MaplePrimes Questions

I want to reference the previous equation/expression which is not displayed (':')in my worksheet. I allready know the '%' sign, but this references the previous equation/expression which was executed . By previous I mean the result (which is not displayed) in the previous line.

As I do not want the previous equation to be displayed I also cannot use the equation lable (CTRL+L).

 

Example

x:=a=b+1:

solve(previous,{b});

 

Thank you for your help.

I'm new here, so I'm not totally sure this is the right place to ask this. I apologize if it isn't, please let me know in that case.

 

My problem is that Maple won't recognize the built-in command 'complexplot3d'. For example, typing:

complexplot3d(z^2, z = -1-I .. 1+I)

doesn't do anything, and it's displayed again in blue as if it was not a command.

 

Any kind of help would be extremely helpful, as I have no clue of what's going on. Thanks in advance!

Hi everyone,

I'm kinda new here, and I really hope you guys can help me through this. In my new case study, after some revision, i thought i might be trying to implement a shooting method. I tried my best to make it work/understand but i couldn't get to any result.

So, as attached (i re-do PV Satya Naraya's paper first to be more understand but .....)

 

Here is my questions and the worksheet:

1) really stuck in mind - what is the purpose of shooting method for some related study?

2) what is the meaning of error .............'use midpoint method intead" 

3) Worksheet - 1MASS_JEFF_SATYA_on_Beta.mw

Thanks in advanced. Really hope that someone can help/teach me how to solve the boundary value problem by shooting method. 

 

 

restart; with(plots); lambda := 1.0; m := 2.0; M := 2; R := .1; Pr := .75; G := .1; Sc := .6; Kr := .2; blt := 5

Eq1 := diff(f(eta), eta, eta, eta)+(1+lambda)*(f(eta)*(diff(f(eta), eta, eta))-(diff(f(eta), eta))^2)-(1+lambda)*M*(diff(f(eta), eta))+beta*((diff(f(eta), eta, eta))^2-f(eta)*(diff(f(eta), eta, eta, eta, eta))) = 0;

diff(diff(diff(f(eta), eta), eta), eta)+2.0*f(eta)*(diff(diff(f(eta), eta), eta))-2.0*(diff(f(eta), eta))^2-4.0*(diff(f(eta), eta))+beta*((diff(diff(f(eta), eta), eta))^2-f(eta)*(diff(diff(diff(diff(f(eta), eta), eta), eta), eta))) = 0

(1)

``

Eq2 := (1+(4/3)*R)*(diff(theta(eta), eta, eta))+Pr*(f(eta)*(diff(theta(eta), eta))-m*(diff(f(eta), eta))*theta(eta)+G*theta(eta)) = 0;
NULL``

1.133333333*(diff(diff(theta(eta), eta), eta))+.75*f(eta)*(diff(theta(eta), eta))-1.500*(diff(f(eta), eta))*theta(eta)+0.75e-1*theta(eta) = 0

(2)

Eq3 := diff(phi(eta), eta, eta)+Sc*(f(eta)*(diff(phi(eta), eta))-m*(diff(f(eta), eta))*phi(eta)-Kr*phi(eta)) = 0;

diff(diff(phi(eta), eta), eta)+.6*f(eta)*(diff(phi(eta), eta))-1.20*(diff(f(eta), eta))*phi(eta)-.12*phi(eta) = 0

(3)

bcs1 := f(0) = 0, (D(f))(0) = 1, (D(f))(blt) = 0, (D(D(f)))(blt) = 0, theta(0) = 1, theta(blt) = 0, phi(0) = 1, phi(blt) = 0;

f(0) = 0, (D(f))(0) = 1, (D(f))(5) = 0, ((D@@2)(f))(5) = 0, theta(0) = 1, theta(5) = 0, phi(0) = 1, phi(5) = 0

(4)

L := [1.0, 1.5, 2.0, 2.5];

[1.0, 1.5, 2.0, 2.5]

(5)

for k to 4 do R := dsolve(eval({Eq1, Eq2, Eq3, bcs1}, beta = L[k]), [f(eta), theta(eta), phi(eta)], numeric, output = listprocedure); Y || k := rhs(R[3]); YA || k := rhs(R[6]); YB || k := rhs(R[5]); YC || k := -rhs(R[8]) end do

Error, (in dsolve/numeric/bvp) system is singular at left endpoint, use midpoint method instead

 

R

 

``

 

NULL

 

Download 1MASS_JEFF_SATYA_on_Beta.mw


Good morning everybody


I know this question has already been widely discussed, for example in
http://www.mapleprimes.com/questions/149585-How-To-Order-Legend-Of-Multiple-Plots

I used the answer Kitonum then gave because I have basically the same kind of problem.
As an illustration, here is a sketch of my coding :

N := 3:
for k from 1 to N do
   ...
   MyPlot||k := PLOT(CURVES(....)):
   ...
end do:
plots:-display(seq(MyPlot||k, k=1..N));

The only difference is that I use PLOT instead of plot ... so I have thought that using LEGEND instead of legend would give me the desired result.
But I don't understand how to use LEGEND and how to place the legend in the correct location.

I will appreciate any answer,
Thanks in advance


Here, I attached my maple code. I need to find root. I am using fsolve. But I am not geting the root. Please any one help me... to find the root.

reatart:NULL``

m1 := 0.3e-1;

0.3e-1

(1)

m2 := .4;

.4

(2)

m3 := 2.5;

2.5

(3)

m4 := .3;

.3

(4)

be := .1;

.1

(5)

rho := .1;

.1

(6)

ga := 25;

25

(7)

a := 3.142;

3.142

(8)

q := .5;

.5

(9)

z[0] := 3;

3

(10)

x[0] := 1.5152;

1.5152

(11)

w[0] := 1.1152;

1.1152

(12)

a1 := be*z[0];

.3

(13)

a2 := be*x[0];

.15152

(14)

a3 := rho*w[0];

.11152

(15)

a4 := rho*z[0];

.3

(16)

a5 := rho*w[0];

.11152

(17)

a6 := rho*z[0];

.3

(18)

b1 := a1*a4*ga+a4*ga*m1;

2.475

(19)

D1 := a1+m1+m2+m3+m4;

3.53

(20)

D2 := a1*m2+a1*m3+a1*m4-a2*ga+a3*ga+m1*m2+m1*m3+m1*m4+m2*m3+m2*m4+m3*m4;

1.92600

(21)

D3 := a1*a3*ga+a1*m2*m3+a1*m2*m4+a1*m3*m4-a2*ga*m1-a2*ga*m4+a3*ga*m1+a3*ga*m4+m1*m2*m3+m1*m3*m4+m2*m3*m4+m1*m2*m3;

1.4499000

(22)

D4 := a1*a3*a4*ga+a1*m2*m3*m4-a2*ga*m1*m4+a3*ga*m1*m4+m1*m2*m3*m4;

.3409200

(23)

G1 := -a1*a6-a6*m1-a6*m2-a6*m3;

-.969

(24)

G2 := -a1*a6*m2-a1*a6*m3+a2*a6*ga-a3*a6*ga+a4*a5*ga-a6*m1*m2-a6*m1*m3-a6*m2*m3;

.549300

(25)

G3 := -a1*a3*a6*ga-a1*a6*m2*m3+a2*a6*ga*m1-a3*a6*ga*m1-a6*m1*m2*m3;

-.3409200

(26)

A1 := w^(4*q)*cos(4*q*a*(1/2))+D1*w^(3*q)*cos(3*q*a*(1/2))+D2*w^(2*q)*cos(2*q*a*(1/2))+D3*w^q*cos((1/2)*q*a)+D4;

-.9999999170*w^2.0-2.496849400*w^1.5-0.3922745903e-3*w^1.0+1.025129710*w^.5+.3409200

(27)

B1 := w^(4*q)*sin(4*q*a*(1/2))+D1*w^(3*q)*sin(3*q*a*(1/2))+D2*w^(2*q)*sin(2*q*a*(1/2))+D3*w^q*sin((1/2)*q*a);

-0.4073463989e-3*w^2.0+2.495324242*w^1.5+1.925999960*w^1.0+1.025338523*w^.5

(28)

A2 := -w^(3*q)*a6*cos(3*q*a*(1/2))+G1*w^(2*q)*cos(2*q*a*(1/2))+G2*w^q*cos((1/2)*q*a)+G3;

.2121968329*w^1.5+0.1973593344e-3*w^1.0+.3883741982*w^.5-.3409200

(29)

B2 := -w^(3*q)*a6*sin(3*q*a*(1/2))+G1*w^(2*q)*sin(2*q*a*(1/2))+G2*w^q*sin((1/2)*q*a);

-.2120672160*w^1.5-.9689999799*w^1.0+.3884533076*w^.5

(30)

C := .27601200;

.27601200

(31)

Q1 := 4*C^2*(A2^2+B2^2);

.3047304966*(.2121968329*w^1.5+0.1973593344e-3*w^1.0+.3883741982*w^.5-.3409200)^2+.3047304966*(-.2120672160*w^1.5-.9689999799*w^1.0+.3884533076*w^.5)^2

(32)

Q2 := -4*C*A2*(A1^2-A2^2+B1^2-B2^2-C^2);

-1.10404800*(.2121968329*w^1.5+0.1973593344e-3*w^1.0+.3883741982*w^.5-.3409200)*((-.9999999170*w^2.0-2.496849400*w^1.5-0.3922745903e-3*w^1.0+1.025129710*w^.5+.3409200)^2-(.2121968329*w^1.5+0.1973593344e-3*w^1.0+.3883741982*w^.5-.3409200)^2+(-0.4073463989e-3*w^2.0+2.495324242*w^1.5+1.925999960*w^1.0+1.025338523*w^.5)^2-(-.2120672160*w^1.5-.9689999799*w^1.0+.3884533076*w^.5)^2-0.7618262414e-1)

(33)

Q3 := (A1^2-A2^2+B1^2-B2^2-C^2)^2-4*C^2*B2^2;

((-.9999999170*w^2.0-2.496849400*w^1.5-0.3922745903e-3*w^1.0+1.025129710*w^.5+.3409200)^2-(.2121968329*w^1.5+0.1973593344e-3*w^1.0+.3883741982*w^.5-.3409200)^2+(-0.4073463989e-3*w^2.0+2.495324242*w^1.5+1.925999960*w^1.0+1.025338523*w^.5)^2-(-.2120672160*w^1.5-.9689999799*w^1.0+.3884533076*w^.5)^2-0.7618262414e-1)^2-.3047304966*(-.2120672160*w^1.5-.9689999799*w^1.0+.3884533076*w^.5)^2

(34)

V := simplify(-4*Q1*Q3+Q2^2);

-0.1e-12-0.5481797400e-1*w^11-40.93358002*w^(19/2)-212.0102604*w^(17/2)-1.048226159*w^(21/2)-8.667039897*w^10-119.4464160*w^9-208.1803245*w^8-54.3436016*w^7-38.4722894*w^6+2.67061391*w^5-2.29413863*w^4-.136247212*w^2+.899997750*w^3+0.1e-10*w^(1/2)-0.150073928e-1*w^(3/2)+0.54469063e-2*w-2.53869438*w^(11/2)-2.40374793*w^(9/2)-84.14780373*w^(15/2)-86.62603442*w^(13/2)+2.023073705*w^(7/2)-0.6906749e-2*w^(5/2)

(35)

x := (-Q2+sqrt(V))/(2*Q1);

(1/2)*(1.10404800*(.2121968329*w^1.5+0.1973593344e-3*w^1.0+.3883741982*w^.5-.3409200)*((-.9999999170*w^2.0-2.496849400*w^1.5-0.3922745903e-3*w^1.0+1.025129710*w^.5+.3409200)^2-(.2121968329*w^1.5+0.1973593344e-3*w^1.0+.3883741982*w^.5-.3409200)^2+(-0.4073463989e-3*w^2.0+2.495324242*w^1.5+1.925999960*w^1.0+1.025338523*w^.5)^2-(-.2120672160*w^1.5-.9689999799*w^1.0+.3884533076*w^.5)^2-0.7618262414e-1)+(-0.1e-12-0.5481797400e-1*w^11-40.93358002*w^(19/2)-212.0102604*w^(17/2)-1.048226159*w^(21/2)-8.667039897*w^10-119.4464160*w^9-208.1803245*w^8-54.3436016*w^7-38.4722894*w^6+2.67061391*w^5-2.29413863*w^4-.136247212*w^2+.899997750*w^3+0.1e-10*w^(1/2)-0.150073928e-1*w^(3/2)+0.54469063e-2*w-2.53869438*w^(11/2)-2.40374793*w^(9/2)-84.14780373*w^(15/2)-86.62603442*w^(13/2)+2.023073705*w^(7/2)-0.6906749e-2*w^(5/2))^(1/2))/(.3047304966*(.2121968329*w^1.5+0.1973593344e-3*w^1.0+.3883741982*w^.5-.3409200)^2+.3047304966*(-.2120672160*w^1.5-.9689999799*w^1.0+.3884533076*w^.5)^2)

(36)

E := -2*A1*C*x-A1^2+A2^2-B1^2+B2^2-C^2;

-.2760120000*(-.9999999170*w^2.0-2.496849400*w^1.5-0.3922745903e-3*w^1.0+1.025129710*w^.5+.3409200)*(1.10404800*(.2121968329*w^1.5+0.1973593344e-3*w^1.0+.3883741982*w^.5-.3409200)*((-.9999999170*w^2.0-2.496849400*w^1.5-0.3922745903e-3*w^1.0+1.025129710*w^.5+.3409200)^2-(.2121968329*w^1.5+0.1973593344e-3*w^1.0+.3883741982*w^.5-.3409200)^2+(-0.4073463989e-3*w^2.0+2.495324242*w^1.5+1.925999960*w^1.0+1.025338523*w^.5)^2-(-.2120672160*w^1.5-.9689999799*w^1.0+.3884533076*w^.5)^2-0.7618262414e-1)+(-0.1e-12-0.5481797400e-1*w^11-40.93358002*w^(19/2)-212.0102604*w^(17/2)-1.048226159*w^(21/2)-8.667039897*w^10-119.4464160*w^9-208.1803245*w^8-54.3436016*w^7-38.4722894*w^6+2.67061391*w^5-2.29413863*w^4-.136247212*w^2+.899997750*w^3+0.1e-10*w^(1/2)-0.150073928e-1*w^(3/2)+0.54469063e-2*w-2.53869438*w^(11/2)-2.40374793*w^(9/2)-84.14780373*w^(15/2)-86.62603442*w^(13/2)+2.023073705*w^(7/2)-0.6906749e-2*w^(5/2))^(1/2))/(.3047304966*(.2121968329*w^1.5+0.1973593344e-3*w^1.0+.3883741982*w^.5-.3409200)^2+.3047304966*(-.2120672160*w^1.5-.9689999799*w^1.0+.3884533076*w^.5)^2)-(-.9999999170*w^2.0-2.496849400*w^1.5-0.3922745903e-3*w^1.0+1.025129710*w^.5+.3409200)^2+(.2121968329*w^1.5+0.1973593344e-3*w^1.0+.3883741982*w^.5-.3409200)^2-(-0.4073463989e-3*w^2.0+2.495324242*w^1.5+1.925999960*w^1.0+1.025338523*w^.5)^2+(-.2120672160*w^1.5-.9689999799*w^1.0+.3884533076*w^.5)^2-0.7618262414e-1

(37)

y := -E/(2*C*B1);

-1.811515442*(-.2760120000*(-.9999999170*w^2.0-2.496849400*w^1.5-0.3922745903e-3*w^1.0+1.025129710*w^.5+.3409200)*(1.10404800*(.2121968329*w^1.5+0.1973593344e-3*w^1.0+.3883741982*w^.5-.3409200)*((-.9999999170*w^2.0-2.496849400*w^1.5-0.3922745903e-3*w^1.0+1.025129710*w^.5+.3409200)^2-(.2121968329*w^1.5+0.1973593344e-3*w^1.0+.3883741982*w^.5-.3409200)^2+(-0.4073463989e-3*w^2.0+2.495324242*w^1.5+1.925999960*w^1.0+1.025338523*w^.5)^2-(-.2120672160*w^1.5-.9689999799*w^1.0+.3884533076*w^.5)^2-0.7618262414e-1)+(-0.1e-12-0.5481797400e-1*w^11-40.93358002*w^(19/2)-212.0102604*w^(17/2)-1.048226159*w^(21/2)-8.667039897*w^10-119.4464160*w^9-208.1803245*w^8-54.3436016*w^7-38.4722894*w^6+2.67061391*w^5-2.29413863*w^4-.136247212*w^2+.899997750*w^3+0.1e-10*w^(1/2)-0.150073928e-1*w^(3/2)+0.54469063e-2*w-2.53869438*w^(11/2)-2.40374793*w^(9/2)-84.14780373*w^(15/2)-86.62603442*w^(13/2)+2.023073705*w^(7/2)-0.6906749e-2*w^(5/2))^(1/2))/(.3047304966*(.2121968329*w^1.5+0.1973593344e-3*w^1.0+.3883741982*w^.5-.3409200)^2+.3047304966*(-.2120672160*w^1.5-.9689999799*w^1.0+.3884533076*w^.5)^2)-(-.9999999170*w^2.0-2.496849400*w^1.5-0.3922745903e-3*w^1.0+1.025129710*w^.5+.3409200)^2+(.2121968329*w^1.5+0.1973593344e-3*w^1.0+.3883741982*w^.5-.3409200)^2-(-0.4073463989e-3*w^2.0+2.495324242*w^1.5+1.925999960*w^1.0+1.025338523*w^.5)^2+(-.2120672160*w^1.5-.9689999799*w^1.0+.3884533076*w^.5)^2-0.7618262414e-1)/(-0.4073463989e-3*w^2.0+2.495324242*w^1.5+1.925999960*w^1.0+1.025338523*w^.5)

(38)

``

fsolve(x^2+y^2 = 1, w)

fsolve((1/4)*(1.10404800*(.2121968329*w^1.5+0.1973593344e-3*w^1.0+.3883741982*w^.5-.3409200)*((-.9999999170*w^2.0-2.496849400*w^1.5-0.3922745903e-3*w^1.0+1.025129710*w^.5+.3409200)^2-(.2121968329*w^1.5+0.1973593344e-3*w^1.0+.3883741982*w^.5-.3409200)^2+(-0.4073463989e-3*w^2.0+2.495324242*w^1.5+1.925999960*w^1.0+1.025338523*w^.5)^2-(-.2120672160*w^1.5-.9689999799*w^1.0+.3884533076*w^.5)^2-0.7618262414e-1)+(-0.1e-12-0.5481797400e-1*w^11-40.93358002*w^(19/2)-212.0102604*w^(17/2)-1.048226159*w^(21/2)-8.667039897*w^10-119.4464160*w^9-208.1803245*w^8-54.3436016*w^7-38.4722894*w^6+2.67061391*w^5-2.29413863*w^4-.136247212*w^2+.899997750*w^3+0.1e-10*w^(1/2)-0.150073928e-1*w^(3/2)+0.54469063e-2*w-2.53869438*w^(11/2)-2.40374793*w^(9/2)-84.14780373*w^(15/2)-86.62603442*w^(13/2)+2.023073705*w^(7/2)-0.6906749e-2*w^(5/2))^(1/2))^2/(.3047304966*(.2121968329*w^1.5+0.1973593344e-3*w^1.0+.3883741982*w^.5-.3409200)^2+.3047304966*(-.2120672160*w^1.5-.9689999799*w^1.0+.3884533076*w^.5)^2)^2+3.281588197*(-.2760120000*(-.9999999170*w^2.0-2.496849400*w^1.5-0.3922745903e-3*w^1.0+1.025129710*w^.5+.3409200)*(1.10404800*(.2121968329*w^1.5+0.1973593344e-3*w^1.0+.3883741982*w^.5-.3409200)*((-.9999999170*w^2.0-2.496849400*w^1.5-0.3922745903e-3*w^1.0+1.025129710*w^.5+.3409200)^2-(.2121968329*w^1.5+0.1973593344e-3*w^1.0+.3883741982*w^.5-.3409200)^2+(-0.4073463989e-3*w^2.0+2.495324242*w^1.5+1.925999960*w^1.0+1.025338523*w^.5)^2-(-.2120672160*w^1.5-.9689999799*w^1.0+.3884533076*w^.5)^2-0.7618262414e-1)+(-0.1e-12-0.5481797400e-1*w^11-40.93358002*w^(19/2)-212.0102604*w^(17/2)-1.048226159*w^(21/2)-8.667039897*w^10-119.4464160*w^9-208.1803245*w^8-54.3436016*w^7-38.4722894*w^6+2.67061391*w^5-2.29413863*w^4-.136247212*w^2+.899997750*w^3+0.1e-10*w^(1/2)-0.150073928e-1*w^(3/2)+0.54469063e-2*w-2.53869438*w^(11/2)-2.40374793*w^(9/2)-84.14780373*w^(15/2)-86.62603442*w^(13/2)+2.023073705*w^(7/2)-0.6906749e-2*w^(5/2))^(1/2))/(.3047304966*(.2121968329*w^1.5+0.1973593344e-3*w^1.0+.3883741982*w^.5-.3409200)^2+.3047304966*(-.2120672160*w^1.5-.9689999799*w^1.0+.3884533076*w^.5)^2)-(-.9999999170*w^2.0-2.496849400*w^1.5-0.3922745903e-3*w^1.0+1.025129710*w^.5+.3409200)^2+(.2121968329*w^1.5+0.1973593344e-3*w^1.0+.3883741982*w^.5-.3409200)^2-(-0.4073463989e-3*w^2.0+2.495324242*w^1.5+1.925999960*w^1.0+1.025338523*w^.5)^2+(-.2120672160*w^1.5-.9689999799*w^1.0+.3884533076*w^.5)^2-0.7618262414e-1)^2/(-0.4073463989e-3*w^2.0+2.495324242*w^1.5+1.925999960*w^1.0+1.025338523*w^.5)^2 = 1, w)

(39)

``

 

Download root.mw

Hello

Any idea about the summation of Fibonacci sequence

 

Fibonacci.mw

 

Best regards

 

Is there a way to force the branch choice with the LambertW?

If I turn on all _EnvAllSolutions:=true:

I get a placeholder for the branch. Unfortunately the name of this placeholder changes every time I re-evaluate.

Is there a way to force this to take a certain value?

 

Regards.

Hello, My problem is as following:

 

I have tried 2 options for solving the problem below, trying to plot the behaviour of a system to a predetermined function.

First I tried to use dsolve as usual:

restart; with(plots); C := setcolors(); with(LinearAlgebra);
eq1 := Force = Mass*(diff(y(t), `$`(t, 2)));
formula1 := 2.6*BodyWeight*abs(sin(4*Pi*t));
2.6 BodyWeight |sin(4 Pi t)|
BodyWeight := 80*9.81;
plot(formula1, t = 0 .. 2);


eq2 := formula1-SpringConstant*(diff(y(t), t)) = Mass*(diff(y(t), `$`(t, 2)));
/ d \ / d /
2040.480 |sin(4 Pi t)| - SpringConstant |--- y(t)| = Mass |--- |
\ dt / \ dt \

d \\
--- y(t)||
dt //
Mass := .200;
Springt := 200;
200
SpringConstant := Youngsmodulus*Surface/DeltaLength;
DeltaLength := 0.2e-1-y(t);
Surface := .15;
Youngsmodulus := 1600*10^6-20*t^2;
eq2;
/ 2 \ / d \
0.15 \-20 t + 1600000000/ |--- y(t)|
\ dt /
2040.480 |sin(4 Pi t)| - ------------------------------------- =
0.02 - y(t)

/ d / d \\
0.200 |--- |--- y(t)||
\ dt \ dt //

incs := y(0) = 0, (D(y))(0) = 0;
eq4 := dsolve({eq2, incs});
Warning: System is inconsistent

 

Second, I tried using a numerical solving, with maxfun.


restart; with(plots); C := setcolors(); with(LinearAlgebra);
eq1 := Force = Mass*(diff(y(t), `$`(t, 2)));
formula1 := 2.6*BodyWeight*abs(sin(4*Pi*t));
2.6 BodyWeight |sin(4 Pi t)|
BodyWeight := 80*9.81;
plot(formula1, t = 0 .. 2);


eq2 := formula1-SpringConstant*(diff(y(t), t)) = Mass*(diff(y(t), `$`(t, 2)));
/ d \ / d /
2040.480 |sin(4 Pi t)| - SpringConstant |--- y(t)| = Mass |--- |
\ dt / \ dt \

d \\
--- y(t)||
dt //
Mass := .200;
Springt := 200;
200
SpringConstant := Youngsmodulus*Surface/DeltaLength;
DeltaLength := 0.2e-1-y(t);
Surface := .15;
Youngsmodulus := 1600*10^6-20*t^2;
eq2;
/ 2 \ / d \
0.15 \-20 t + 1600000000/ |--- y(t)|
\ dt /
2040.480 |sin(4 Pi t)| - ------------------------------------- =
0.02 - y(t)

/ d / d \\
0.200 |--- |--- y(t)||
\ dt \ dt //

incs := y(0) = 0, (D(y))(0) = 0;
eq4 := dsolve({eq2, incs}, y(t), type = numeric, output = listprocedure, maxfun = 10^7);
[
[t = proc(t) ... end;, y(t) = proc(t) ... end;,
[

d ]
--- y(t) = proc(t) ... end;]
dt ]

test := rhs(eq4[2]);
proc(t) ... end;

This one does plot, but no further than 0.2*10^-6. I have tried compiling the data, but this has not worked yet.

 

Does anyone know a way to work around such a problem. Is it possible to plot the equation using a for loop? If yes, how?

 

 

How do I use Maple to pull the propane price from www.fuelsonline.ca ?

If I use HTTP[Get]("http://www.fuelsonline.ca")

I only get            301,""

Any help?

 

 

Hello everybody.

I have a function:

f(x,y)=GAMMA(y, -ln(x))/GAMMA(y)

seq(sum(f(x, y), y = 0 .. 1), x = 0 .. 5)

 

and I got a error message:

Error, (in ln) numeric exception: division by zero ??
This is normal behavior in seq function or Bug?

 

but  when I'm first calculate the sum sol := sum(f(x, y), y = 0 .. 1) -> x,

and evalf([seq(sol, x = 0 .. 5)]) ->[0., 1., 2., 3., 4., 5.] works fine.

 

Seq-division_by_zero.mw

Mariusz Iwaniuk

My old harddisk recently died and I am currently using a new one. I still have the license code for Maple 2016. Is it still possible for me to install Maple 2016 or 1 license = 1 installation?

hi,

how we can use maple to find solution of singuler integral equation by using product nystrom method or toeplitz method in maple?

Hi everyone, 

 

I am pretty new in MAPLE and I am having trouble doing a really easy thing. 

 

I would like to do a plot and add a legend. 

I know how to do a plot and I succeeded but I don't know how to write the legend. I want a legend that looks like:

K__V = 0.2

I have stored in my K__V the value 0.2. How can I do that? 

I tried with legend = 'K__V' 

This is ok to write the first part, but then how do I write the second one: ' = 0.2 ' ?

Of course I don't want to write 0.2 directly but I want to write K__V in this way the legend will change according to the value of K__V. 

In MATLAB what I want to write is really easy to do: 
legend('K__V=%d',K__V)


I hope I was clear.

Thanks

Hello,

I have an array/vector of values as results of a function:

=maple("Fm:=x->(Qv(x)+&1*Qm(x))/2";B3)

=maple("G:=map(g->evalf(eval(Fm(x),x=g)),[A])")

Now I need the maximum of absolute values of G!!

=maple("max(G)") I have maximum, but I want =maple("max(abs(G))") But there is an error in this expression!!

 

 

Hello everybody,

* The following set of instructions returns me an error

restart:
with(Maplets[Examples]):
A := Matrix(2,2,[1,2,3,4]):
LinearAlgebra:-Transpose(A);

Error, Transpose is not a command in the Maplets:-Examples:-LinearAlgebra package

(it would be the same for any other command from the LinearAlgebra package)


* If I try 

restart:
with(Maplets[Examples]):
with(LinearAlgebra):
A := Matrix(2,2,[1,2,3,4]):
Transpose(A);

the answer is Transpose(...),  as if Transpose was an undefined function (no matter the order of the loading of the two packages)


* In Maplets[Examples] there is a subpackage named LinearAlgebra : could it be the reason of these observed behaviour ?
* Is there any way to fix that other than copying from Maplets[Examples] the only pieces of code I need avoiding thus its complete loading ?
* More generally : is it possible to load a package "partly" by discarding some of its subpackages ?

Thank you for your answers

First 805 806 807 808 809 810 811 Last Page 807 of 2122