delvin

50 Reputation

5 Badges

2 years, 66 days

MaplePrimes Activity


These are questions asked by delvin

Why aren't all the variables in fin 1 equation?

And the answers are different from the solutions?

 

restart

with(student)

eq1 := 12*gamma^3*rho[3]^2*(diff(w(psi), `$`(psi, 2)))+(-3*gamma*rho[2]^2+4*omega*rho[3]^2)*w(psi)+gamma*rho[3]^2*(rho[1]+2*rho[3])*w(psi)^3

12*gamma^3*rho[3]^2*(diff(diff(w(psi), psi), psi))+(-3*gamma*rho[2]^2+4*omega*rho[3]^2)*w(psi)+gamma*rho[3]^2*(rho[1]+2*rho[3])*w(psi)^3

(1)

NULL

"w(psi):=kappa[0]+sum(kappa[i]*((diff(E,psi))^(i))/((E(psi))^(i)),i=1..1)+sum(h[i]*(((diff(E,psi))^())/((E(psi))^()))^(-i),i=1..1);"

proc (psi) options operator, arrow, function_assign; kappa[0]+sum(kappa[i]*(diff(E, psi))^i/E(psi)^i, i = 1 .. 1)+sum(h[i]*((diff(E, psi))/E(psi))^(-i), i = 1 .. 1) end proc

(2)

"E(psi):=((epsilon[1]*jacobiCN(Zeta[1]*psi))+(epsilon[2]*jacobiSN(Zeta[2]*psi)))/((epsilon[3]*jacobiCN(Zeta[3]*psi))+(epsilon[4]*jacobiSN(Zeta[4]*psi))) ;"

proc (psi) options operator, arrow, function_assign; (varepsilon[1]*jacobiCN(Zeta[1]*psi)+varepsilon[2]*jacobiSN(Zeta[2]*psi))/(varepsilon[3]*jacobiCN(Zeta[3]*psi)+varepsilon[4]*jacobiSN(Zeta[4]*psi)) end proc

(3)

 

NULL

fin1 := simplify(eq1)

kappa[0]*(gamma*rho[3]^2*(rho[1]+2*rho[3])*kappa[0]^2-3*gamma*rho[2]^2+4*omega*rho[3]^2)

(4)

Sol := solve(fin1, {omega, Zeta[1], Zeta[2], Zeta[3], Zeta[4], epsilon[1], epsilon[2], epsilon[3], epsilon[4], h[1], kappa[0], kappa[1]})

{omega = omega, Zeta[1] = Zeta[1], Zeta[2] = Zeta[2], Zeta[3] = Zeta[3], Zeta[4] = Zeta[4], h[1] = h[1], kappa[0] = 0, kappa[1] = kappa[1], varepsilon[1] = varepsilon[1], varepsilon[2] = varepsilon[2], varepsilon[3] = varepsilon[3], varepsilon[4] = varepsilon[4]}, {omega = -(1/4)*gamma*(kappa[0]^2*rho[1]*rho[3]^2+2*kappa[0]^2*rho[3]^3-3*rho[2]^2)/rho[3]^2, Zeta[1] = Zeta[1], Zeta[2] = Zeta[2], Zeta[3] = Zeta[3], Zeta[4] = Zeta[4], h[1] = h[1], kappa[0] = kappa[0], kappa[1] = kappa[1], varepsilon[1] = varepsilon[1], varepsilon[2] = varepsilon[2], varepsilon[3] = varepsilon[3], varepsilon[4] = varepsilon[4]}

(5)

for i to 2 do Case[i] := allvalues(Sol[i]) end do

{omega = omega, Zeta[1] = Zeta[1], Zeta[2] = Zeta[2], Zeta[3] = Zeta[3], Zeta[4] = Zeta[4], h[1] = h[1], kappa[0] = 0, kappa[1] = kappa[1], varepsilon[1] = varepsilon[1], varepsilon[2] = varepsilon[2], varepsilon[3] = varepsilon[3], varepsilon[4] = varepsilon[4]}

 

{omega = -(1/4)*gamma*(kappa[0]^2*rho[1]*rho[3]^2+2*kappa[0]^2*rho[3]^3-3*rho[2]^2)/rho[3]^2, Zeta[1] = Zeta[1], Zeta[2] = Zeta[2], Zeta[3] = Zeta[3], Zeta[4] = Zeta[4], h[1] = h[1], kappa[0] = kappa[0], kappa[1] = kappa[1], varepsilon[1] = varepsilon[1], varepsilon[2] = varepsilon[2], varepsilon[3] = varepsilon[3], varepsilon[4] = varepsilon[4]}

(6)

NULL

NULL

Download 0123.mw

Hello

I want to write a program to get unknown coefficients of multiple polynomials. I have a problem with this program. The code sometimes doesn't work. Can anyone help me? It's very important to me.

restart

with(student)

``

EQ[0] := tanh(d)*b[1]*(b[1]+1)

tanh(d)*b[1]*(b[1]+1)

(1)

EQ[1] := -(-1+(a[1]-b[1]-1)*tanh(d)^2+(a[0]+1)*tanh(d))*b[1]

-(-1+(a[1]-b[1]-1)*tanh(d)^2+(a[0]+1)*tanh(d))*b[1]

(2)

EQ[2] := tanh(d)*((a[1]-b[1])*(a[0]+1)*tanh(d)-b[1]^2-a[1])

tanh(d)*((a[1]-b[1])*(a[0]+1)*tanh(d)-b[1]^2-a[1])

(3)

EQ[3] := (-a[1]^2+(2*b[1]-1)*a[1]-b[1]^2-b[1])*tanh(d)^2+(a[1]+b[1])*(a[0]+1)*tanh(d)-a[1]-b[1]

(-a[1]^2+(2*b[1]-1)*a[1]-b[1]^2-b[1])*tanh(d)^2+(a[1]+b[1])*(a[0]+1)*tanh(d)-a[1]-b[1]

(4)

EQ[4] := -tanh(d)*((a[1]-b[1])*(a[0]+1)*tanh(d)+a[1]^2+b[1])

-tanh(d)*((a[1]-b[1])*(a[0]+1)*tanh(d)+a[1]^2+b[1])

(5)

EQ[5] := -a[1]*(-1+(-a[1]+b[1]-1)*tanh(d)^2+(a[0]+1)*tanh(d))

-a[1]*(-1+(-a[1]+b[1]-1)*tanh(d)^2+(a[0]+1)*tanh(d))

(6)

EQ[6] := (a[1]+1)*a[1]*tanh(d)

(a[1]+1)*a[1]*tanh(d)

(7)

Eqs := {seq(EQ[i], i = 0 .. 6)}

Sol := solve(Eqs, {a[0], a[1], b[1]})NULL

{a[0] = a[0], a[1] = 0, b[1] = 0}, {a[0] = (tanh(d)^2-tanh(d)+1)/tanh(d), a[1] = -1, b[1] = -1}, {a[0] = -(tanh(d)-1)/tanh(d), a[1] = -1, b[1] = 0}, {a[0] = -(tanh(d)-1)/tanh(d), a[1] = 0, b[1] = -1}

(8)

for i from 2 to 4 do Case[i] := allvalues(Sol[i]) end do

{a[0] = -(tanh(d)-1)/tanh(d), a[1] = 0, b[1] = -1}

(9)

``

T1.mw

T2.mw

Hi,

`[Length of output exceeds limit of 1000000]`

Hello, I want to get the the homogeneous balance principle for the Differential-Difference Equation with Maple. Can anyone help?

the homogeneous balance principle:The balance is made between sentences with the highest degree of nonlinearity and the highest order of the available derivative. We consider the power of terms like u^p as pM and u(q) as M + q and put them equal (pM=M+q) and get the value of M. Now, if M = 1/n (where m is an integer), then we use the transformation U= W^n, where W is a new function.

example:

Hi,

I want to define the functions 10 and 11 and then put them in the eq equation, then simplify them and get the unknown values after the solve command, but there are error.

And value the function psi ?

NULL

NULL

restart

with(student)

NULL

"U(xi[n]):=a[0]+sum(-a[i]*psi^(i)(xi[n]),i=1..1)+sum(-b[i]*psi^(-i)(xi[n]),i=1..1)+sum(-c[i]*((diff(psi,xi[n])^(i)))/(psi^(i)(xi[n])),i=1..1);"

Error, empty script base

Typesetting:-mambiguous(Typesetting:-mrow(Typesetting:-mi("U", fontstyle = "italic", mathvariant = "italic"), Typesetting:-mfenced(Typesetting:-mrow(Typesetting:-mi("ξ", fontstyle = "normal", mathvariant = "normal"), Typesetting:-mfenced(Typesetting:-mi("n", font_style_name = "2D Input", fontstyle = "italic", mathvariant = "italic"), open = "[", close = "]", font_style_name = "2D Input", mathvariant = "normal")), mathvariant = "normal"), Typesetting:-mo("≔", accent = "false", fence = "false", largeop = "false", lspace = "0.2777778em", mathvariant = "normal", movablelimits = "false", rspace = "0.2777778em", separator = "false", stretchy = "false", symmetric = "false"), Typesetting:-mi("a", fontstyle = "italic", mathvariant = "italic"), Typesetting:-mfenced(Typesetting:-mn("0", mathvariant = "normal"), open = "[", close = "]", mathvariant = "normal"), Typesetting:-mo("+", accent = "false", fence = "false", largeop = "false", lspace = "0.2222222em", mathvariant = "normal", movablelimits = "false", rspace = "0.2222222em", separator = "false", stretchy = "false", symmetric = "false"), Typesetting:-mi("sum", fontstyle = "italic", mathvariant = "italic"), Typesetting:-mfenced(Typesetting:-mrow(Typesetting:-mo("&uminus0;", accent = "false", fence = "false", largeop = "false", lspace = "0.2222222em", mathvariant = "normal", movablelimits = "false", rspace = "0.2222222em", separator = "false", stretchy = "false", symmetric = "false"), Typesetting:-mi("a", fontstyle = "italic", mathvariant = "italic"), Typesetting:-mfenced(Typesetting:-mi("i", fontstyle = "italic", mathvariant = "italic"), open = "[", close = "]", mathvariant = "normal"), Typesetting:-mo("⋅", accent = "false", fence = "false", font_style_name = "2D Input", largeop = "false", lspace = "0.0em", mathvariant = "normal", movablelimits = "false", rspace = "0.0em", separator = "false", stretchy = "false", symmetric = "false"), Typesetting:-msup(Typesetting:-mi("ψ", font_style_name = "2D Input", fontstyle = "normal", mathvariant = "normal"), Typesetting:-mi("i", font_style_name = "2D Input", fontstyle = "italic", mathvariant = "italic"), superscriptshift = "0"), Typesetting:-mfenced(Typesetting:-mrow(Typesetting:-mi("ξ", fontstyle = "normal", mathvariant = "normal"), Typesetting:-mfenced(Typesetting:-mi("n", fontstyle = "italic", mathvariant = "italic"), open = "[", close = "]", mathvariant = "normal")), mathvariant = "normal"), Typesetting:-mo(",", accent = "false", fence = "false", largeop = "false", lspace = "0.0em", mathvariant = "normal", movablelimits = "false", rspace = "0.3333333em", separator = "true", stretchy = "false", symmetric = "false"), Typesetting:-mi("i", fontstyle = "italic", mathvariant = "italic"), Typesetting:-mo("=", accent = "false", fence = "false", largeop = "false", lspace = "0.2777778em", mathvariant = "normal", movablelimits = "false", rspace = "0.2777778em", separator = "false", stretchy = "false", symmetric = "false"), Typesetting:-mn("1", mathvariant = "normal"), Typesetting:-mo(".", accent = "false", fence = "false", largeop = "false", lspace = "0.2222222em", mathvariant = "normal", movablelimits = "false", rspace = "0.0em", separator = "false", stretchy = "false", symmetric = "false"), Typesetting:-mo(".", accent = "false", fence = "false", largeop = "false", lspace = "0.2222222em", mathvariant = "normal", movablelimits = "false", rspace = "0.0em", separator = "false", stretchy = "false", symmetric = "false"), Typesetting:-mn("1", mathvariant = "normal")), mathvariant = "normal"), Typesetting:-mo("+", accent = "false", fence = "false", largeop = "false", lspace = "0.2222222em", mathvariant = "normal", movablelimits = "false", rspace = "0.2222222em", separator = "false", stretchy = "false", symmetric = "false"), Typesetting:-mi("sum", fontstyle = "italic", mathvariant = "italic"), Typesetting:-mfenced(Typesetting:-mrow(Typesetting:-mo("&uminus0;", accent = "false", fence = "false", largeop = "false", lspace = "0.2222222em", mathvariant = "normal", movablelimits = "false", rspace = "0.2222222em", separator = "false", stretchy = "false", symmetric = "false"), Typesetting:-mi("b", fontstyle = "italic", mathvariant = "italic"), Typesetting:-mfenced(Typesetting:-mi("i", fontstyle = "italic", mathvariant = "italic"), open = "[", close = "]", mathvariant = "normal"), Typesetting:-mo("⋅", accent = "false", fence = "false", largeop = "false", lspace = "0.0em", mathvariant = "normal", movablelimits = "false", rspace = "0.0em", separator = "false", stretchy = "false", symmetric = "false"), Typesetting:-msup(Typesetting:-mi("ψ", fontstyle = "normal", mathvariant = "normal"), Typesetting:-mrow(Typesetting:-mo("&uminus0;", accent = "false", fence = "false", largeop = "false", lspace = "0.2222222em", mathvariant = "normal", movablelimits = "false", rspace = "0.2222222em", separator = "false", stretchy = "false", symmetric = "false"), Typesetting:-mi("i", fontstyle = "italic", mathvariant = "italic")), superscriptshift = "0"), Typesetting:-mfenced(Typesetting:-mrow(Typesetting:-mi("ξ", fontstyle = "normal", mathvariant = "normal"), Typesetting:-mfenced(Typesetting:-mi("n", fontstyle = "italic", mathvariant = "italic"), open = "[", close = "]", mathvariant = "normal")), mathvariant = "normal"), Typesetting:-mo(",", accent = "false", fence = "false", largeop = "false", lspace = "0.0em", mathvariant = "normal", movablelimits = "false", rspace = "0.3333333em", separator = "true", stretchy = "false", symmetric = "false"), Typesetting:-mi("i", fontstyle = "italic", mathvariant = "italic"), Typesetting:-mo("=", accent = "false", fence = "false", largeop = "false", lspace = "0.2777778em", mathvariant = "normal", movablelimits = "false", rspace = "0.2777778em", separator = "false", stretchy = "false", symmetric = "false"), Typesetting:-mn("1", mathvariant = "normal"), Typesetting:-mo(".", accent = "false", fence = "false", largeop = "false", lspace = "0.2222222em", mathvariant = "normal", movablelimits = "false", rspace = "0.0em", separator = "false", stretchy = "false", symmetric = "false"), Typesetting:-mo(".", accent = "false", fence = "false", largeop = "false", lspace = "0.2222222em", mathvariant = "normal", movablelimits = "false", rspace = "0.0em", separator = "false", stretchy = "false", symmetric = "false"), Typesetting:-mn("1", mathvariant = "normal")), mathvariant = "normal"), Typesetting:-mo("+", accent = "false", fence = "false", largeop = "false", lspace = "0.2222222em", mathvariant = "normal", movablelimits = "false", rspace = "0.2222222em", separator = "false", stretchy = "false", symmetric = "false"), Typesetting:-mi("sum", fontstyle = "italic", mathvariant = "italic"), Typesetting:-mfenced(Typesetting:-mrow(Typesetting:-mo("&uminus0;", accent = "false", fence = "false", font_style_name = "2D Input", largeop = "false", lspace = "0.2222222em", mathvariant = "normal", movablelimits = "false", rspace = "0.2222222em", separator = "false", stretchy = "false", symmetric = "false"), Typesetting:-mi("c", font_style_name = "2D Input", fontstyle = "italic", mathvariant = "italic"), Typesetting:-mfenced(Typesetting:-mi("i", font_style_name = "2D Input", fontstyle = "italic", mathvariant = "italic"), open = "[", close = "]", font_style_name = "2D Input", mathvariant = "normal"), Typesetting:-mo("⋅", accent = "false", fence = "false", font_style_name = "2D Input", largeop = "false", lspace = "0.0em", mathvariant = "normal", movablelimits = "false", rspace = "0.0em", separator = "false", stretchy = "false", symmetric = "false"), Typesetting:-mfrac(Typesetting:-mfenced(Typesetting:-mrow(Typesetting:-mi("diff", font_style_name = "2D Input", fontstyle = "italic", mathvariant = "italic"), Typesetting:-mfenced(Typesetting:-mrow(Typesetting:-mi("ψ", font_style_name = "2D Input", fontstyle = "normal", mathvariant = "normal"), Typesetting:-mo(",", accent = "false", fence = "false", font_style_name = "2D Input", largeop = "false", lspace = "0.0em", mathvariant = "normal", movablelimits = "false", rspace = "0.3333333em", separator = "true", stretchy = "false", symmetric = "false"), Typesetting:-mi("ξ", font_style_name = "2D Input", fontstyle = "normal", mathvariant = "normal"), Typesetting:-mfenced(Typesetting:-mi("n", font_style_name = "2D Input", fontstyle = "italic", mathvariant = "italic"), open = "[", close = "]", font_style_name = "2D Input", mathvariant = "normal")), font_style_name = "2D Input", mathvariant = "normal"), Typesetting:-mambiguous(Typesetting:-msup(Typesetting:-merror("?"), Typesetting:-mi("i", font_style_name = "2D Input", fontstyle = "italic", mathvariant = "italic"), superscriptshift = "0"), Typesetting:-merror("empty script base"))), font_style_name = "2D Input", mathvariant = "normal"), Typesetting:-mrow(Typesetting:-msup(Typesetting:-mi("ψ", font_style_name = "2D Input", fontstyle = "normal", mathvariant = "normal"), Typesetting:-mi("i", font_style_name = "2D Input", fontstyle = "italic", mathvariant = "italic"), superscriptshift = "0"), Typesetting:-mfenced(Typesetting:-mrow(Typesetting:-mi("ξ", font_style_name = "2D Input", fontstyle = "normal", mathvariant = "normal"), Typesetting:-mfenced(Typesetting:-mi("n", font_style_name = "2D Input", fontstyle = "italic", mathvariant = "italic"), open = "[", close = "]", font_style_name = "2D Input", mathvariant = "normal")), font_style_name = "2D Input", mathvariant = "normal")), bevelled = "false", denomalign = "center", linethickness = "1", numalign = "center"), Typesetting:-mo(",", accent = "false", fence = "false", font_style_name = "2D Input", largeop = "false", lspace = "0.0em", mathvariant = "normal", movablelimits = "false", rspace = "0.3333333em", separator = "true", stretchy = "false", symmetric = "false"), Typesetting:-mi("i", font_style_name = "2D Input", fontstyle = "italic", mathvariant = "italic"), Typesetting:-mo("=", accent = "false", fence = "false", font_style_name = "2D Input", largeop = "false", lspace = "0.2777778em", mathvariant = "normal", movablelimits = "false", rspace = "0.2777778em", separator = "false", stretchy = "false", symmetric = "false"), Typesetting:-mn("1", font_style_name = "2D Input", mathvariant = "normal"), Typesetting:-mo(".", accent = "false", fence = "false", font_style_name = "2D Input", largeop = "false", lspace = "0.2222222em", mathvariant = "normal", movablelimits = "false", rspace = "0.0em", separator = "false", stretchy = "false", symmetric = "false"), Typesetting:-mo(".", accent = "false", fence = "false", font_style_name = "2D Input", largeop = "false", lspace = "0.2222222em", mathvariant = "normal", movablelimits = "false", rspace = "0.0em", separator = "false", stretchy = "false", symmetric = "false"), Typesetting:-mn("1", font_style_name = "2D Input", mathvariant = "normal")), font_style_name = "2D Input", mathvariant = "normal"), Typesetting:-mo(";", accent = "false", fence = "false", largeop = "false", lspace = "0.0em", mathvariant = "normal", movablelimits = "false", rspace = "0.2777778em", separator = "true", stretchy = "false", symmetric = "false")))

 

NULL

U(xi[n+1]) := U(xi[n]+d)

U(xi[n]+d)

(1)

U(xi[n-1]) := U(xi[n]-d)

U(xi[n]-d)

(2)

NULL

eq := c*(diff(U, xi[n]))*(U(xi[n])+u(xi[n-1]))*(U(xi[n])+u(xi[n+1]))-(2*(u(xi[n-1])-u(xi[n+1])))*(U(xi[n])^2)(1-U(xi[n])^2)

-2*(u(xi[n-1])-u(xi[n+1]))*(U(xi[n]))(1-U(xi[n])^2)^2

(3)

NULL

Download abs.mw

1 2 3 4 5 6 7 Page 2 of 7