from mathematica,

n = 5;

CalabiYau[z_, k1_, k2_] := Module[{z1 = Exp[2Pi I k1/n]Cosh[z]^(2/n), z2 = Exp[2Pi I k2/n]Sinh[z]^(2/n)}, {Re[z1], Re[z2], Cos[alpha]Im[z1] + Sin[alpha]Im[z2]}];

Do[alpha = (0.25 + t)Pi; Show[Graphics3D[Table[ParametricPlot3D[CalabiYau[x + I y, k1, k2], {x, -1, 1}, {y, 0, Pi/2}, DisplayFunction -> Identity, Compiled ->False][[1]], {k1, 0, n - 1}, {k2, 0, n - 1}], PlotRange -> 1.5{{-1, 1}, {-1, 1}, {-1, 1}}, ViewPoint -> {1, 1, 0}]], {t, 0, 1, 0.1}];

n := 5;

z1 := exp(2*3.14*I*k1/n)*cosh(z)^(2/n);

z2 := exp(2*3.14*I*k2/n)*sinh(z)^(2/n);

alpha = (0.25 + t)Pi;

xx := Re(z1);

yy := Re(z2);

uu := cos(alpha)*Im(z1) + sin(alpha)*Im(z2);

where k1, k2, alpha are variables

print([xx,yy,uu]);

i find algcurve has implicitize

how to use this implicitize to find 3d surface?

is there any other method to find?

i searched groebner basis can do this, but in mathematica is different from maple example