Amna Raja

20 Reputation

3 Badges

2 years, 132 days

MaplePrimes Activity


These are questions asked by Amna Raja

Can someone help me to find graph of this type of solutions .

finalsol := exp(I*(-k*x+t*(k^2+2*rho^2-2*sigma^2)+theta))*rho*tanh(-2*k*rho*t+rho*x);

sol1 := eval(finalsol, [rho = .5, theta = .5, sigma = .5, k = .5]);

graph1 := plot3d(sol1, t = -5 .. 5, x = -5 .. 5, numpoints = 300, frames = 50, axes = framed, color = x, thickness = 5, axesfont = ["HELVETICA", "ROMAN", 24], labelfont = ["HELVETICA", "ROMAN", 24]);

ContPlot1 := contourplot(sol1, t = -20 .. 20, x = -20 .. 20, frames = 50, axes = framed, thickness = 5, numpoints = 300, a*xesfont = ["HELVETICA", "ROMAN", 24], labelfont = ["HELVETICA", "ROMAN", 24])

plot_solution.mw

 

restart;
with(DEtools);
assume(r::real, a::real, b::real, upsilon::real, sigma::real, x::real, y::real, t > 0);
assume(sigma > 0); assume(-b^2-r+2 > 0);
V := -2*exp(I*(sqrt(-b^2-r+2)*x+b*y+r*t))*sqrt(1/sigma)*sech(-t*(-2*sqrt(-b^2-r+2)-2*b)-x-y):
pde[1] := I*(diff(V, t))+diff(V, x, x)+diff(V, y, y)+sigma*abs(V^2)*V = 0: evalc(pde[1]);

 

solution.mw

with(PDEtools):
V:=-exp(I*(k*x+omega*t+theta))*sqrt((k^2+omega)/(k*sigma))*sech(sqrt(k^2+omega)*(-2*k*t+x));
pde[1] := simplify(I*(diff(V, t, t))+diff(V, x, x)-I*sigma*V*(conjugate(V)*(diff(V, x))-V*(diff(conjugate(V), x)))) = 0;

 

restart;
with(PDEtools);
assume(k::real, x::real, omega::real, t::real, theta::real, c::real);
tr0 := c*(t*upsilon+x) = xi;
tr1 := I*(k*x+omega*t+theta);
tr2 := phi(lhs(tr0))*exp(tr1);
PDE := proc (u) options operator, arrow; I*(diff(u, t))+diff(u, x, x)-I*sigma*u*(conjugate(u)*(diff(u, x))-u*(diff(conjugate(u), x))) end proc;
Eq1 := PDE(tr2);
Eq2 := simplify(convert(expand(subs(tr0, Eq1)), diff));

for_maple_prime.mw

restart;
with(PDEtools);
assume(k::real, x::real, omega::real, t::real, theta::real, c::real);
u := phi(c*(t*upsilon+x))*exp(I*(k*x+omega*t+theta));
PDE := proc (u) options operator, arrow; I*(diff(u, t))+diff(u, x, x)-I*sigma*u*(conjugate(u)*(diff(u, x))-u*conjugate(diff(u, x))) end proc;
Eq1 := PDE(u)

Page 1 of 1