Unanswered Questions

This page lists MaplePrimes questions that have not yet received an answer

Hi,

I have been bothered lately by the number format for axis labels in Maple. My problem existed before, but it apparently didn't bother me before. I have spent many hours trying to find an answer in the program help, in MaplePrimes, and in general online searches. I am not having any luck at all (good luck, that is).

I want to change the format of the axis numbering. Maple seems to default to 2 decimal places in my graph, and I really need more. Oddly, when I export the graph to PDF, I get another decimal place (even though I didn't explicitly ask for one). 

How do I change the axis-label format? Any idea what I might get when I export the graph?

Thanks for your help,

Jno.

 

Hi MaplePrimes, 

I am interested in obtaining some gravitational field equations from an action using the FunDiff command. I have been able to write what I think is a pretty short and quick worksheet(with an arbitrary metric) and I am easily able to obtain the Einstein Field Equations. However, when I introduce some new more complicated terms into the action and apply the Simplify command maple does not appear to be able to evaluate and I end up halting the computation. When I specify a metric Maple, for example Schwarzschild, Maple will easily be able to Simplify my expression but it will use metric components during the process. Where what I am interested in is just the Tensor expression with respective indices. 

I was wondering if anyone had any thoughts on how I could resolve this. 

I have attached the worksheet that I am working with. I look forward to your thoughts/comments.

Thank you.  

ActionFieldEquations.mw

Help, have no idea what to do.

Obtain a finite topological space from a dynamical system specified as a system of ODEs, by writing Maple code for following steps (use Maple packages DynamicSytems and GraphTheory, preferablly):

  1. Visualize the phase space of the system by plotting solution curves for different initial conditions.

  2. Consider a finite region of the phase space.

  3. Define a finite grid of points in the region.

  4. Define a topology on the grid points based on their connectivity.

  5. Give some useful information regarding the dynamical system in terms of topological properties.

Article https://mapleprimes.com/posts/208409-Downloading-Historical-Stock-Quotes has worked well for the last few years.

Somewhere in the last 6 months Yahoo has changed the method. Crumbstore no longer exists within the page source.

Does anyone have a method that currently works.

Problem is also verified at: https://www.solveforum.com/forums/threads/solved-yahoo-finance-cookie-and-crumb-not-working.2316600/ ,however they do not have a solution.

Dear all,

consider two lists of complex values :

list1 := [l1,l2,l3,l4,l5]

list2 := [s1,s2,s3,s4,s5].

There is a set of second order differential equation

d^2u(k)/dt^2+I*A*du/dt-B*u=0

where A is sum of elements of list1 and list2 and B is multiplication of their element. Therefore,

d^2u[1](k)/dt^2+I*(l1+s1)*du[1]/dt-(l1*s1)*u[1]=0

d^2u[2](k)/dt^2+I*(l2+s2)*du[2]/dt-(l2*s2)*u[2]=0

d^2u[3](k)/dt^2+I*(l3+s3)*du[3]/dt-(l3*s3)*u[3]=0

d^2u[4](k)/dt^2+I*(l4+s4)*du[4]/dt-(l4*s4)*u[4]=0

d^2u[5](k)/dt^2+I*(l5+s5)*du[5]/dt-(l5*s5)*u[5]=0

How can I create a set of differential equations and initial conditions based on nops(list1), then solve this system of differential equations numerically in Maple.

since u[i] are function of k, next step is to transforme them to real space by inverse fourier transform.

finally save the results and plot them.

Note that for simplisity I wrote a linear equation but it is not. so, because of nonlinear terms it is not possible to use superposition of the solution. I have to take them as coupled system of equations.

====

for example

list1 := [ [0., -5.496799068*10^(-15)-0.*I], [.1, 5.201897725*10^(-16)-1.188994754*I], [.2, 6.924043163*10^(-17)-4.747763855*I], [.3, 2.297497722*10^(-17)-10.66272177*I], [.4, 1.159126178*10^(-17)-18.96299588*I] ] 

list2 :=[ [0., -8.634351786*10^(-7)-67.81404036*I], [.1, -0.7387644021e-5-67.76491234*I], [.2, -0.1433025271e-4-67.59922295*I], [.3, -0.2231598645e-4-67.25152449*I], [.4, -0.3280855430e-4-66.56357035*I] ]

where first element is k and the second value is l_i and s_i

the differential equation is

ode_u[i]:= diff(u[i](t),t$2)+I*(list1[i][2]+list2[i][2])*diff(u[i](t),t)-list1[1][2]*list2[2][2]*u[i](t)=0;

eta is in fourier space where k values are in list1[i][1].

We laso know that f(-k)= - f*(k) where f=list[i][2]

and u[i] as function of k, initially has a Gaussian shape at t=0 in fourier space..

Thanks in advance for your help

Anyone out there converted the  nyqlog at MATLAB/nyqlog.m at master · nielsSkov/MATLAB · GitHub  to Maple or Maple Flow? For Nyquist plots...

Bonjour, petite question simple que je me pose la MapleSim permet de tout réaliser ?

I want to import a numeric 2800*1 matrix from matlab to maple by following command, but faced error as bellow:

X := ImportMatrix("E:/.../Omega.mat", source = MATLAB);
 ImportMatrix:-ModuleApply called with arguments: E:/.../Omega.mat, datatype = auto, delimiter = (), format = (), mode = (), output = all, ragged = true, skiplines = 0, source = MATLAB, sourceid = all, transpose = false
 #(ImportMatrix:-ModuleApply,36): error
Error, (in ImportMatrix) Array index out of range
 locals defined as: file = E:/.../Omega.mat, src = Matlab, ext = ext, res = res, x = x, isv7 = isv7, del = false

Where is the problem?

How to import?

Hello guys
I'm having trouble solving a PDE using pdsolve-numerical. Here's a notebook attached.

I'm grateful if anyone can help.

Regards,

Oliveira

                   PDE1.mw

I would appreciate any help to solve the following Partial Differential Equation, which is a mix of partial and regular derivatives as coefficients.

How to solve it with/without initial conditions?

Let us begin with few simulations: 
 

restart;

CodeTools:-Usage(plots['pointplot3d'](Matrix((proc (_) options operator, arrow; [_[() .. (), 1]-_[() .. (), 3], _[() .. (), 2]-_[() .. (), 4], _[() .. (), 5]] end proc)(convert(ssystem("wolframscript -code \"RandomPoint[Simplex[IdentityMatrix[5]], 2*^4]\"")[-1], FromMma)), scan = [rectangular, columns], datatype = float[4]), scaling = constrained))

memory used=0.57TiB, alloc change=91.51MiB, cpu time=18.77m, real time=15.86m, gc time=4.91m

 

CodeTools:-Usage(plots['pointplot3d'](Matrix((proc (_) options operator, arrow; [_[() .. (), 1]-_[() .. (), 3], _[() .. (), 2]-_[() .. (), 4], _[() .. (), 5]] end proc)(convert(ssystem("wolframscript -code \"RandomPoint[Sphere[5], 2*^4, ConstantArray[List[0, 1], 5]]\"")[-1], FromMma)), scan = columns, datatype = float[4]), scaling = constrained))

memory used=0.56TiB, alloc change=-12.08MiB, cpu time=18.70m, real time=15.11m, gc time=5.69m

 

NULL


 

Download iDistributionVector.mws

Well, I'd like to prove (through the use of Maple): 

transform((x1, x2, x3, x4, x5) -> [x1 - x3, x2 - x4, x5])(inequal(And((x || (1 .. 5)) >=~ 0, norm([x || (1 .. 5)], 1) = 1))) # not Maple syntax

is equivalent to a filled pyramid

ImplicitRegion((X, Y, Z), 0 <= Z <= 1 - abs(X) - abs(Y)) # not SymPy syntax

transform((x1, x2, x3, x4, x5) -> [x1 - x3, x2 - x4, x5])(inequal(And((x || (1 .. 5)) >=~ 0, norm([x || (1 .. 5)], 2) = 1))) # not Maple syntax

is equivalent to a hemi-ball

ImplicitRegion((X, Y, Z), 0 <= Z <= sqrt(1 - X**2 - Y**2)) # not SymPy syntax

, and 

transform((x1, x2, x3, x4, x5) -> [x1 - x3, x2 - x4, x5])(inequal(And((x || (1 .. 5)) >=~ 0, norm([x || (1 .. 5)], 'infinity') = 1))) # not Maple syntax

is equivalent to a solid cuboid

ImplicitRegion((X, Y, Z), -1 <= X <= 1 & -1 <= Y <= 1 & 0 <= Z <= 1) # not SymPy syntax

. (Here, for the convenience of the descriptions, I utilize some non-standard notation from .) 
Note that ”two regions are equal" is a two-way property, which means the following proof 

is(Z >= 0) and is(Z <= 1 - abs(X) - abs(Y)) assuming (X, Y, Z) =~ (x1 - x3, x2 - x4, x5), x || (1 .. 5) >=~ 0, add(x || (1 .. 5)) = 1;
                              true
(*Accordingly, the latter region is a subset of the former one.*) 

is incomplete (because it's hard to determine whether the is routine always performs equivalent transformations in internal evaluation). 

So, can I execute such eliminations in Maple?

As the code:

poly := x^4 + 8*x + 12:
galois(poly, x)

"4T4", {"A(4)"}, "+", 12, {"(1 2 4)", "(2 3 4)"}

 Then I know it's Galois group has to be (isomorphic to) A4. And I can draw its Subgroup Lattice:

DrawSubgroupLattice(GaloisGroup(poly, x), 'indices')

But according to Galois's theory, each subgroup represents an intermediate field. As far as I know, ⑤⑥⑦⑧ are Q(r1),Q(r2),Q(r3) and Q(r4), respectively, where ri is the root of equation x^4+8x+12. But I have no idea what fields ②③④⑨ means. How do you calculate out those intermediate fields with maple?

Dear researchers,

Greetings, I have unable to apply Nonlinear Least-Squares Methods  for an SIR parameter estimation. May you share me your Maple code model as a  sample parameter estimation ?

Thank you in advance!!!

Dear people,

I have resolved the primitives of the equation of the odometric model.

I have plotted them to the Maple interface and I was thinking that it can have been done by the solver.

Nevertheless it has not been possible to do it.

Can you tell me if a package of Maple can resolve it ?

Best regards,

Edern Ollivier.

Hi,

May  I please get a Maple code to solve the below Perturbation Iteration Solutions for Volterra Integral Equations? 

I shall be very much grateful if I can get the Maple Code.

And possible plotting

Thanks

First 52 53 54 55 56 57 58 Last Page 54 of 361