rameen hamood

30 Reputation

4 Badges

5 years, 72 days

MaplePrimes Activity


These are questions asked by rameen hamood

Suppose that a function f  has derivatives of all orders at a.  The the series

 

∑=(f(k)(a)/(k!))*(x−a)^k (limits are infinity and k=0, i donot how to insert that)

is called the Taylor series for f  about  a, where  f(n) is the n th order derivative of  f.

 

Suppose that the Taylor series for e2 x sin(5 x) about 0 is

a0+a1x+a2x2+⋯+a8x8+⋯

 

Enter the exact values of a0 and a8  in the boxes below.

      a0=   Preview   

     a8=   Preview   

Use Maple to find the solution of the initial value problem

y*(d^(2)*y/d*x^2)+(dy/dx)^2=0 0 with initial conditions y(0)=5and y'(0)=8.

Using Maple syntax, type in your answer in the box below, or copy (Ctrl-C) from your Maple worksheet and paste (Ctrl-V) in the answer box the solution. Do NOT enter the y(x)= part of the Maple output.

A is a 2 x 2 matrix with eigenvalue, eigenvector pairs:

5,<4,1> and 1,<3,4>.

1. Find an invertible matrix M and a diagonal matrix D such that A=MDM^(-1).

M=   Preview                                       D=   Preview   

2. For any integer n, find the matrix A^n   as a single matrix (i.e. explicitly entry-by-entry). Use Maple notation for a matrix.

   An=   Preview    

(Hint: compose your answer in Maple to make sure your syntax is correct and your answer is what you think it should be.)

Let A be an m×n matrix. The image of A  is the set of vectors

 

im(A)={y:y=Ax for some x∈Rn} ,

 

which is a vector space.

The dimension of im(A)  is called the rank of A, denoted by rank(A) .

(a)  Find the rank of the matrix 

v1:=<-146, -84, 28, -154>

v2:=<-203, 106, 34, -181>

v3:=<-94, -4, 106, -154>

v4:=<-36, 152, -86, 50>

v5:=< 173, 122, -390, 435>

A:=<v1|v2|v3|v4|v5>;

and enter in the box below.

rank(A)=    

(b) For the matrix A in (a), select all the statements below which are true.

(1) <97,-8,-49,-66> is in im(A)

(2) <-65,74,10,-52> is in im(A)

(3)im(A) is subspace of R^4

(4) <2,-2,-4,4,-2> is in im(A)

(5) <0,0,0,0> is in im(A)

(6) <0,0,0,0,0> is in im(A)

(7) <-1,-2,1,-2,1> is in im(A)

(8) im(A) is a subspace of R^5

Let A be an m×n matrix. The kernel of A  is the set of vectors

ker(A)={x:Ax=0} ,

which is a vector space.

The dimension of ker(A)  is called the nullity of A, denoted by nullity(A) .

   (a)  Find the nullity of the matrix 

v1:=<136, 40, 124, -94>

v2:=<-74, -54, 150, 99>

v3:=<-104, 68, 196, -134>

v4:=<-38, -142, -108, 280>

v5:=<342, -326, -634, 635>

A:=<v1|v2|v3|v4|v5>

and enter in the box below.

nullity(A)=     

      b) For the matrix A in (a), select all the statements below which are true.

 (1)  <71, -37, 44, 73> is in ker(A)

 (2) <-1,1,2,-2,1> is in ker(A)

 (3) <0,0,0,0> is in ker(A)

 (4) <0,0,0,0,0> is in ker(A)

 (5) ker(A) is a subspace of R^5

 (6) ker(A) is a subspace of R^4

 (7) <95,-72,-85,-12> is in ker(A)

 (8) <2,4,-2,4,-2> is in ker(A)

 

 

 

1 2 3 4 5 Page 1 of 5