Maple 15 Questions and Posts Maple 15 Questions and Posts Feed

These are Posts and Questions associated with the product, Maple 15

from mathematica,

 

n = 5;
CalabiYau[z_, k1_, k2_] := Module[{z1 = Exp[2Pi I k1/n]Cosh[z]^(2/n), z2 = Exp[2Pi I k2/n]Sinh[z]^(2/n)}, {Re[z1], Re[z2], Cos[alpha]Im[z1] + Sin[alpha]Im[z2]}];
Do[alpha = (0.25 + t)Pi; Show[Graphics3D[Table[ParametricPlot3D[CalabiYau[x + I y, k1, k2], {x, -1, 1}, {y, 0, Pi/2}, DisplayFunction -> Identity, Compiled ->False][[1]], {k1, 0, n - 1}, {k2, 0, n - 1}], PlotRange -> 1.5{{-1, 1}, {-1, 1}, {-1, 1}}, ViewPoint -> {1, 1, 0}]], {t, 0, 1, 0.1}];

 

n := 5;

z1 := exp(2*3.14*I*k1/n)*cosh(z)^(2/n);
z2 := exp(2*3.14*I*k2/n)*sinh(z)^(2/n);

alpha = (0.25 + t)Pi;

xx := Re(z1);
yy := Re(z2);
uu := cos(alpha)*Im(z1) + sin(alpha)*Im(z2);

 

where k1, k2, alpha are variables

print([xx,yy,uu]);

i find algcurve has implicitize

how to use this implicitize to find 3d surface?

is there any other method to find?

i got this error in window 8 in surface 2  then follow this post and install again still error

https://www.maplesoft.com/support/faqs/detail.aspx?sid=139020

then follow

http://www.maplesoft.com/support/faqs/detail.aspx?sid=32607

then follow and install again same error

http://www.maplesoft.com/support/faqs/detail.aspx?sid=32631

and install again same eror

then i add option -f c:\Program File (x86)\MapleXX in cmd and then no error any more 

but no install succeed 

where it go, it still not install

then i try again, there is no room enough to install,  hard disk do not have enough space, then i go to c:\Windows\Temp, after deleted file in it, still not enough space

 

i find 

https://www.maplesoft.com/support/install/maple15_install.html

but template do not state how to activate later

how to write this template and how to clear the temp file created by previous failed cmd install method

Hi,

 

Let, fixed an integer i and 1<=j<=2^{i}-1, for each x and y in [0,1] let the following mapping

Then, with the above procedure we can obtained, for a fixed i, all the mappings for j=1,...,2^{i}-1

 

However, How can I to evalute the "components" of the above procedure? For instance, I can not to compute CreaF(2)[1](0.35,0.465) (i.e., the first function in the "vector" CreaF(2), in x=0.35, y=0.465). 

 

Thanks very much for your time.

 

Hi, I am new to maple, but I think that my question should be simple.

I have a matrix where each element is an expression. I want to compute the matrix for different constant and to save it without crushing the previous matrix. 

If the file that I joined, I have a first part where the constant are defined. In the second part the expression of the matrix is defined. Finally, I compute each matrix with different constant. Each results is called C_p0, C_s0, C_g0. When I called them back, only the last matrix computed remains.

I would like to be able to save each matrix to performed operation on them later.

Thank you. 

 

Forum_Question1.mw

Homogénéisation

 

restart; with(plots); with(DifferentialGeometry); with(LinearAlgebra); with(Physics)

  NULL

Paramètre des matériaux

 

p[p] := [34.68, 34.82]:
NULL

 

NULLNULL

Tenseurs Élémentaires

 

NULL

Tenseur de rigidité

 

V := 1/((1+upsilon[23])*(-2*upsilon[12]*upsilon[21]-upsilon[23]+1)); G[12] := E/(2*(1+upsilon[12])); C[11] := (-upsilon[23]^2+1)*V*E[1]; C[22] := (-upsilon[12]*upsilon[21]+1)*V*E[2]; C[12] := upsilon[21]*(1+upsilon[23])*V*E[2]; C[23] := (upsilon[12]*upsilon[21]+upsilon[23])*V*E[2]; C[44] := (1/2)*(-2*upsilon[12]*upsilon[21]-upsilon[23]+1)*V*E[2]; C[55] := E[6]; C[33] := C[22]; C[13] := C[12]; C[66] := C[55]; C[21] := C[12]; C[32] := C[23]; C[iso] := Matrix(6, 6, {(1, 1) = C[11], (1, 2) = C[12], (1, 3) = C[12], (1, 4) = 0, (1, 5) = 0, (1, 6) = 0, (2, 1) = C[21], (2, 2) = C[22], (2, 3) = C[23], (2, 4) = 0, (2, 5) = 0, (2, 6) = 0, (3, 1) = C[21], (3, 2) = C[32], (3, 3) = C[22], (3, 4) = 0, (3, 5) = 0, (3, 6) = 0, (4, 1) = 0, (4, 2) = 0, (4, 3) = 0, (4, 4) = C[44], (4, 5) = 0, (4, 6) = 0, (5, 1) = 0, (5, 2) = 0, (5, 3) = 0, (5, 4) = 0, (5, 5) = C[66], (5, 6) = 0, (6, 1) = 0, (6, 2) = 0, (6, 3) = 0, (6, 4) = 0, (6, 5) = 0, (6, 6) = C[66]})

Matrice de rigidité

 

upsilon[23] := upsilon[p]:

Matrix([[C[11], C[12], C[12], 0, 0, 0], [C[21], C[22], C[23], 0, 0, 0], [C[21], C[32], C[22], 0, 0, 0], [0, 0, 0, C[44], 0, 0], [0, 0, 0, 0, C[66], 0], [0, 0, 0, 0, 0, C[66]]])

(1.2.1.1.1)

upsilon[23] := upsilon[s]:

Matrix([[C[11], C[12], C[12], 0, 0, 0], [C[21], C[22], C[23], 0, 0, 0], [C[21], C[32], C[22], 0, 0, 0], [0, 0, 0, C[44], 0, 0], [0, 0, 0, 0, C[66], 0], [0, 0, 0, 0, 0, C[66]]])

(1.2.1.1.2)

upsilon[23] := upsilon[g]:

Matrix([[C[11], C[12], C[12], 0, 0, 0], [C[21], C[22], C[23], 0, 0, 0], [C[21], C[32], C[22], 0, 0, 0], [0, 0, 0, C[44], 0, 0], [0, 0, 0, 0, C[66], 0], [0, 0, 0, 0, 0, C[66]]])

(1.2.1.1.3)

``

C[p0];

Matrix([[C[11], C[12], C[12], 0, 0, 0], [C[21], C[22], C[23], 0, 0, 0], [C[21], C[32], C[22], 0, 0, 0], [0, 0, 0, C[44], 0, 0], [0, 0, 0, 0, C[66], 0], [0, 0, 0, 0, 0, C[66]]])

(1)

``

 

equidistant_curve_MP.mw  Equidistant curves to the curves on the surface. (Without any sense, but real.)







Hi,

For each i and 1<=j<=2^{i}-1, define

 

 

Then, with the below procedure we can to generate, for a given i, all functions for j=1,...,2^{i}-1

 

 

However, I need to evaluate  the functions in the vector returned by this procedure. Then, how can I to defined sich functions? For instance, with

 

 

the instruction h(0,0.4) returns

 

With h:=(x,y=-->[CreaF(3)][2](x,y) do not works. Somebody know how to "evaluate" these functios (i.e., the components of the vector) above generated by the procedure CreaF?

 

Thank you very much for your time.

 

 

 

 

I have the following expression (generated by some other procedure):

This does not have a taylor expansion in pV[6] in the general case because the square roots can become negative:

taylor(xpr,pV[6]);
Error, does not have a taylor expansion, try series()

But I can get an expansion by restrictig the range of pV[6]:

taylor(xpr,pV[6]) assuming -0.01<pV[6],pV[6]<0.01;

So far things are perfectly fine. But when I try mtaylor:

mtaylor(xpr,pV[6]) assuming -0.01<pV[6],pV[6]<0.01;
Error, (in assuming) when calling 'mtaylor'. Received: 'does not have a taylor expansion, try series()'

So the assumption seems to be ignored. I can work around this by expanding in pV[6] first, using taylor, and then expanding the result from that using mtaylor (I really also want the expansions in the other pV components; 6 in total although in this example some do not show up). I'll have to convince myself that this work-around gives the correct result but I think it does. However, I don't particularly like it.

I consider this a bug and am tempted to submit an SCR. But before I do that; is there anything obvious I am missing here?

Thanks,

M.D.

PS: This was done using Maple 15. I'll check newer versions later.

mtaylor_assuming.mw

     Example of the equidistant surface at a distance of 0.25 to the surface
x3
-0.1 * (sin (4 * x1) + sin (3 * x2 + x3) + sin (2 * x2)) = 0
Constructed on the basis of universal parameterization of surfaces.

equidistant_surface.mw 


When I was editing the head of the question (? instead of .), its body disappeared. Please, insert it again.

Regard,

Markiyan Hirnyk

I want to ask., I put delta as my constant in maple program and I want the answer are in delta as well., but the thing is., when running., it let delta=0, delta=-1, and delta=delta.,
the condition is we cannot let delta=1 or delta=0 because it is just same for s5 and s7.,.(delta is refer to the s8). How can I get answer as delta? with the condition? here I attach my maple programme..

 

> derivation := proc (A, n)
local i, j, k, t, s5, s7, s8, m, D,
sols5, sols7, sols8, eqns5, eqns7, eqns8,
BChange5, BChange7, BChange8; eqns5 := {}; eqns7 := {}; eqns8 := {};
D := matrix(n, n);
BChange5 := matrix(n, n); BChange7 := matrix(n, n); BChange8 := matrix(n, n);
for i to n do for j to n do for m to n do
s5 := sum(0*A[i, j, k]*D[m, k], k = 1 .. n)-(sum(A[k, j, m]*D[k, i]+A[i, k, m]*D[k, j], k = 1 .. n));
s7 := sum(0*A[i, j, k]*D[m, k], k = 1 .. n)-(sum(A[k, j, m]*D[k, i]+0*A[i, k, m]*D[k, j], k = 1 .. n));
s8 := sum(0*A[i, j, k]*D[m, k], k = 1 .. n)-(sum(A[k, j, m]*D[k, i]+delta*A[i, k, m]*D[k, j], k = 1 .. n));
eqns5 := `union`(eqns5, {s5}); eqns7 := `union`(eqns7, {s7}); eqns8 := `union`(eqns8, {s8})
end do end do end do;
sols5 := [solve(eqns5)]; sols7 := [solve(eqns7)]; sols8 := [solve(eqns8)];
t := nops(sols5); t := nops(sols7); t := nops(sols8);
for i to t do for j to n do for k to n do
BChange5[k, j] := subs(sols5[i], D[k, j]);
BChange7[k, j] := subs(sols7[i], D[k, j]);
BChange8[k, j] := subs(sols8[i], D[k, j])
end do end do;
print("eqns&Assign;", eqns5); print("sols:=", sols5); print("BChange5:=", BChange5);
print("eqns&Assign;", eqns7); print("sols:=", sols7); print("BChange8:=", BChange7);
print("eqns&Assign;", eqns8); print("sols:=", sols8); print("BChange8:=", BChange8)
end do end proc;

> AS1 := array(sparse, 1 .. 2, 1 .. 2, 1 .. 2, [(1, 1, 2) = 1]);
> derivation(AS1, 2);

> AS2 := array(sparse, 1 .. 2, 1 .. 2, 1 .. 2, [(1, 1, 1) = 1, (1, 2, 2) = 1]);
> derivation(AS2, 2);

> AS3 := array(sparse, 1 .. 2, 1 .. 2, 1 .. 2, [(1, 1, 1) = 1, (2, 1, 2) = 1]);
> derivation(AS3, 2);

> AS4 := array(sparse, 1 .. 2, 1 .. 2, 1 .. 2, [(1, 1, 1) = 1, (2, 2, 2) = 1]);
> derivation(AS4, 2);

> AS5 := array(sparse, 1 .. 2, 1 .. 2, 1 .. 2, [(1, 1, 1) = 1, (1, 2, 2) = 1, (2, 1, 2) = 1]);
> derivation(AS5, 2);

> AS1 := array(sparse, 1 .. 3, 1 .. 3, 1 .. 3, [(1, 3, 2) = 1, (3, 1, 2) = 1]);
> derivation(AS1, 3);

> AS2 := array(sparse, 1 .. 3, 1 .. 3, 1 .. 3, [(1, 3, 2) = 1, (3, 1, 2) = alpha]);
> derivation(AS2, 3);

> AS3 := array(sparse, 1 .. 3, 1 .. 3, 1 .. 3, [(1, 1, 2) = 1, (1, 2, 3) = 1, (2, 1, 3) = 1]);
> derivation(AS3, 3);

> AS4 := array(sparse, 1 .. 3, 1 .. 3, 1 .. 3, [(1, 3, 2) = 1, (2, 3, 2) = 1, (3, 3, 3) = 1]);
> derivation(AS4, 3);

> AS5 := array(sparse, 1 .. 3, 1 .. 3, 1 .. 3, [(2, 3, 2) = 1, (3, 1, 1) = 1, (3, 3, 3) = 1]);
> derivation(AS5, 3);

> AS6 := array(sparse, 1 .. 3, 1 .. 3, 1 .. 3, [(3, 1, 2) = 1, (3, 2, 2) = 1, (3, 3, 3) = 1]);
> derivation(AS6, 3);

> AS7 := array(sparse, 1 .. 3, 1 .. 3, 1 .. 3, [(1, 2, 1) = 1, (2, 2, 2) = 1, (3, 1, 1) = 1, (3, 3, 3) = 1]);
> derivation(AS7, 3);

> AS8 := array(sparse, 1 .. 3, 1 .. 3, 1 .. 3, [(1, 3, 1) = 1, (2, 3, 2) = 1, (3, 1, 1) = 1, (3, 3, 3) = 1]);
> derivation(AS8, 3);

> AS9 := array(sparse, 1 .. 3, 1 .. 3, 1 .. 3, [(2, 3, 2) = 1, (3, 1, 1) = 1, (3, 2, 2) = 1, (3, 3, 3) = 1]);
> derivation(AS9, 3);

> AS10 := array(sparse, 1 .. 3, 1 .. 3, 1 .. 3, [(1, 3, 1) = 1, (2, 3, 2) = 1, (3, 1, 1) = 1, (3, 2, 2) = 1, (3, 3, 3) = 1]);
> derivation(AS10, 3);

> AS11 := array(sparse, 1 .. 3, 1 .. 3, 1 .. 3, [(1, 3, 2) = 1, (2, 3, 2) = 1, (3, 1, 2) = 1, (3, 2, 2) = 1, (3, 3, 3) = 1]);
> derivation(AS11, 3);

> AS12 := array(sparse, 1 .. 3, 1 .. 3, 1 .. 3, [(1, 1, 2) = 1, (1, 3, 1) = 1, (2, 3, 2) = 1, (3, 1, 1) = 1, (3, 2, 2) = 1, (3, 3, 3) = 1]);
> derivation(AS12, 3);

> AS13 := array(sparse, 1 .. 3, 1 .. 3, 1 .. 3, [(1, 1, 1) = 1, (2, 2, 2) = 1, (3, 3, 3) = 1]);
> derivation(AS13, 3);

> AS14 := array(sparse, 1 .. 3, 1 .. 3, 1 .. 3, [(1, 2, 1) = 1, (2, 1, 1) = 1, (2, 2, 2) = 1, (3, 3, 3) = 1]);
> derivation(AS14, 3);

> AS15 := array(sparse, 1 .. 3, 1 .. 3, 1 .. 3, [(1, 2, 1) = 1, (2, 2, 2) = 1, (3, 3, 3) = 1]);
> derivation(AS15, 3);

> AS16 := array(sparse, 1 .. 3, 1 .. 3, 1 .. 3, [(2, 1, 1) = 1, (2, 2, 2) = 1, (3, 3, 3) = 1]);
> derivation(AS16, 3);

> AS17 := array(sparse, 1 .. 3, 1 .. 3, 1 .. 3, [(1, 1, 2) = 1, (3, 3, 3) = 1]);
> derivation(AS17, 3);
>

Rotational motion mechanism with quasi stops      
02rep.pdf
DIMA.mw

I have two polynomials f(x,y,z) and g(x,y,z) and ask MAPLE to find conditions on the coefficients of f and g such that the Jacobian determinant in x and y is purely a polynomial in z. MAPLE finds 4 solutions, one of which is g=0, but does not find the solution f=0. I attach the relevant MAPLE worksheet.

The mechanism of transport of the material of the sewing machine M 1022 class: mathematical animation.   BELORUS.mw 




Hi, currently im using maple 15

the coding did work but it is not the same with the answer
here, i attach the coding with the answer

coding:
derivation := proc (A, n)
local i, j, k, t, s1, s2, m, D, sols, eqns, Andre;
eqns := {};
D := matrix(n, n);
Andre := matrix(n, n);
for i to n-1 do
for j from i+1 to n do
for m to n do
s1 := sum(A[i, j, k]*D[m, k], k = 1 .. n);
s2 := sum(A[k, j, m]*D[k, i]+A[i, k, m]*D[k, j], k = 1 .. n);
eqns := `union`(eqns, {s1 = s2})
end do end do end do;
sols := [solve(eqns)];
t := nops(sols);
for i to t do
for j to n do
for k to n do
Andre[k, j] := subs(sols[i], D[k, j])
end do end do;
print(Andre)
end do end proc

the maple result showing:

> AS1 := array(sparse, 1 .. 2, 1 .. 2, 1 .. 2, [(1, 1, 2) = 1]);

> derivation(AS1, 2);
[D11 0]
[D21 D22]

> AS2 := array(sparse, 1 .. 2, 1 .. 2, 1 .. 2, [(1, 1, 1) = 1, (1, 2, 2) = 1]);
> derivation(AS2, 2);
[0 D12]
[D21 D22]

the maple should showing

> derivation(AS1, 2);
[D11 0]
[D21 2D11]

> AS2 := array(sparse, 1 .. 2, 1 .. 2, 1 .. 2, [(1, 1, 1) = 1, (1, 2, 2) = 1]);
> derivation(AS2, 2);
[0 0]
[D21 D22]

please help., thank you

1 2 3 4 5 6 7 Last Page 1 of 43