambda^2*x+t)/lambda)*lambda+t)/lambda)^2*lambda+8*conjugate(lambda)*cos((1/4)*(-4*w^2*lambda^2+4*x*lambda^2+conjugate((4*lambda^2*w^2-4*lambda^2*x+t)/lambda)*lambda-t)/lambda)^2*lambda+4*cos((1/4)*(4*w^2*lambda^2-4*x*lambda^2+conjugate((4*lambda^2*w^2-4*lambda^2*x+t)/lambda)*lambda+t)/lambda)^2*lambda^2-4*cos((1/4)*(-4*w^2*lambda^2+4*x*lambda^2+conjugate((4*lambda^2*w^2-4*lambda^2*x+t)/lambda)*lambda-t)/lambda)^2*lambda^2-16*conjugate(lambda)*lambda

(4)

plot3d(subs(Re(lambda)=1, Im(lambda)=.2, w=1, rhs(den1)),x=-6..6, t=-6..6)

Warning, inserted missing semicolon at end of statement

 

Error, invalid input: rhs received 4*conjugate(lambda)^2*cos((1/4)*(4*w^2*lambda^2-4*x*lambda^2+conjugate((4*lambda^2*w^2-4*lambda^2*x+t)/lambda)*lambda+t)/lambda)^2-4*conjugate(lambda)^2*cos((1/4)*(-4*w^2*lambda^2+4*x*lambda^2+conjugate((4*lambda^2*w^2-4*lambda^2*x+t)/lambda)*lambda-t)/lambda)^2+8*conjugate(lambda)*cos((1/4)*(4*w^2*lambda^2-4*x*lambda^2+conjugate((4*lambda^2*w^2-4*lambda^2*x+t)/lambda)*lambda+t)/lambda)^2*lambda+8*conjugate(lambda)*cos((1/4)*(-4*w^2*lambda^2+4*x*lambda^2+conjugate((4*lambda^2*w^2-4*lambda^2*x+t)/lambda)*lambda-t)/lambda)^2*lambda+4*cos((1/4)*(4*w^2*lambda^2-4*x*lambda^2+conjugate((4*lambda^2*w^2-4*lambda^2*...

 

NULL

``

 

``


 

Download 23May(1).mw

Seems to make no difference with or without RETURN() for the procedure ?

 

vraag_op_forum_gesteld_over_boek_vb_binomium.mw

 

For to know what each graph is standing for in the plot legenda

Could not yet get it  in y , y' , y '' , to 5th derative 

Better is perhaps to have vertical table with the names and function expression together , but that could be difficult betounes_ex_set_task_4def.mw  

 

f := x -> exp(-x)*sin(x); intvx:= 0..3;
f := proc (x) options operator, arrow; exp(-x)*sin(x) end proc
intvx := 0 .. 3

 

And this one below ( i prefer this one ) , but got in worksheet now the one above
Probably a option issue ?

 

 

f := x -> exp(-x)*sin(x); intvx:= 0..3;

proc (x) options operator, arrow; exp(-x)*sin(x) end proc


 

2 determinants equal, solve for the unknowns in one determinant/Linear Algebra

Hi guys, thank you for reading my question.

A is one determinant "Matrix(2, 3, [[1, 2, 3], [3, 1, 2]])".B is" Matrix(2, 3, [[1, x, 3], [y, 1, z]])"

I wrote 2 matrice in the maple

As I try to solve the unknowns,I wrote:

A:= B, solve(x, y, z) It doesn't work

I switch another phrase,

A = B;solve(B:x,y,z)    It doesn't work as well

Could you help me with it ?

Thank you

 

 

Dear All.

Please kindly help to correct the attached code on discretization of fourth order PDE using method of line.
Thank you and kind regards.

restart

``

``

Discretization of parabolic equation with method of line

diff(u(x, t), t) = -2*(diff(diff(u(x, t), x), x))-(diff(diff(diff(diff(u(x, t), x), x), x), x))-u(x, t)*(diff(u(x, t), x))

u(x, t)

u(x, t)

u(x, 0) = 0.3e-1*sin(x)

8

``

``

``

Convert the BC to finite difference

(1/2)*(u[m+1](t)-u[m-1](t))/h

(u[m-1](t)-2*u[m](t)+u[m+1](t))/h^2

(u[m-2](t)-4*u[m-1](t)+6*u[m](t)-4*u[m+1](t)+u[m+2](t))/h^4

````

Convert the governing equation to finite difference form

Error, invalid input: diff received 2*h, which is not valid for its 2nd argument

Error, invalid input: diff received 2*h, which is not valid for its 2nd argument

Error, invalid input: LinearAlgebra:-GenerateMatrix expects its 1st argument, eqns, to be of type ({list, set})({`=`, algebraic}), but received eqs

A

``


 

Download Discretization_of_PDE_Order_4.mw

restart;

ii := 50;

seq(ii, ii = 0 .. 5);

evalf(int(ii, ii = 0 .. 5))

 

For sequence the syntax is correct i.e the output is 0,1,2,3,4,5. is ii inside sequence command takes the value 5 assigned it then changes when ii ranges from 0 to 5?

restart;

ii:=50:
seq(ii)

output: 50

restart;

ii:=50:

seq(seq(ii),ii=1..5)

expected answer: 50,50,50,50,50

obtained: 1,2,3,4,5

please explain how seq command works

 

Trebuchet, Phase I, 2020-05-27 Ki restart; with(RealDomain); with(SolveTools); assume(h < r1); additionally(h < r2); [Im, Re, ^, arccos, arccosh, arccot, arccoth, arccsc, arccsch, arcsec, arcsech, arcsin, arcsinh, arctan, arctanh, cos, cosh, cot, coth, csc, csch, eval, exp, expand, limit, ln, log, sec, sech, signum, simplify, sin, sinh, solve, sqrt, surd, tan, tanh ] [AbstractRootOfSolution, Basis, CancelInverses, Combine, Complexity, Engine, GreaterComplexity, Identity, Inequality, Linear, Parametric, Polynomial, PolynomialSystem, RationalCoefficients, SemiAlgebraic, SortByComplexity] hz1 := g*(r3*m3*cos(phi1(t))-r1*m2*sin(phi2(t))/sin(phi2(t)-phi1(t)))/theta3; whattype(phi1(t)); whattype(phi2(t)); / r1 m2 sin(phi2(t)) \ g |r3 m3 cos(phi1(t)) + -----------------------| \ sin(-phi2(t) + phi1(t))/ hz1 := ------------------------------------------------ theta3 function function hz2 := phi1(t)+arcsin((h+r1*sin(phi1(t)))/r2); /h + r1 sin(phi1(t))\ hz2 := phi1(t) + arcsin|-------------------| \ r2 / subs(phi2 = hz2, hz1); / / | | 1 | | ------ |g |r3 m3 cos(phi1(t)) theta3 | | | | \ \ // /h + r1 sin(phi1(t))\\ \ \\ r1 m2 sin||phi1(t) + arcsin|-------------------||(t)| || \\ \ r2 // / || + ----------------------------------------------------------|| / / /h + r1 sin(phi1(t))\\ \|| sin|-|phi1(t) + arcsin|-------------------||(t) + phi1(t)||| \ \ \ r2 // /// deq := diff(phi1(t), t, t)-% = 0; / / / 2 \ | | | d | 1 | | deq := |---- phi1(t)| - ------ |g |r3 m3 cos(phi1(t)) | 2 | theta3 | | \ dt / | | \ \ / /h + r1 sin(phi1(t))\ \ \ r1 m2 sin|phi1(t)(t) + arcsin|-------------------|(t)| | \ \ r2 / / | + -----------------------------------------------------------| / /h + r1 sin(phi1(t))\ \| sin|-phi1(t)(t) - arcsin|-------------------|(t) + phi1(t)|| \ \ r2 / // \ | | | = 0 | | / ics := phi1(0) = -arcsin(h/r1), (D(phi1))(0) = 0; /h \ ics := phi1(0) = -arcsin|--|, D(phi1)(0) = 0 \r1/ dsolve({deq, ics}, phi1(t)); dsolve(deq); deq_numeric := subs(r1 = 8, r2 = 8, r3 = 1, h = 5, m2 = 1, m3 = 20, theta3 = 20, deq); / | / d / d \\ 1 | |--- |--- phi1(t)|| - -- g |20 cos(phi1(t)) \ dt \ dt // 20 | | \ / /5 \ \ \ 8 sin|phi1(t)(t) + arcsin|- + sin(phi1(t))|(t)| | \ \8 / / | + --------------------------------------------------------| = 0 / /5 \ \| sin|-phi1(t)(t) - arcsin|- + sin(phi1(t))|(t) + phi1(t)|| \ \8 / // ics_numeric := phi1(0) = 0, (D(phi1))(0) = -.63; ics_numeric := phi1(0) = 0, D(phi1)(0) = -0.63 hz1 := dsolve({ics, deq_numeric}, phi1(t), numeric); Error, (in dsolve/numeric/process_input) unknown arcsin(5/8+sin(phi1(t))) present in ODE system is not a specified dependent variable or evaluatable procedure sin(-phi1(t)-arcsin((h+r1*sin(phi1(t)))/r2)); / /h + r1 sin(phi1(t))\\ -sin|phi1(t) + arcsin|-------------------|| \ \ r2 //

How to convert expression below to LaTex:  $\lim _{x \rightarrow 2} \frac{2}{x+3}$

And How to convert expression below to LaTex:  $\int_{2}^{3} \frac{1}{x^{2}+2} d x$

file test: newLaTex.mw

ode3 := diff(P(t), t) = 0.2*P(t) - 300;
                        d                       
              

ICs := [[0, 1300], [0, 1800]];
DEplot(ode3, p(t), p = -50 .. 2000, t = 0 .. 2000, ICs, arrows = LINE, color = RED, linecolor = BLUE, title = "Solution Curves ode3");
Error, (in DEtools/DEplot) invalid variable in specification of independent variable range
 

I want to plot y=sec(x) and x=-pi/4, x= pi/4. I also want the bounded region shaded. I have been able to graph sec(x) but I can't figure out how to get the two vertical lines and the bounded region shaded.

Hi there!

Essentially, sum(sqrt(-2),x=2..1) is, as it should be, 0. My issue is, that e.g. sum(sqrt(-2),x=2..0) or sum(sqrt(-2),x=2..-1)  are declared by Maple as -I*sqrt(2) and -(2*I)*sqrt(2), which, to my knowledge, is not true, and should be 0 as well. I need those results for a rather complicated algorithm to be 0, otherwise it doesn't work.

NEUZMinus:= proc(Unten, Oben, f,G,Liste,n)::real;
  #Unten:= Untere Intervallgrenze; Oben:= Obere Intervallgrenze; g:= zu integrierende Funktion;
  #G:= Gewicht; n:= Hinzuzufügende Knoten;
 
  Basenwechsel:=proc(Dividend, m);
 
  print(Anfang,Dividend,p[m]);
  Koeffizient:=quo(Dividend, p[m],x);

  Rest:=rem(Dividend, p[m],x);
 
  if m=0 then
    Basenwechsel:=[Koeffizient];
  else

    Basenwechsel:=[Koeffizient,op(Basenwechsel(Rest,m-1))];
   
  end if;
 
  end proc;
p[-1]:=0;
p[0]:=1;
for i from 1 to max(n,numelems(Liste)) do
  p[i]:=x^i-add(int(x^i*p[j]*diff(G,x),x=Unten..Oben)*p[j]/int(p[j]^2*diff(G,x),x=Unten..Oben),j=0..i-1);
  print(p[i]);
c[i-1]:=lcoeff(p[i],x)/lcoeff(p[i-1],x);
d[i-1]:=coeff(p[i],x,(i-1))/coeff(p[i-1],x,(i-1));
if i <> 1 then
  e[i-1]:=coeff(p[i]-(c[i-1]*x+d[i-1])*p[i-1],x,i-2)/coeff(p[i-2],x,i-2);
else
  e[i-1]:=1;
end if;
end do;
print(Liste[1],numelems(Liste));
Hn:=mul(x-Liste[i],i=1..numelems(Liste));
print(Hn);
 Koeffizienten:=Basenwechsel(Hn,numelems(Liste));
print(Koeffizienten);
for j from 0 to numelems(Liste)-1 do
  a[s][j][j]:=1;
end do;
for s from 1 to numelems(Liste)-1 do
  a[s][0]:=[1];
  a[s][1]:=[-e[s]*c[0]/c[s],d[0]-d[s]*c[0]/c[s],c[0]/c[s]];
  for j from 2 to numelems(Liste)-1 do
    print(1);
    a[s][j][abs(s-j)]:=sum(-c[j-1]*e[i+1]*a[s][j-1][i+1]/c[i+1],i=abs(s-j)..min(abs(s-j),s+j-2));
    print(2);
    a[s][j][abs(s-j)+1]:=sum(d[j-1]-c[j-1]*d[i]/c[i])*a[s][j-1][i],i=abs(s-j)+1..min(abs(s-j)+1,s+j-1)+sum(-c[j-1]*e[i+1]*a[s][j-1][i+1]/c[i+1],         i=abs(s-j)+1..min(abs(s-j)+1,s+j-2));
    print(3);
    for i from abs(s-j)+2 to s+j-2 do
      a[s][j][i]:=c[j-1]*a[s][j-1][i-1]/c[i-1]+(d[j-1]-c[j-1]*d[i]/c[i])*a[s][j-1][i]-c[j-1]*e[i+1]*a[s][j-1][i+1]/c[i+1]+e[j-1]*a[s][j-2][i];

      print(4);
    end do;
    a[s][j][s+j-1]:=sum(c[j-1]*a[s][j-1][i-1]/c[i-1],i=max(s-j+2,s+j-1)..s+j-1)+sum((d[j-1]-c[j-1]*d[i]/c[i])*a[s][j-1][i],i=max(s-j+1,s+j-1));
    print(5);
    a[s][j][s+j]:=sum(c[j-1]*a[s][j-1][i-1]/c[i-1],i=max(s-j+2,s+j)..s+j);
    print(6);
  end do;
end do
 

end proc

 

In the case of

a[s][j][abs(s-j)+1]:=sum(d[j-1]-c[j-1]*d[i]/c[i])*a[s][j-1][i],i=abs(s-j)+1..min(abs(s-j)+1,s+j-1)+sum(-c[j-1]*e[i+1]*a[s][j-1][i+1]/c[i+1],         i=abs(s-j)+1..min(abs(s-j)+1,s+j-2));

 
 
for example, the
i=abs(s-j)+1..min(abs(s-j)+1,s+j-2) clause in the end checks, wether the term should be added or not. I basically just need a way to tell Maple wether to add a term or not, depending on wether abs(s-j)+1 is not greater than s+j-2 in this case, without using if-clauses if possible. The problem here is, that min(abs(s-j)+1,s+j-2) can become 0, Maple then tries to calculate something instead of returning 0, and then complains when something inside the term is not properly defined (c[j-1] can become c[-1] for example when j=0) and aborts the entire procedure. How can I tell it to just assign 0?
 
 
 
 
 

I'm having problems with Multiplying Complex Numbers in Maple 2019.

Thanks in Advance.

Example 2: Multiplying Complex Numbers

 

(2-i)(4+3*i)

(3+2*i)(3-2*i)

4*i(-1+5*i)

(3+2*i)^2

2-i(4+3*i)

 

3+2*i(3-2*i)

 

4*i(-1+5*i)

 

(3+2*i)^2

(1.1)

``


 

Download Multiplying_Complex_num.mw

How I can plot the answers obtained from solving two differential equations?

Thanks

SAL.mw
 

restart

e := 0.62e-2

0.62e-2

(1)

r := 0.15e-1

0.15e-1

(2)

DDo2 := .17*3600

612.00

(3)

DDco2 := .12*3600

432.00

(4)

NULL

N := 20

20

(5)

P1o2 := 3600*(1000*(27*10^(-13)*24.45)*100)/(10000*0.986923267e-2)

0.2408029155e-3

(6)

P1co2 := 3600*(1000*(99*10^(-13)*24.45)*100)/(10000*0.986923267e-2)

0.8829440235e-3

(7)

P2o2 := Pi*r^2*DDo2*N/(e+r)

408.1106684

(8)

P2co2 := Pi*r^2*DDco2*N/(e+r)

288.0781188

(9)

diff(y[o2](t), t) = ((P1o2+P2o2)*(21-y[o2](t))-100*(167*y[o2](t)/(1.6+y[o2](t))*.25))*(1/1300)

diff(y[o2](t), t) = 6.592560841-.3139314686*y[o2](t)-3.211538462*y[o2](t)/(1.6+y[o2](t))

(10)

diff(y[co2](t), t) = ((P1co2+P2co2)*(0.4e-1-y*y[co2](t))+.25*(.8*(167*y*y[co2](t)/(1.6+y*y[co2](t))))*100)*(1/1300)

diff(y[co2](t), t) = 0.8863969285e-2-.2215992321*y*y[co2](t)+2.569230769*y*y[co2](t)/(1.6+y*y[co2](t))

(11)

                 initial*conditional     @t=0     yO2=21 , yco2=0.04


 

Download SAL.mw

 

I am writing a question in Mobius that requires students to enter the union and infinity symbols. I am using a Maple graded answer, and I am able to get it to grade infinity properly by typing the word "infinity" in the answer and using Maple syntax with symbolic entry, so that they have access to the infinity symbol in the equation editor. There is a union symbol in the equation editor, but I am not sure how to code the answer to make it accept the union symbol as correct.

Thanks

First 549 550 551 552 553 554 555 Last Page 551 of 2428