Maplesoft Blog

The Maplesoft blog contains posts coming from the heart of Maplesoft. Find out what is coming next in the world of Maple, and get the best tips and tricks from the Maple experts.

Since we are getting many questions on how to create Math apps to add to the Maple Cloud. I wanted to go over the different GUI aspects of how you go about creating a Math App in Maple. The following Document also includes some code examples that are used in the the Math App but doesn't go into them in detail. For more details on the type of coding you do in a Math App see the DocumentTools package help page.

Some of the graphical features of the Math app don't display on Maple Primes so I'd recommend downloading this worksheet from here: HowToMathApp.mw to follow along.


 

NULL

How to make a Math App (An example of using the Document Tools).

 

This Document will provide a beginners guide on one way to make a Math app in Maple.

It will contain some coding examples as well as where to find different options in the user interface.

Step 1 Insert a Table

 

 

• 

When making a Math App in Maple I often start with a table. You can enter a table by going to Insert > Table...

  

 

• 

I often make the table 1 x 2 to start with as this gives an area for input and an area for the output (such as plots).

NULL

 

Add a plot component to one of the cells of the table

 

 

• 

From the Components  Palette you can add a Plot Component . Add it to the table by clicking and dragging it over.

 

 

NULL

NULL

Add another table inside the other cell

 

 

• 

In the other cell of the table I'll add another table to organize my use of buttons, sliders, and other components.
NULL

NULL

Add some components to the new table

 

 

• 

From the Components Palette I'll add a slider, or dial, or something else for interaction.

 

• 

You may also want a Math region for an area to enter functions and a button to tell Maple to do something with it.

 

NULL

NULL

Arrange the Components to look nice

 

 

• 

You can change how the components are placed either by resizing the tables or changing the text orientation of the contents of the cells.

 

NULL

Write some code for the interaction of the buttons.

 

 

• 

Using the DocumentTools  package there are lots of ways you can use the components. I often will start writing my code using a code edit region  as it provides better visualization for syntax. On MaplePrimes these display as collapsed so I will also include code blocks for the code.

 

NULL

NULL

Let's write something that takes the value of the slider and applies it to the dial

 

 

• 

Note that the names of the components will change in each section as they are copies of the previous section.

 

with(DocumentTools):

14

with(DocumentTools):
sv:=GetProperty('Slider2',value);
SetProperty('Dial2',value,sv);
• 

This code will only execute when run using the  button. Change the value of the slider below then run the code above to see what happens.

 

NULL

NULL

Move the code 'inside' the slider

 

 

• 

Instead of putting the code inside the code edit region where it needs to be executed, we'll next add the code to the value changed code of the slider.

 

• 

Right click the Slider then select "Edit Value Changed Code".

 

 

• 

This will open the code editor for the Slider

 

 

• 

Enter your code (ensuring you're using the correct name for the slider and dial).

 

• 

Notice that you don't need to use the with(DocumentTools): command as "use DocumentTools in ... end use;" is already filled in for you.

 

• 

Save the code in the Slider and hit the  button inside it once.

• 

Now move the slider.

 

• 

On future uses of the App you won't need to hit  as the code will be run on startup.

``

NULL

NULL

Add some more details to your App

 

 

• 

Let's make this app do something a bit more interesting than change the contents of a dial when a slider moves.

 

• 

The plan in the next few steps is to make this app allow a user to explore parameters changing in a sinusoidal expression.

 

• 

I'm going to add a second Math Component, put the expression A*sin(t*theta+phi)into both then uncheck the box in the context panel that says "Editable".

 

• 

To make the Math containers fit nicely I'll check the Auto-fit container box and set the Minimum Width Pixels to 200.

 

``

Add code to change the value of phi in the second Math Container when the Slider changes

 

 

Note: Maple uses Radians for trigonometric functions so we should convert the value of phi to Radians.

use DocumentTools in

 

use DocumentTools in 
phi_s:=GetProperty(Slider5,value);
expr:= GetProperty(MathContainer6,expression);
new_expr:=algsubs(phi=phi_s*Pi/180,expr);

SetProperty(MathContainer7,expression,new_expr);
end use:

``

``

Make the Dial go from 0 to 360°

 

 

• 

Click the Dial and look at the options in the context panel on the right.

 

• 

Update the values in the Dial so that the highest position is 360 and the spacing makes sense for the app.

  NULL

``

Have the Dial update the theta value of the expression

 

 

• 

Add the following code to the Dial

 

use DocumentTools in
use DocumentTools in 
theta_d:=GetProperty(Dial7,value);
phi_s:=GetProperty(Slider7,value); #This is added so that phi also has the value updated

expr:= GetProperty(MathContainer10,expression);
new_expr0:=algsubs(theta=theta_d*Pi/180,expr);
new_expr:=algsubs(phi=phi_s*Pi/180,new_expr0);  #This is added so that phi also has the value updated

SetProperty(MathContainer11,expression,new_expr);
end use:

 

• 

Update the value in the slider to include the value from the dial

 

use DocumentTools in

 

use DocumentTools in 

theta_d:=GetProperty(Dial7,value); #This is added so that theta also has the value updated
phi_s:=GetProperty(Slider7,value); 

expr:= GetProperty(MathContainer10,expression);
new_expr0:=algsubs(theta=theta_d*Pi/180,expr); #This is added so that theta also has the value updated
new_expr:=algsubs(phi=phi_s*Pi/180,new_expr0);  

SetProperty(MathContainer11,expression,new_expr);

end use:

 

``

``

Notice that the code in the Dial and Slider are the same

 

 

• 

Since the code in the Dial and Slider are the same it makes sense to put the code into a procedure that can be called from multiple places.

 

Note: The changes in the code such as local and the single quotes are not needed but make the code easier to read and less likely to run into errors if edited in the future (for example if you create a variable called dial8 it won't interfere now that the names are in quotes).

 

 

UpdateMath:=proc() 

UpdateMath:=proc()
local theta_d, phi_s, expr, new_expr, new_expr0;
use DocumentTools in 
theta_d:=GetProperty('Dial8','value'); #Get value of theta from Dial
phi_s:=GetProperty('Slider8','value'); #Get value of phi from slider

expr:= GetProperty('MathContainer12','expression');
new_expr0:=algsubs('theta'=theta_d*Pi/180,expr);  # Put value of theta in expression
new_expr:=algsubs('phi'=phi_s*Pi/180,new_expr0);  # Put value of phi in expression
SetProperty('MathContainer13','expression',new_expr); # Update expression
end use:
end proc:

 

• 

Now change the code in the components to call the function using UpdateMath().

 

• 

Since the code above is only defined there it will need to be run once (but only once) before moving the components. Instead of leaving it here you can add it to the Startup code by clicking  or going to Edit > Startup code.  This code will run every time you open the Math App ensuring that it works right away.

 

• 

The startup code isn't defined in this document to allow progression of these steps.

 

``

Make the button initialize the app

 

 

• 

Since the startup code isn't defined in this document we are going to move this function into the button.

 

UpdateMath:=proc()

 

UpdateMath:=proc()
local theta_d, phi_s, expr, new_expr, new_expr0;
use DocumentTools in 
theta_d:=GetProperty('Dial9','value'); #Get value of theta from Dial
phi_s:=GetProperty('Slider9','value'); #Get value of phi from slider

expr:= GetProperty('MathContainer14','expression');
new_expr0:=algsubs('theta'=theta_d*Pi/180,expr);  # Put value of theta in expression
new_expr:=algsubs('phi'=phi_s*Pi/180,new_expr0);  # Put value of phi in expression
SetProperty('MathContainer15','expression',new_expr); # Update expression
end use:
end proc:
• 

First click the button to rename it, you'll see the  option in the context panel on the right. Then add the code above to the button in the same way as the Slider an Dial (Right click and select Edit Click Code).

 

``

``

Now it is easy to add new components

 

 

• 

Now if we want to add new components we just have to change the one procedure.  Let's add a Volume Gauge to change the value of A.

 

• 

Click in the cell containing the Dial, the context panel will show the option to Insert a row below the Dial.

• 

Now drag a Volume Gauge into the new cell.

 

• 

Click in the cell and choose the alignment (from the context panel) that looks best to you. In this case I chose center:

 

``

 

NULL

``

Update the procedure code for the Gauge

 

 

• 

Add two lines for the volume gauge to get the value and sub it into the expression

UpdateMath:=proc()

UpdateMath:=proc()
local theta_d, phi_s, expr, new_expr, new_expr0;
use DocumentTools in 
theta_d:=GetProperty('Dial11','value'); #Get value of theta from the Dial
phi_s:=GetProperty('Slider11','value'); #Get value of phi from the Slider
A_g:=GetProperty('VolumeGauge1','value'); #Get value of A from the Guage

expr:= GetProperty('MathContainer18','expression');
new_expr0:=algsubs('theta'=theta_d*Pi/180,expr);  # Put value of theta in expression
new_expr1:=algsubs('phi'=phi_s*Pi/180,new_expr0);  # Put value of phi in expression
new_expr:=algsubs('A'=A_g,new_expr1);  # Put value of A in expression

SetProperty('MathContainer19','expression',new_expr); # Update expression
end use:
end proc:
• 

Now add

UpdateMath();

  to the Gauge.

  ``

``

Plot the changing expression

 

 

• 

Make a procedure to get the value in the second Math Container and plot it

 

PlotMath:=proc()

PlotMath:=proc()
	local expr, p;
	use DocumentTools in 

	expr:=GetProperty('MathContainer21','expression'); 

	p:=plot(expr,'t'=-Pi/2..Pi/2,'view'=[-Pi/2..Pi/2,-100..100]):

	SetProperty('Plot14','value',p)
	end use:
end proc:
• 

Put this procedure in the Initialize button and the call to it in the components.

 

NULL

``

Tidy up the app

 

 

• 

Now that we have an interactive app let's tidy it up a bit.

 

• 

The first thing I'd recommend in your own app is moving the code from the initialize button to startup code. In this document we choose to use the button instead to preserve earlier versions.

 

• 

You can also remove the borders around the components by clicking in the table and selecting "Interior Borders" > "None" and "Exterior Borders" > "None" from the context panel.

NULL

``

``

Now you have a Math App

 

 

• 

You can upload your Math App to the Maple Cloud to share with others by going to "File" > "Save to Cloud".

 

• 

I'd recommend also including a description of what your app does. You can do this nicely using another table and Text mode.

 

 

 

``

``

NULL

HowToMathApp.mw

I’m extremely pleased to introduce the newest update to the Maple Companion. In this time of wide-spread remote learning, tools like the Maple Companion are more important than ever, and I’m happy that our efforts are helping students (and some of their parents!) with at least one small aspect of their life.  Since we’ve added a lot of useful features since I last posted about this free mobile app, I wanted to share the ones I’m most excited about. 

(If you haven’t heard about the Maple Companion app, you can read more about it here.) 

If you use the app primarily to move math into Maple, you’ll be happy to hear that the automatic camera focus has gotten much better over the last couple of updates, and with this latest update, you can now turn on the flash if you need it. For me, these changes have virtually eliminated the need to fiddle with the camera to bring the math in focus, which sometimes happened in earlier versions.

If you use the app to get answers on your phone, that’s gotten much better, too. You can now see plots instantly as you enter your expression in the editor, and watch how the plot changes as you change the expression. You can also get results to many numerical problems results immediately, without having to switch to the results screen. This “calculator mode” is available even if you aren’t connected to the internet.  Okay, so there aren’t a lot of students doing their homework on the bus right now, but someday!

Speaking of plots, you can also now view plots full-screen, so you can see more of plot at once without zooming and panning, squinting, or buying a bigger phone.

Finally, if English is not you or your students’ first language, note that the app was recently made available in Spanish, French, German, Russian, Danish, Japanese, and Simplified Chinese. 

As always, we’d love you hear your feedback and suggestions. Please leave a comment, or use the feedback forms in the app or our web site.

Visit Maple Companion to learn more, find links to the app stores so you can download the app, and access the feedback form. If you already have it installed, you can get the new release simply by updating the app on your phone.

Over the past weeks, we have spoken with many of our academic customers throughout the world, many of whom have decided to continue their academic years online. As you can imagine, this is a considerable challenge for instructors and students alike. Academia has quickly had to pivot to virtual classrooms, online testing and other collaborative technologies, while at the same time dealing with the stress and uncertainty that has resulted from this crisis.

We have been working with our customers to help them through this time in a variety of ways, but we know that there are still classes and students out there who are having trouble getting all the resources they need to complete their school year. So starting today, Maple Student Edition is being made free for every student, anywhere in the world, until the end of June. It is our hope that this action will remove a barrier for instructors to complete their Maple-led math instruction, and will help make things a bit more simple for everyone.

If you are a student, you can get your free copy of Maple here.

In addition, many of you have asked us about the best way to work on your engineering projects from home and/or teaching and learning remotely during this global crisis. We have put together resources for both that you can use as a starting point, and I invite you to contact us if you have any questions, or are dealing with challenges of your own. We are here to support you, and will be very flexible as we work together through these uncertain times.

I wish you all the best,

Laurent
President & CEO

Maple 2020 offers many improvements motivated and driven by our users.

Every single update in a new release has a story behind it. It might be a new function that a customer wants, a response to some feedback about usability, or an itch that a developer needs to scratch.

I’ll end this post with a story about acoustic guitars and how they drove improvements in signal and audio processing. But first, here are some of my personal favorites from Maple 2020.

Graph theory is a big focus of Maple 2020. The new features include more control over visualization, additional special graphs, new analysis functions, and even an interactive layout tool.

I’m particularly enamoured by these:

  • We’ve introduced new centrality measures - these help you determine the most influential vertices, based on their connections to other vertices
  • You now have more control over the styling of graphs – for example, you can vary the size or color of a nodebased on its centrality

I’ve used these two new features to identify the most influential MaplePrimes users. Get the worksheet here.

@Carl Love – looks like you’re the biggest mover and shaker on MaplePrimes (well, according to the eigenvector centrality of the MaplePrimes interaction graph).

We’ve also started using graph theory elsewhere in Maple. For example, you can generate static call graph to visualize dependencies between procedures calls in a procedure

You now get smoother edges for 3d surfaces with non-numeric values. Just look at the difference between Maple 2019 and 2020 for this plot.

Printing and PDF export has gotten a whole lot better.  We’ve put a lot of work into the proper handling of plots, tables, and interactive components, so the results look better than before.

For example, plots now maintain their aspect ratio when printed. So your carefully constructed psychrometric chart will not be squashed and stretched when exported to a PDF.

We’ve overhauled the start page to give it a cleaner, less cluttered look – this is much more digestible for new users (experienced users might find the new look attractive as well!). There’s a link to the Maple Portal, and an updated Maple Fundamentals guide that helps new users learn the product.

We’ve also linked to a guide that helps you choose between Document and Worksheet, and a link to a new movie.

New messages also guide new users away from some very common mistakes. For example, students often type “e” when referring to the exponential constant – a warning now appears if that is detected

We’re always tweaking existing functions to make them faster. For example, you can now compute the natural logarithm of large integers much more quickly and with less memory.

This calculation is about 50 times faster in Maple 2020 than in prior versions:

Many of our educators have asked for this – the linear algebra tutorials now return step by step solutions to the main document, so you have a record of what you did after the tutor is closed.

Continuing with this theme, the Student:-LinearAlgebra context menu features several new linear algebra visualizations to the Student:-LinearAlgebra Context Menu. This, for example, is an eigenvector plot.

Maple can now numerically evaluate various integral transforms.

The numerical inversion of integral transforms has application in many branches of science and engineering.

Maple is the world’s best tool for the symbolic solution of ODEs and PDEs, and in each release we push the boundary back further.

For example, Maple 2020 has improved tools for find hypergeometric solutions for linear PDEs.

This might seem like a minor improvement that’s barely worth mentions, but it’s one I now use all the time! You can now reorder worksheet tabs just by clicking and dragging.

The Hough transform lets you detect straight lines and line segments in images.

Hough transforms are widely used in automatic lane detection systems for autonomous driving. You can even detect the straight lines on a Sudoku grid!

The Physics package is always a pleasure to write about because it's something we do far better than the competition.

The new explore option in TensorArray combines two themes in Maple - Physics and interactive components. It's an intuitive solution to the real problem of viewing the contents of higher dimensional tensorial expressions.

There are many more updates to Physics in Maple 2020, including a completely rewritten FeynmanDiagrams command.

The Quantum Chemistry Toolbox has been updated with more analysis tools and curriculum material.

There’s more teaching content for general chemistry.

Among the many new analysis functions, you can now visualize transition orbitals.

I promised you a story about acoustic guitars and Maple 2020, didn’t I?

I often start a perfectly innocuous conversation about Maple that descends into several weeks of intense, feverish work.

The work is partly for me, but mostly for my colleagues. They don’t like me for that.

That conversation usually happens on a Friday afternoon, when we’re least prepared for it. On the plus side, this often means a user has planted a germ of an idea for a new feature or improvement, and we just have to will it into existence.

One Friday afternoon last year, I was speaking to a user about acoustic guitars. He wanted to synthetically generate guitar chords with reverb, and export the sound to a 32-bit Wave file. All of this, in Maple.

This started a chain of events that that involved least-square filters, frequency response curves, convolution, Karplus-Strong string synthesis and more. We’ll package up the results of this work, and hand it over to you – our users – over the next one or two releases.

Let me tell you what made it into Maple 2020.

Start by listening to this:

It’s a guitar chord played twice, the second time with reverb, both generated with Maple.

The reverb was simulated with convolving the artificially generated guitar chord with an impulse response. I had a choice of convolution functions in the SignalProcessing and AudioTools packages.

Both gave the same results, but we found that SignalProcessing:-Convolution was much faster than its AudioTools counterpart.

There’s no reason for the speed difference, so R&D modified AudioTools:-Convolution to leverage SignalProcessing:-Convolution for the instances for which their options are compatible. In this application, AudioTools:-Convolution is 25 times faster in Maple 2020 than Maple 2019!

We also discovered that the underlying library we use for the SignalProcessing package (the Intel IPP) gives two options for convolution that we were previously not using; a method which use an explicit formula and a “fast” method that uses FFTs. We modified SignalProcessing:-Convolution to accept both options (previously, we used just one of the methods),

That’s the story behind two new features in Maple 2020. Look at the entirety of what’s new in this release – there’s a tale for each new feature. I’d love to tell you more, but I’d run out of ink before I finish.

To read about everything that’s new in Maple 2020, go to the new features page.

Playing mini-golf recently, I realized that my protractor can only help me so far since it can't calculate the speed of the swing needed.  I decided a more sophisticated tool was needed and modeled a trick-shot in MapleSim.

To start, I laid out the obstacles, the ball and club, the ground, and some additional visualizations in the MapleSim environment.

 

When running the simulation, my first result wasn't even close to the hole (similar to when I play in real life!).

 

The model clearly needed to be optimized. I went to the Optimization app in MapleSim (this can be found under Add Apps or Templates  on the left hand side).

 

Inside the app I clicked "Load System" then selected the parameters I wanted to optimize.

 

For this case, I'm optimizing 's' (the speed of the club) and 'theta' (the angle of the club). For the Objective Function I added a Relative Translation Sensor to the model and attached a probe to the Vector Norm of the output.

 

Inside the app, I switched to the Objective Function section.  Selecting Probes, I added the new probe as the Objective Function by giving it a weight of 1.

 

 

Scrolling down to "Execute Parameter Optimization", I checked the "Use Global Optimization Toolbox" checkbox, and clicked Run Parameter Optimization.

 

Following a run time of 120 seconds, the app returns the graph of the objective function. 

 

Below the plot, optimal values for the parameters are given. Plugging these back into the parameter block for the simulation we see that the ball does in fact go into the hole. Success!

 

 

Mini_golf_Global_Optimization.msim

 

 The Joint Mathematics Meetings are taking place next week (January 1518) in Denver, CO. This meeting is a must-attend for anyone interested in learning about innovative mathematical research, advancing mathematical achievement, providing the communication and tools to progress in the field, encouraging mathematical research, and connecting with the mathematical community.

Maplesoft will at booth #1100  in the networking area (located just outside the exhibit hall doors). Stop by our booth or the networking area to chat with me and other members of the Maplesoft team, pick up some free Maplesoft swag or win some prizes. We’ve got some good ones!

There are also several interesting Maple-related talks and events happening this week. 

Attend our Workshop - Maple: Math Software for Teaching, Learning and Research

Thursday January 16th, 2020

Centennial Ballroom AHYATT Denver Colorado

Catered Reception: 6:00PM6:30PM
Training Workshop: 6:30PM8:00PM

Are you new to the Maple world and interested in finding out what Maple can do for you? Are you an old hand at Maple but curious about the many new features we’ve added in the past few years? Come join us for an interactive workshop that will guide you through Maple’s capabilities, with an emphasis on our latest additions.

The topics we’ll be covering include:

  • Our natural math notation for input and output
  • Tools for creating interactive documents that incorporate math, text and graphics
  • An overview of our vast library containing packages for advanced mathematics research scientific and engineering applications
  • A brief look at Maple’s powerful programming language|
  • Online and mobile tools that augment the Maple experience

Register herewww.com/ 

We are also 3 show floor talks, at the end of Aisle 600 inside the exhibits:

The Maple Companion App

 January 15

3:00 pm -3:55 pm

Using Maple to Enhance Teaching and Learning

 January 16

11:00 am-11:55 am

The Maple Companion App

January 17

11:00 am- 11:55 am

 

If you are attending the Joint Math Meetings and plan on presenting anything on Maple, please let me know and I'll add it to our list!


See you there!

Charlotte 

We recently had a question about using some of the plotting commands in Maple to draw things. We were feeling creative and thought why not take it a step further and draw something in 3D.

Using the geom3d, plottools, and plots packages we decided to make a gingerbread house.

To make the base of the house we decided to use 2 cubes, as these would give us additional lines and segments for the icing on the house.

point(p__1,[2,3,2]):
point(p__2,[3,3,2]):
cube(c1,p__1,2):
cube(c2,p__2,2):
base:=draw([c1,c2],color=tan);

Using the same cubes but changing the style to be wireframe and point we made some icing lines and decorations for the gingerbread house.

base_decor1:=draw([c1,c2],style=wireframe,thickness=3,color=red,transparency=0.2):
base_decor2:=draw([c1,c2],style=wireframe,thickness=10,color=green,linestyle=dot):
base_decor3:=draw([c1,c2],style=point,thickness=2,color="Silver",symbol=sphere):
base_decor:=display(base_decor1,base_decor2,base_decor3);

To create the roof we found the vertices of the cubes and used those to find the top corners of the base.

v1:=vertices(c1):
v2:=vertices(c2):
pc1:=seq(point(pc1||i,v1[i]),i=1..nops(v1)):
pc2:=seq(point(pc2||i,v2[i]),i=1..nops(v2)):
topCorners:=[pc1[5],pc1[6],pc2[1],pc2[2]]:
d1:=draw(topCorners):

Using these top corners we found the midpoints (where the peak of the roof would be) and added the roof height to the coordinates.

midpoint(lc1,topCorners[1],topCorners[2]):
detail(lc1);

point(cc1,[-(2*sqrt(3))/3 + 2, (2*sqrt(3))/3 + 3+1, 2]):
d3:=draw(cc1):

midpoint(lc2,topCorners[3],topCorners[4]):
detail(lc2);

point(cc2,[(2*sqrt(3))/3 + 3, (2*sqrt(3))/3 + 3+1, 2]):
d4:=draw(cc2):

With the midpoints and vertices at the front and rear of the house we made two triangles for the attic of the gingerbread house.

triangle(tf,[topCorners[1],topCorners[2],cc1]):
front:=draw(tf,color=brown):

triangle(tb,[topCorners[3],topCorners[4],cc2]):
back:=draw(tb,color=tan):

Using these same points again we made more triangles to be the roof.

triangle(trl,[cc1,cc2,pc1[5]]):
triangle(trh,[pc2[2],pc1[6],cc1]):
triangle(tll,[cc1,cc2,pc2[2]]):
triangle(tlh,[pc2[1],pc1[5],cc2]):
roof:=draw([trl,trh,tll,tlh],color="Chocolate");

Our gingerbread house now had four walls, a roof, and icing, but no door. Creating the door was as easy as making a parallelepiped, but what is a door without more icing?

door:=display(plottools:-parallelepiped([1,0,0],[0,1.2,0],[0,0,0.8],[0.8,1.9,1.6]),color="DarkRed"):
door_decor1:=display(plottools:-parallelepiped([1,0,0],[0,1.2,0],[0,0,0.8],[0.8,1.9,1.6]),color="Gold",style=line):
door_decor2:=display(plottools:-parallelepiped([1,0,0],[0,1.2,0],[0,0,0.8],[0.8,1.9,1.6]),color="Silver", style=line,linestyle=dot,thickness=5):
door_decor:=display(door_decor1,door_decor2):

Now having a door we could have left it like this, but what better way to decorate a gingerbread house than with candy canes? Naturally, if we were going to have one candy cane we were going to have lots of candy canes. To facilitate this we made a candy cane procedure.

candy_pole:=proc(c:=[0,0,0], {segR:=0.1}, {segH:=0.1}, {segn:=7}, {tilt_theta:=0}, {theta:=0}, {arch:=true}, {flip:=false})
local cane1,cane2,cane_s,cane_c,cane0,cane,i,cl,cd,ch, cane_a,tmp,cane_ac,cane_a1,cane00,cane01,cane02,cane_a1s,tmp2,cane_a2s:
uses plots,geom3d:
cl:=c[1]:
cd:=c[2]:
ch:=c[3]:
cane1:=plottools:-cylinder([cd, ch, cl], segR, segH,style=surface):

cane2:=display(plottools:-rotate(cane1,Pi/2,[[cd,ch,cl],[cd+1,ch,cl]])):
cane_s:=[cane2,seq(display(plottools:-translate(cane2,0,segH*i,0)),i=1..segn-1)]:
cane_c:=seq(ifelse(type(i,odd),red,white),i=1..segn):

cane0:=display(cane_s,color=[cane_c]):

if arch then

cane_a:=plottools:-translate(cane2,0,segH*segn-segH/2,0):
tmp:=i->plottools:-rotate(cane_a,i*Pi/24, [ [cd,ch+segH*segn-segH/2,cl+segR*2] , [cd+1,ch+segH*segn-segH/2,cl+segR*2] ] ):

cane_ac:=seq(ifelse(type(i,odd),red,white),i=1..24):

                cane_a1s:=seq(plottools:-translate(tmp(i),0,segH*i/12,segR*i/4),i=1..12):

tmp2:=i->plottools:-rotate(cane_a1s[12],i*Pi/24,[[cd,ch+segH*segn-0.05,cl+segR*2],[cd+1,ch+segH*segn-0.05,cl+segR*2]]):

cane_a2s:=seq(plottools:-translate(tmp2(i),0,-segH*i/500,segR*i/4),i=1..12):
cane_a1:=display(cane_a1s,cane_a2s,color=[cane_ac]):
cane00:=display(cane0,cane_a1);

                if flip then

cane01:=plottools:-rotate(cane00,tilt_theta,[[cd,ch,cl],[cd+1,ch,cl]]):
cane02:=plottools:-rotate(cane01,theta,[[cd,ch,cl],[cd,ch+1,cl]]):
cane:=plottools:-reflect(cane01,[[cd,ch,cl],[cd,ch+1,cl]]):

                else

cane01:=plottools:-rotate(cane00,tilt_theta,[[cd,ch,cl],[cd+1,ch,cl]]):
cane:=plottools:-rotate(cane01,theta,[[cd,ch,cl],[cd,ch+1,cl]]):

                end if:

                return cane:

else

                cane:=plottools:-rotate(cane0,tilt_theta,[[cd,ch,cl],[cd+1,ch,cl]]):

                return cane:

end if:

end proc:

With this procedure we decided to add candy canes to the front, back, and sides of the gingerbread house. In addition we added two candy poles.

Candy Canes in front of the house:

cane1:=candy_pole([1.2,0,2],segn=9,arch=false):
cane2:=candy_pole([2.8,0,2],segn=9,arch=false):
cane3:=candy_pole([2.7,0.8,3.3],segn=9,segR=0.05,tilt_theta=-Pi/7):
cane4:=candy_pole([1.3,0.8,3.3],segn=9,segR=0.05,tilt_theta=-Pi/7,flip=true):
front_canes:=display(cane1,cane2,cane3,cane4):

Candy Canes at the back of the house:

caneb3:=candy_pole([1.5,4.2,2.5],segn=15,segR=0.05,tilt_theta=-Pi/3,flip=true):
caneb4:=candy_pole([2.5,4.2,2.5],segn=15,segR=0.05,tilt_theta=-Pi/3):}
back_canes:=display(caneb3,caneb4):

Candy Canes at the left of the house:

canel1:=candy_pole([0.8,1.5,2.5],segn=15,segR=0.05,tilt_theta=-Pi/7,theta=Pi/2):
canel2:=candy_pole([0.8,2.5,2.5],segn=15,segR=0.05,tilt_theta=-Pi/7,theta=Pi/2):
canel3:=candy_pole([0.8,4,2.5],segn=15,segR=0.05,tilt_theta=-Pi/7,theta=Pi/2):
left_canes:=display(canel1,canel2,canel3):

Candy Canes at the right of the house:

caner1:=candy_pole([3.2,1.5,2.5],segn=15,segR=0.05,tilt_theta=-Pi/7,theta=Pi/2):
caner2:=candy_pole([3.2,2.5,2.5],segn=15,segR=0.05,tilt_theta=-Pi/7,theta=Pi/2):
caner3:=candy_pole([3.2,4,2.5],segn=15,segR=0.05,tilt_theta=-Pi/7,theta=Pi/2):
right_canes:=display(caner1,caner2,caner3):

canes:=display(front_canes,back_canes,right_canes,left_canes):

With these canes in place all that was left was to create the ground and display our Gingerbread House.

ground:=display(plottools:-parallelepiped([5,0,0],[0,0.5,0],[0,0,4],[0,1.35,0]),color="DarkGreen"):

display([door,door_decor,d1,base,base_decor,d3,d4,front,back,roof,ground,canes],orientation=[-100,0,95]);

You can download the full worksheet creating the gingerbread house below:

Geometry_Gingerbread.mw

I am very pleased to announce that we have released a new version of the free Maple Companion app. For those you may have missed it, the first release of this app gave you a way to take a picture of math using your phone’s camera and upload it into Maple. Instructors have told me they’ve found this very useful in their classes, as they no longer have to deal with transcription errors as students enter problems into Maple.

So that’s good. But version 2 is a lot better. The Maple Companion now solves math problems directly on your phone. It can handle problems from algebra, precalculus, calculus, linear algebra, differential equations, and more. No need to upload to Maple – students can solve the problem by hand, and then use the app to check their answer, try new operations on the same expression, and even create plots. And if they want to do even more, they can still upload the expression into Maple for more advanced operations and explorations.

There’s also a built-in math editor, so you can enter problems without the camera, too. And if you use the camera, and it misinterprets part of your expression, you can fix it using the editor instead of having to retake the picture.  Good as the math recognition is, even in the face of some pretty poor handwriting, the ability to tweak the results has proven to be extremely useful.

There’s lots more we’d like to do with the Maple Companion app over time, and we’d like hear your thoughts, as well. How else can it help students learn?  How else can it act as a complement to Maple? Let us know!

Visit Maple Companion to learn more, find links to the app stores so you can download the app, and access the feedback form. And if you already have version 1, you can get the new release simply by updating the app on your phone.

 

This update fixes the problems inadvertently introduced in Maple 2019.2, namely:

  • Maple failed to run the code in the maple.ini/.mapleinit initialization files when loading existing worksheets containing a restart() command
  • Installing some packages from the MapleCloud was unsuccessful

For anyone who installed the 2019.2 update, installing 2019.2.1 will fix these problems.

If you are at Maple 2019.1 or earlier, installing this update will bring you straight to Maple 2019.2.1.

This update is available through Tools>Check for Updates in Maple, and is also available from our website on the Maple 2019.2.1 download page.

If you are a MapleSim user, please note that these problems do not affect your use of MapleSim. If you use Maple on its own, and if you use Maple command initialization files and/or you need to install a package from the MapleCloud that does not work, please contact Maplesoft Technical Support for assistance.

We sincerely apologize for the inconvenience and thank you for your patience as we worked through this issue.

We have just released updates to Maple and MapleSim.

Maple 2019.2 includes corrections and improvements to a variety of areas in the product, including a new “Go to page ____” option in print preview (that am personally quite pleased about), sections are expanded by default when printing or exporting, a fix to a problem using non-executable math with text in document mode that sometimes made it impossible to advance to a new line using Enter, improvements to VectorCalculus, select, abs and other math functions, support for macOS Catalina, and more.  We recommend that all Maple 2019 users install these updates.

This update is available through Tools>Check for Updates in Maple, and is also available from our website on the Maple 2019.2 download page, where you can also find more details.

For MapleSim users, the MapleSim 2019.2 family of products includes enhancements in the areas of model development and toolchain connectivity, including substantial enhancements to the MapleSim CAD toolbox.   For more details and download instructions, visit the MapleSim 2019.2 download page.

I’m very pleased to announce that we have just released the Maple Companion mobile app for iOS and Android phones. As its name implies, this free app is a complement to Maple. You can use it to take pictures of math you find out in the wild (e.g. in your handwritten notes, on a blackboard, in a textbook), and bring that math into Maple so you can get to work.

The Maple Companion lets you:

  • Avoid the mistakes that can occur when transcribing mathematical expressions into Maple manually
  • Save time when entering multiple equations into Maple, such as when you are checking your homework or pulling information from a reference book
  • Push math you’ll need later into Maple now, even if you don’t have your computer handy

The Maple Companion is an idea we started playing with recently. We believe it has interesting potential as a tool to help students learn math, and we’d really like your feedback to help shape its future direction. This first release is a step towards that goal, so you can try it out and start thinking about what else you would like to see from an app like this. Should it bring in entire documents? Integrate with tutors and Math Apps? Help students figure out where they went wrong when solving a problem? Let us know what you think!

Visit Maple Companion to learn more, link to the app stores so you can download the app, and access the feedback form. And of course, you are also welcome to give us your ideas in the comment section of this post.

We are currently in the process of updating the support FAQs at https://faq.maplesoft.com. We’ve been working on updating the existing content for clarity, and have added several new articles already.

 

The majority of our FAQs are from questions people ask us in Technical Support by support request form, but we’d also like to like to add content from other sources.

Since we have such a great community here at MaplePrimes, we wanted to reach out and ask if there are any articles or questions that you'd like to see added to our FAQ.

 

We look forward to hearing your feedback!

We occasionally get asked questions about methods of Perturbation Theory in Maple, including the Lindstedt-Poincaré Method. Presented here is the most famous application of this method.

Introduction

During the dawn of the 20th Century, one problem that bothered astronomers and astrophysicists was the precession of the perihelion of Mercury. Even when considering the gravity from other planets and objects in the solar system, the equations from Newtonian Mechanics could not account for the discrepancy between the observed and predicted precession.

One of the early successes of Einstein's General Theory of Relativity was that the new model was able to capture the precession of Mercury, in addition to the orbits of all the other planets. The Einsteinian model, when applied to the orbit of Mercury, was in fact a non-negligible perturbation of the old model. In this post, we show how to use Maple to compute the perturbation, and derive the formula for calculating the precession.

In polar coordinates, the Einsteinian model can be written in the following form, where u(theta)=a(1-e^2)/r(theta), with theta being the polar angle, r(theta) being the radial distance, a being the semi-major axis length, and e being the eccentricity of the orbit:
 

# Original system.
f := (u,epsilon) -> -1 - epsilon * u^2;
omega := 1;
u0, du0 := 1 + e, 0;
de1 := diff( u(theta), theta, theta ) + omega^2 * u(theta) + f( u(theta), epsilon );
ic1 := u(0) = u0, D(u)(0) = du0;


The small parameter epsilon (along with the amount of precession) can be found in terms of the physical constants, but for now we leave it arbitrary:
 

# Parameters.
P := [
    a = 5.7909050e10 * Unit(m),
    c = 2.99792458e8 * Unit(m/s),
    e = 0.205630,
    G = 6.6740831e-11 * Unit(N*m^2/kg^2), 
    M = 1.9885e30 * Unit(kg), 
    alpha = 206264.8062, 
    beta = 415.2030758 
];
epsilon = simplify( eval( 3 * G * M / a / ( 1 - e^2 ) / c^2, P ) ); # approximately 7.987552635e-8


Note that c is the speed of light, G is the gravitational constant, M is the mass of the sun, alpha is the number of arcseconds per radian, and beta is the number of revolutions per century for Mercury.

We will show that the radial distance, predicted by Einstein's model, is close to that for an ellipse, as predicted by Newton's model, but the perturbation accounts for the precession (42.98 arcseconds/century). During one revolution, the precession can be determined to be approximately
 

sigma = simplify( eval( 6 * Pi * G * M / a / ( 1 - e^2 ) / c^2, P ) ); # approximately 5.018727337e-7


and so, per century, it is alpha*beta*sigma, which is approximately 42.98 arcseconds/century.
It is worth checking out this question on Stack Exchange, which includes an animation generated numerically using Maple for a similar problem that has a more pronounced precession.

Lindstedt-Poincaré Method in Maple

In order to obtain a perturbation solution to the perturbed differential equation u'+omega^2*u=1+epsilon*u^2 which is periodic, we need to write both u and omega as a series in the small parameter epsilon. This is because otherwise, the solution would have unbounded oscillatory terms ("secular terms"). Using this Lindstedt-Poincaré Method, we substitute arbitrary series in epsilon for u and omega into the initial value problem, and then choose the coefficient constants/functions so that both the initial value problem is satisfied and there are no secular terms. Note that a first-order approximation provides plenty of agreement with the measured precession, but higher-order approximations can be obtained.

To perform this in Maple, we can do the following:
 

# Transformed system, with the new independent variable being the original times a series in epsilon.
de2 := op( PDEtools:-dchange( { theta = phi/b }, { de1 }, { phi }, params = { b, epsilon }, simplify = true ) );
ic2 := ic1;

# Order and series for the perturbation solutions of u(phi) and b. Here, n = 1 is sufficient.
n := 1;
U := unapply( add( p[k](phi) * epsilon^k, k = 0 .. n ), phi );
B := omega + add( q[k] * epsilon^k, k = 1 .. n );

# DE in terms of the series.
de3 := series( eval( de2, [ u = U, b = B ] ), epsilon = 0, n + 1 );

# Successively determine the coefficients p[k](phi) and q[k].
for k from 0 to n do

    # Specify the initial conditions for the kth DE, which involves p[k](phi).
    # The original initial conditions appear only in the coefficient functions with index k = 0,
    # and those for k > 1 are all zero.
    if k = 0 then
        ic3 := op( expand( eval[recurse]( [ ic2 ], [ u = U, epsilon = 0 ] ) ) );
    else
        ic3 := p[k](0), D(p[k])(0);
    end if:

    # Solve kth DE, which can be found from the coefficients of the powers of epsilon in de3, for p[k](phi).
    # Then, update de3 with the new information.
    soln := dsolve( { simplify( coeff( de3, epsilon, k ) ), ic3 } );
    p[k] := unapply( rhs( soln ), phi );
    de3 := eval( de3 );

    # Choose q[k] to eliminate secular terms. To do this, use the frontend() command to keep only the terms in p[k](phi)
    # which have powers of t, and then solve for the value of q[k] which makes the expression zero. 
    # Note that frontend() masks the t-dependence within the sine and cosine terms.
    # Note also that this method may need to be amended, based on the form of the terms in p[k](phi).
    if k > 0 then
        q[1] := solve( frontend( select, [ has, p[k](phi), phi ] ) = 0, q[1] );
        de3 := eval( de3 );
    end if;

end do:

# Final perturbation solution.
'u(theta)' = eval( eval( U(phi), phi = B * theta ) ) + O( epsilon^(n+1) );

# Angular precession in one revolution.
sigma := convert( series( 2 * Pi * (1/B-1), epsilon = 0, n + 1 ), polynom ):
epsilon := 3 * G * M / a / ( 1 - e^2 ) / c^2;
'sigma' = sigma;

# Precession per century.
xi := simplify( eval( sigma * alpha * beta, P ) ); # returns approximately 42.98


Maple Worksheet: Lindstedt-Poincare_Method.mw

I just wanted to let everyone know that the Call for Papers and Extended Abstracts deadline for the Maple Conference has been extended to June 14.

The papers and extended abstracts presented at the 2019 Maple Conference will be published in the Communications in Computer and Information Science Series from Springer. We welcome topics that fall into the following broad categories:

  • Maple in Education
  • Algorithms and Software
  • Applications of Maple

You can learn more about the conference or submit your paper or abstract here: 

https://www.maplesoft.com/mapleconference/Papers-and-Presentations.aspx

Hope to hear from you soon!

We’re excited to announce that we have just released a new version of MapleSim. The MapleSim 2019 family of products helps you get the answers you need from your models, with improved performance, increased modeling scope, and more ways to connect to your existing toolchain. Improvements include:
 

  • Faster simulation speeds, both within MapleSim and when using exported MapleSim models in other tools

  • More simulation options are now available when running models imported from other systems

  • Additional options for FMI connectivity, including support for variable-step solvers with imported FMUs, and exporting models using variable step solvers using the MapleSim FMI Connector add-on

  • Improved interactive analysis apps for Monte Carlo analysis, Optimization, and Parameter Sweep

  • Expanded modeling scope in hydraulics, electrical, multibody, and more, with new built-in components and support for more external Modelica libraries

  • New add-on library: MapleSim Engine Dynamics Library from Modelon provides specialized tools for modeling, simulating, and analyzing the performance of combustion engines

  • New add-on connector: The B&R MapleSim Connector gives automation projects a powerful, model-based ability to test and visualize control strategies from within B&R Automation Studio
     

See What’s New in MapleSim 2019 for more information about these and other improvements!

First 11 12 13 14 15 16 17 Last Page 13 of 36