Maple 12 Questions and Posts Maple 12 Questions and Posts Feed

These are Posts and Questions associated with the product, Maple 12

i am solving 3 ODE with boundary condition.. with boundary condition

 

b.mw

Maple Worksheet - Error

Failed to load the worksheet /maplenet/convert/b.mw .

Download b.mw

 

then i got this error

Error, (in dsolve/numeric/bvp) initial Newton iteration is not converging

i dont know where i need to change.. could you help me..

 

                                                                          

i am solving 3 ODE question with boundary condition. when i running the programm i got this error.. any one could help me please.. :)

NULL

restart; with(plots); k := .1; E := 1.0; Pr := 7.0; Ec := 1.0; p := 2.0; blt := 11.5

Eq1 := diff(f(eta), eta, eta, eta)+f(eta)*(diff(f(eta), eta, eta))+Gr*theta(eta)-k*(diff(f(eta), eta))+2*E*g(eta) = 0;

diff(diff(diff(f(eta), eta), eta), eta)+f(eta)*(diff(diff(f(eta), eta), eta))+Gr*theta(eta)-.1*(diff(f(eta), eta))+2.0*g(eta) = 0

(1)

Eq2 := diff(g(eta), eta, eta)+f(eta)*(diff(g(eta), eta))-k*g(eta)-2*E*(diff(f(eta), eta)) = 0;

diff(diff(g(eta), eta), eta)+f(eta)*(diff(g(eta), eta))-.1*g(eta)-2.0*(diff(f(eta), eta)) = 0

(2)

Eq3 := diff(theta(eta), eta, eta)+Pr*(diff(theta(eta), eta))*f(eta)+Pr*Ec*((diff(f(eta), eta, eta))^2+(diff(g(eta), eta))^2) = 0;

diff(diff(theta(eta), eta), eta)+7.0*(diff(theta(eta), eta))*f(eta)+7.00*(diff(diff(f(eta), eta), eta))^2+7.00*(diff(g(eta), eta))^2 = 0

(3)

bcs1 := f(0) = p, (D(f))(0) = 1, g(0) = 0, theta(0) = 1, theta(blt) = 0, (D(f))(blt) = 0, g(blt) = 0;

f(0) = 2.0, (D(f))(0) = 1, g(0) = 0, theta(0) = 1, theta(11.5) = 0, (D(f))(11.5) = 0, g(11.5) = 0

(4)

L := [10, 11, 12];

[10, 11, 12]

(5)

for k to 3 do R := dsolve(eval({Eq1, Eq2, Eq3, bcs1}, Gr = L[k]), [f(eta), g(eta), theta(eta)], numeric, output = listprocedure); Y || k := rhs(R[3]) end do

Error, (in dsolve/numeric/bvp) initial Newton iteration is not converging

 

R

R

(6)

plot([Y || (1 .. 3)], 0 .. 10, labels = [eta, (D(f))(eta)]);

Warning, unable to evaluate the functions to numeric values in the region; see the plotting command's help page to ensure the calling sequence is correct

 

 

NULL

NULL


Download tyera(a).mw

A major-league pitcher releases a ball at a point 6 feet above the ground and 58 feet from home plate at a speed of 100 mi/hr ,  

If gravity had no effect, the ball would travel along a line and cross home plate 4 feet off the ground. Find the drop D caused by gravity.                                                                                                                                                      

 

NB: in this problem the angle alpha is the angle between the horizontal and the direction of the released ball. Since the ball is dropping, alpha will be negative.

Archimedes supposedlly, was asked to determine whether a crown made for the king consisted of pure gold. According to 

legend, he solved this problem by weighing the crown first in air and then in water. Suppose the scale read 7.84 N when the 

crown was in the air and 6.84 N when it was in water.

 

What should Archimedes have told the king ?

 

A concho-spiral is a curve C that has a parametrization :

x=a(e)^mu(t)*cos(t)

y=a(e)^mu(t)*sin(t)

z=b(e)^mu(t)

t>=0

where a, b, mu, are constants.

  1. Show that C lies on the cone a^2*z^2=b^2*(x^2+y^2).
  2. Sketch C for a = b = 4 and mu=-1.
  3. Find the length of C corresponding to the t-interval [0,infinity].

I got a problem with a difficult ode,the commands are below.

restart;
sys := 1.*(diff(x(t), t, t)) = piecewise(b(t) = 1, 0, 1003.0-1000.*x(t)-30.*(diff(x(t), t))-25.*signum(diff(x(t), t)-.1)-.3*signum(diff(x(t), t))*exp(-2*abs(diff(x(t), t)))), x(0) = 1, (D(x))(0) = 0;
mu := 100;
stick := [diff(x(t), t) = .1, b(t) = piecewise((1000.-1000.*x(t))^2 < 10000, 1, 0)];
slip := [[0, 10000 < (1000.-1000.*x(t))^2], b(t) = 0];
sol:=dsolve({sys,b(0)=0},numeric,discrete_variables=[b(t)::float],events=[stick,slip],event_maxiter=1000000,output=listprocedure,maxfun=0,range=0..8);

any advice is appreciated.


Q[1] := (e^(-n*T*s)-e^(-(n+1)*T*s)+(-exp(-Z[1]*n*T)*(s-Z[1])*exp(-n*T*(s-Z[1]))+exp(-Z[2]*n*T)*(s-Z[2])*exp(-n*T*(s-Z[2])))/(Z[1]-Z[2])+2*exp(-n*T*s)*(-1+Heaviside(-n*T)))/c+Z[1]*Z[2]*exp(-n*T*(s-Z[1]))/((s-Z[1])*exp(Z[1]*n*T)*(Z[1]-Z[2])*c)-Z[2]*Z[1]*exp(-n*T*(s-Z[2]))/((s-Z[2])*exp(Z[2]*n*T)*(Z[1]-Z[2])*c); 1; Q[2] := ((s-Z[1])*exp(-n*T*(s-Z[1]))*exp(-Z[1]*n*T)/(Z[2]-Z[1])+exp(-n*T*s)*(-1+Heaviside(-n*T)))/c+Z[1]*Z[2]*exp(-n*T*(s-Z[1]))/((s-Z[1])*exp(Z[1]*n*T)*(Z[1]-Z[2])*c)+(exp(-Z[2]*n*T)*(s-Z[2])*exp(-n*T*(s-Z[2]))/(Z[1]-Z[2])+exp(-n*T*s)*(-1+Heaviside(-n*T)))/c-Z[2]*Z[1]*exp(-n*T*(s-Z[2]))/((s-Z[2])*exp(Z[2]*n*T)*(Z[1]-Z[2])*c)+(e^(-n*T*s)-e^(-(n+1)*T*s))/c

((s-Z[1])*exp(-n*T*(s-Z[1]))*exp(-Z[1]*n*T)/(Z[2]-Z[1])+exp(-n*T*s)*(-1+Heaviside(-n*T)))/c+Z[1]*Z[2]*exp(-n*T*(s-Z[1]))/((s-Z[1])*exp(Z[1]*n*T)*(Z[1]-Z[2])*c)+(exp(-Z[2]*n*T)*(s-Z[2])*exp(-n*T*(s-Z[2]))/(Z[1]-Z[2])+exp(-n*T*s)*(-1+Heaviside(-n*T)))/c-Z[2]*Z[1]*exp(-n*T*(s-Z[2]))/((s-Z[2])*exp(Z[2]*n*T)*(Z[1]-Z[2])*c)+(e^(-n*T*s)-e^(-(n+1)*T*s))/c

(1)

Q[1] = Q[2]"(->)"true"(->)"true"(->)"true"(->)"true

Q[2] = ((s-Z[1])*exp(-n*T*(s-Z[1]))*exp(-Z[1]*n*T)/(Z[2]-Z[1])+exp(-n*T*s)*(-1+Heaviside(-n*T)))/c+Z[1]*Z[2]*exp(-n*T*s)/((s-Z[1])*(Z[1]-Z[2])*c)+(exp(-Z[2]*n*T)*(s-Z[2])*exp(-n*T*(s-Z[2]))/(Z[1]-Z[2])+exp(-n*T*s)*(-1+Heaviside(-n*T)))/c-Z[2]*Z[1]*exp(-n*T*s)/((s-Z[2])*(Z[1]-Z[2])*c)+(e^(-n*T*s)-e^(-T*s)*e^(-n*T*s))/c
"(->)"true
Q[2] = ((s-Z[1])*exp(-n*T*(s-Z[1]))*exp(-Z[1]*n*T)/(Z[2]-Z[1])+exp(-n*T*s)*(-1+Heaviside(-n*T)))/c+(exp(-Z[2]*n*T)*(s-Z[2])*exp(-n*T*(s-Z[2]))/(Z[1]-Z[2])+exp(-n*T*s)*(-1+Heaviside(-n*T)))/c+Z[1]*Z[2]*exp(-n*T*s)/((s-Z[1])*(Z[1]-Z[2])*c)-Z[2]*Z[1]*exp(-n*T*s)/((s-Z[2])*(Z[1]-Z[2])*c)+(e^(-n*T*s)-e^(-T*s)*e^(-n*T*s))/c
"(->)"true"(->)"true``

((s-Z[1])*exp(-n*T*(s-Z[1]))*exp(-Z[1]*n*T)/(Z[2]-Z[1])+exp(-n*T*s)*(-1+Heaviside(-n*T)))/c+(exp(-Z[2]*n*T)*(s-Z[2])*exp(-n*T*(s-Z[2]))/(Z[1]-Z[2])+exp(-n*T*s)*(-1+Heaviside(-n*T)))/c = (2*Heaviside(-n*T)-1)*exp(-n*T*s)/c
"(->)"true"(->)"true"(->)"true

Q[2] = (2*Heaviside(-n*T)-1)*exp(-n*T*s)/c+Z[1]*Z[2]*exp(-n*T*s)/((s-Z[1])*(Z[1]-Z[2])*c)-Z[2]*Z[1]*exp(-n*T*s)/((s-Z[2])*(Z[1]-Z[2])*c)+(e^(-n*T*s)-e^(-T*s)*e^(-n*T*s))/c
"(->)"false"(->)"false"(->)"false

``


Download inexplicable.mw

Can anyone explain the false return on the last line?  MAPLE seems to recognize the simplified expression on the next to last line, but when substituted into the expression for Q2 MAPLE does not seem to recognize the simplification.

Hi, i'm trying to make a function to create 2 polygons with the same number of sides, the same center but different radius. These 2 polygons have to be on the same draw. I tried by doing this function but its not working..

 If anyone could help me it would be great and sorry for my bad english i'm from France.

1 2 3 4 5 6 7 Last Page 1 of 15